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Abstract001

Large Language Models (LLMs) excel in rea-002
soning tasks through Chain-of-Thought (CoT)003
prompting. However, CoT prompting greatly004
increases computational demands, which has005
prompted growing interest in distilling CoT ca-006
pabilities into Small Language Models (SLMs).007
This study systematically examines the fac-008
tors influencing CoT distillation, including the009
choice of granularity, format and teacher model.010
Through experiments involving four teacher011
models and seven student models across seven012
mathematical and commonsense reasoning013
datasets, we uncover three key findings: (1) Un-014
like LLMs, SLMs exhibit a non-monotonic re-015
lationship with granularity, with stronger mod-016
els benefiting from finer-grained reasoning and017
weaker models performing better with simpler018
CoT supervision; (2) CoT format significantly019
impacts LLMs but has minimal effect on SLMs,020
likely due to their reliance on supervised fine-021
tuning rather than pretraining preferences; (3)022
Stronger teacher models do NOT always pro-023
duce better student models, as diversity and024
complexity in CoT supervision can outweigh025
accuracy alone. These findings emphasize the026
need to tailor CoT strategies to specific student027
model, offering actionable insights for optimiz-028
ing CoT distillation in SLMs.029

1 Introduction030

Large Language Models (LLMs) have demon-031

strated exceptional capabilities through exten-032

sive pretraining on diverse human language033

data (Brown et al., 2020; Hoffmann et al., 2022;034

Team et al., 2024a; Meta, 2024a; OpenAI, 2024).035

Chain-of-Thought (CoT) prompting has further en-036

hanced their abilities by guiding LLMs to gen-037

erate intermediate reasoning tokens, which emu-038

late human cognitive processes and improve inter-039

pretability (Kojima et al., 2022; Wei et al., 2023;040

Lyu et al., 2023). Advances in CoT prompting041

have explored techniques like extending reason-042

ing steps (Jin et al., 2024; Merrill and Sabharwal,043
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Figure 1: Overview of CoT Distillation. Different teacher
models generate CoT supervision with varying levels of gran-
ularity and formats to fine-tune the student model.

2024) and refining reasoning formats (Deng et al., 044

2024; Xu et al., 2024a). However, CoT’s token- 045

intensive nature significantly increases computa- 046

tional demands (Zhao et al., 2024), limiting its 047

practicality in resource-constrained settings. This 048

has spurred interest in distilling CoT capabilities 049

into Small Language Models (SLMs) as a more effi- 050

cient alternative (Team et al., 2024b; Meta, 2024b). 051

Since SLMs often struggle to independently gen- 052

erate effective CoT reasoning solutions (Kaplan 053

et al., 2020; Stolfo et al., 2023), distilling CoT ca- 054

pabilities requires fine-tuning SLMs on teacher- 055

annotated CoT datasets, where the teacher can 056

be either human experts or more powerful LLMs. 057

While previous research has demonstrated success- 058

ful distillation of CoT capabilities into SLMs (Ho 059

et al., 2023; Magister et al., 2023; Xu et al., 2024b; 060

DeepSeek-AI et al., 2025), the choice of teacher 061

annotators and CoT generation methods has often 062

been arbitrary. A critical, yet unexplored, research 063

question remains: What is the most effective CoT 064

supervision for training a student model to develop 065

robust reasoning capabilities? Analogous to how 066
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human teachers instruct students, there are three067

key factors that influence how effectively a student068

absorbs knowledge:069

• Choice of teacher: This defines who teaches070

the student. Different teachers bring vary-071

ing levels of knowledge, teaching styles, and072

problem-solving approaches. In reality a stu-073

dent’s performance can vary significantly de-074

pending on the teacher, and the most knowl-075

edgeable person is not always the best teacher.076

• Granularity of teaching: This defines what077

level of detail is provided. Teachers may pro-078

vide varying levels of explanation: some offer079

detailed, step-by-step reasoning, while others080

skip over simpler steps, assuming they are081

self-evident. The optimal level of granularity082

depends on the student’s perspective of what083

needs to be explained.084

• Format of teaching: This defines how the rea-085

soning is structured and presented. Even with086

the same teacher and granularity level, the087

way information is organized and expressed088

can significantly impact learning outcomes.089

Some students may prefer plain language ex-090

planations, while others may thrive with more091

technical, mathematical language.092

Building on this analogy of how human teaching093

impacts student performance, we conducted exten-094

sive experiments on four mathematical reasoning095

datasets of varying difficulty and three common-096

sense reasoning datasets, using four teacher models097

to distill reasoning skills to seven student models.098

We adopted a 1-shot prompting approach for gen-099

erating CoT annotations, which we found to be100

the most effective in maintaining consistency in101

teaching style while controlling granularity. Our102

key findings are: (1) While LLMs benefit mono-103

tonically from detailed steps, SLMs exhibit an non-104

monotonic relationship. Stronger student models105

benefit from finer granularity, while weaker ones106

can be overwhelmed by excessive explanations and107

prefer simpler CoT annotations; (2) CoT format108

changes influence LLMs, likely due to their pre-109

training preferences for certain structures, but this110

effect is less pronounced in SLMs, which adapt111

more readily to diverse formats during fine-tuning;112

(3) Contrary to prior research suggesting that bet-113

ter teacher models invariably lead to better student114

performance (Zong et al., 2023), in the task of dis-115

tilling CoT capabilities, we find that better teacher116

models do not always produce better student mod- 117

els. Sronger student models benefit more from 118

advanced teacher model. Human-annotated CoTs, 119

despite their near-perfect accuracy, often underper- 120

form LLM-generated CoTs. Our work presents 121

the first systematic framework for optimizing CoT 122

distillation, laying the groundwork for enhancing 123

the reasoning capabilities of SLMs. 124

2 Related Work 125

CoT prompting CoT prompting (Wei et al., 126

2023) has become a pivotal technique for enhanc- 127

ing reasoning capabilities in LLMs by introduc- 128

ing intermediate reasoning steps. Automated ap- 129

proaches like Auto-CoT (Zhang et al., 2023), Tree- 130

of-Thoughts (Yao et al., 2023) and Self-play Mu- 131

tual Reasoning (Qi et al., 2024) explore multiple 132

reasoning paths to expand the search space and 133

improve task accuracy. These methods focus on 134

increasing the reasoning length or expanding the 135

reasoning horizon to handle complex tasks. Recent 136

studies have underscored the importance of reason- 137

ing granularity and formats in enhancing LLM per- 138

formance. For instance, Jin et al. (2024) identified 139

that longer reasoning steps improve task success 140

for complex problems, while overly concise steps 141

can reduce effectiveness. Tailored reasoning for- 142

mats(Khot et al., 2023; Zhou et al., 2023; Deng 143

et al., 2024; Xu et al., 2024a) have demonstrated 144

substantial improvements across tasks. However, 145

these reasoning optimization strategies often comes 146

with significant computational costs (Nayab et al., 147

2024), raising concerns about the trade-off between 148

accuracy and efficiency. 149

Knowledge distillation While direct prompt- 150

ing enables LLMs to perform complex reasoning 151

through CoT, SLMs struggle due to limited capac- 152

ity (Stolfo et al., 2023). Knowledge distillation 153

(KD) provides an effective framework for trans- 154

ferring the reasoning capabilities of teachers to 155

SLMs (Xu et al., 2024b). A simple yet effective ap- 156

proach is using a teacher-student paradigm, which 157

employs teacher-generated CoT steps to guide 158

SLMs, addressing their limitations and enhanc- 159

ing reasoning-intensive task performance (Magister 160

et al., 2023; Ho et al., 2023; Shridhar et al., 2023). 161

Despite these advances, a systematic exploration of 162

how to balance reasoning granularity, format, and 163

teaching strategies remains lacking. Addressing 164

these gaps is crucial for optimizing CoT distillation 165

and enabling efficient reasoning in SLMs. 166
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3 Problem Formulation167

Let D = {(xi, yi)}N1 denote a reasoning dataset168

with N (xi, yi) pairs. Chain-of-Thought distilla-169

tion aims to train a student S to generate interme-170

diate reasoning steps Ci for each input xi in order171

to generate the right yi. The optimal Ci to train the172

student model is influenced by three key pedagog-173

ical factors: Choice of Teacher, Granularity of174

Teaching, and Format of Teaching:175

Choice of Teacher The teacher model T gener-176

ates a reasoning chain CT (xi) for each input xi,177

which guides the student model in producing the178

correct answer. The teacher can either be an LLM179

or a human with varying styles and expertise.180

Granularity of Teaching Granularity refers to181

the level of detail in the CoT reasoning. A high-182

granularity annotation provides detailed, step-by-183

step reasoning, while a low-granularity annotation184

skips steps and provides a more abstract summary.185

We represent the CoT chain with granularity g186

as Cg(xi) = (cg,1, cg,2, . . . , cg,kg) where kg is the187

number of reasoning steps. Higher kg and more188

tokens in cg,i indicates higher granularity.189

Format of Teaching Format refers to the struc-190

ture in which the CoT reasoning is presented. It191

could be in natural language, formal logic, or sym-192

bolic representation. We denote the CoT chain in193

format f as Cf (xi). The format impacts how the194

reasoning steps are conveyed.195

Given these three factors, the distillation pro-196

cess involves supervised fine-tuning of the student197

model S on generated CoT annotations:198

Ldistill =
N∑
i=1

L(S(xi), CT,g,f (xi)⊕ yi)199

where S(xi) is the generation from S, CT,g,f (xi)200

denotes the CoT annotation generated under201

teacher T with granularity g and format f , ⊕ de-202

notes concatenation and L measures the discrep-203

ancy between S(xi) and the ground truth.204

4 Experimental setup205

4.1 Generation of CoT Annotation206

Teacher Models We use three teacher models:207

GPT-4o(OpenAI, 2024), Gemini-1.5-Flash(Team208

et al., 2024a), and LLaMA 3 70B(Meta, 2024a),209

chosen for their diverse architectures and reason-210

ing capacities. Additionally, we include human-211

annotated CoTs, typically considered the ground- 212

truth reasoning steps (Kumar et al., 2024). 213

Generation Method The CoT generation pro- 214

cess begins with selecting a representative problem 215

from the training split as a 1-shot example. This 216

example is used to prompt teacher models for gen- 217

erating annotations under various configurations. 218

For granularity, we prompt the model to generate 219

CoTs with varying levels of detail simultaneously. 220

For format, we prompt the model to generate CoTs 221

for each format individually. 1 Details regarding 222

the workflow, prompt designs, and case studies are 223

included respectively in Appendix C and D. 224

4.2 Tasks and Datasets 225

Mathematical Reasoning To evaluate mathemat- 226

ical reasoning, we utilize four datasets with vary- 227

ing complexity levels: SVAMP (Patel et al., 2021), 228

GSM8K (Cobbe et al., 2021), AQuA-RAT (Ling 229

et al., 2017), MATH (Hendrycks et al., 2021). 230

SVAMP, GSM8K, and MATH require numeri- 231

cal answers, while AQuA-RAT adopts a multiple- 232

choice format. From the MATH dataset, we ran- 233

domly sample problems from subcategories such as 234

prealgebra, algebra, number theory, and counting 235

and probability, ensuring a representative coverage 236

of diverse mathematical domains. 237

Commonsense Reasoning For commonsense 238

reasoning, we use three datasets: Common- 239

senseQA (CSQA, Talmor et al. 2019; Aggarwal 240

et al. 2021), OpenBookQA (OBQA, Mihaylov 241

et al. 2018), and StrategyQA (STQA, Geva et al. 242

2021). These datasets test the models’ ability to 243

handle everyday reasoning and general knowledge 244

tasks. CSQA uses a 5-class multiple-choice format, 245

OBQA has 4 classes, and STQA is binary. 246

For evaluation, answers are extracted from gen- 247

erated responses using predefined templates and 248

regular expressions. We use accuracy as our eval- 249

uation metric, which is calculated as the ratio of 250

correctly predicted instances to the total number 251

of instances: Accuracy = Ncorrect/Ntotal. The com- 252

plete details can be found in the Appendix A. 253

5 Effects of Granularity 254

While previous research has shown that increasing 255

reasoning granularity improves LLM performance 256

1For granularity, we also investigated other data collection
strategies, such as generating reasoning steps forward and
backward simultaneously, but these methods did not produce
better data, as shown in Appendix C.1.
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Figure 2: Performance of student models with different granularity. Most models achieve peak accuracy at
intermediate granularity levels.

through detailed intermediate steps (Jin et al., 2024;257

Merrill and Sabharwal, 2024), SLMs differ funda-258

mentally from LLMs in their ability to process259

complex reasoning chains. This raises a critical260

question: does increasing reasoning granularity261

still yield consistent benefits for SLMs in the task262

of CoT distillation? In this section, we investigate263

this question using GPT-4o as the teacher model.264

Non-Monotonic Scaling in Student Models As265

shown in Figure 1, our experiments reveal a non-266

monotonic relationship between CoT granularity267

and student model accuracy. Most models exhibit268

peak performance at intermediate granularity levels.269

Further increasing granularity leads to diminish-270

ing returns and even performance declines. It sug-271

gests that intermediate granularity strikes a balance272

between informativeness and efficiency in CoT,273

whereas overly detailed reasoning chains may intro-274

duce redundant information which is overwhelm-275

ing especially for weaker models.276

Table 1 presents the performance of three repre-277

sentative student models across seven evaluation278

datasets. We include a baseline called Only Answer,279

where student models are fine-tuned to predict an-280

swers without CoT. Similar to System 1’s auto-281

matic thinking (Yu et al., 2024), higher baseline282

score suggests that the model may have implicitly283

learned the relevant knowledge during pretraining284

(Prabhakar et al., 2024).285

Notably, stronger and more recent student mod-286

els, such as those from the Gemma and LLaMA287

family, achieve significant performance gains from288

KD at higher granularity levels. In contrast,289

smaller and weaker models like BLOOM family290

improve on simpler tasks such at the intermediate291

granularity levels but struggle on more challeng-292

ing datasets, sometimes performing no better than293

random guessing. This trend of BLOOM family 294

aligns with parameter scaling laws (Kaplan et al., 295

2020) for simpler tasks but breaks down for more 296

complex ones, where smaller models fail to acquire 297

the reasoning abilities due to limited training data. 298

Full results are provided in Appendix E. 299

These findings emphasize that CoT granularity 300

plays a crucial role in CoT distillation. Customiz- 301

ing granularity levels to align with the student’s 302

abilities is thus critical for maximizing the effi- 303

ciency and effectiveness. 304

Distinguishing Granularity from Length Effect 305

Increasing reasoning granularity often leads to 306

longer sequences as a byproduct. To isolate the 307

impact of granularity from sequence length, we 308

pad CoT training samples for a lower granular- 309

ity level g1 with non-informative filler content to 310

match the sequence length of a higher granular- 311

ity g2, such that avg_len(Dg1) ≈ avg_len(Dg2). 312

This modification allows us to assess whether rea- 313

soning accuracy stems from granularity or simply 314

sequence length. The specific padding procedure 315

can be found in the Appendix F. 316

As shown in Table 2, padding Level 1 reasoning 317

chains to level 5 consistently failed to replicate the 318

gains observed with actual higher-granularity rea- 319

soning, which demonstrates that simply increasing 320

sequence length without introducing meaningful 321

reasoning steps does not enhance model perfor- 322

mance. Furthermore, adding filler content may 323

introduce noise or distract the model, leading to 324

degraded performance (Zhou et al., 2024; Li et al., 325

2024). This highlights the critical role of granular- 326

ity, rather than sequence length alone, in driving 327

reasoning efficacy. 328
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Dataset Only Answer Gemma 2B Performance
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

SVAMP 47.70 59±4.58 64.33±0.00 65.22±0.69 65.89±0.38 67.11±1.35
↑13.74% 66.89±1.02

GSM8K 8.20 49.66±0.27 52.36±0.98 53.37±0.33 52.69±0.13 53.42±0.83 53.45±1.48
↑7.63%

AQuA-RAT 20.47 40.68±1.27 42.91±1.42 43.7±2.58 39.9±1.49 44.88±0.79
↑12.48% 44.49±2.36

MATH 9.00 23.4±1.06 21.53±2.16 24.4±0.20
↑16.19% 21.93±0.42 23.0±1.22 21.0±0.69

CSQA 69.86 67.38±0.82 67.98±0.37 68.74±1.30 66.75±0.53 67.54±0.47 66.01±1.50

OBQA 69.60 71.53±1.94 69.93±0.90 69.93±1.36 68.33±1.27 72.00±1.64
↑5.37% 70.13±1.62

STQA 60.69 67.59±1.04
↑7.11% 63.1±1.79 64.6±1.56 63.45±1.24 65.75±1.77 64.14±1.58

Dataset Only Answer LLaMA 3.2 3B Performance
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

SVAMP 53.70 69±3.61 65.89±3.53 68.33±1.86 68.11±3.27 69.78±1.07 74.33±1.45
↑12.81%

GSM8K 9.30 59.59±1.59 62.29±1.41 62.57±0.80 63.48±0.16
↑6.53% 62.29±1.22 60.98±0.31

AQuA-RAT 19.60 44.36±2.31 44.88±2.19 45.01±2.37 46.19±3.94 47.24±4.77
↑6.49% 46.33±3.01

MATH 9.40 19.07±0.90 19.6±1.06 19.73±1.72 20.27±1.42
↑11.37% 19.93±2.20 18.2±1.64

CSQA 62.00 72.62±0.82 70.71±0.70 74.12±0.50
↑4.82% 71.75±0.62 71.17±1.03 71.44±0.90

OBQA 74.40 79.33±0.42 79.73±0.70 78.8±0.80 77.8±0.92 79.27±2.04 80.2±1.78
↑3.08%

STQA 55.52 66.44±1.55 62.76±2.82 67.47±1.44 66.78±1.39 63.91±2.79 68.62±1.20
↑9.34%

Dataset Only Answer BLOOM 3B Performance
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

SVAMP 5.00 15.44±0.51 23.67±0.00 23.11±1.26 24.00±0.67
↑55.44% 22.22±0.69 22.22±1.02

GSM8K 4.60 18.2±0.57 22.34±1.14 23.81±0.65
↑30.82% 22.57±0.88 22.47±0.86 20.85±0.15

AQuA-RAT 28.00 24.67±0.82 24.41±1.72 20.34±1.82 26.90±2.41 25.85±0.45 24.28±2.17
MATH 4.60 3.2±1.04 2.8±0.40 2.33±0.61 2.73±0.23 3.53±0.50 2.8±0.20

CSQA 20.56 57.44±1.12
↑11.38% 55.23±1.47 55.42±0.64 53.65±0.22 52.96±0.29 51.57±1.15

OBQA 37.80 57.2±1.59 52.33±0.61 54.87±2.02 54.6±1.04 57.47±2.64
↑9.82% 52.93±1.81

STQA 54.14 58.85±1.74 61.04±3.06
↑3.72% 60.58±3.09 59.89±3.13 59.19±1.21 59.08±2.87

Table 1: Performance of Gemma 2B, LLaMA 3.2 3B and BLOOM 3B at six granularity levels. For each dataset, the
best performance is boldfaced, and red text shows the relative improvement (%) for highest vs. lowest performance
in six levels. Only Answer: Student models are fine-tuned to directly predict answers without CoT.

Granularity GSM8K AQuA-RAT

Acc Seq. Length Acc Seq. Length

Level 1 47.61 100.93 40.15 149.31
Level 1 Padded 46.62 143.43 37.80 220.34
Level 5 52.92 138.16 42.51 216.13

Table 2: Performance and sequence length of Gemma
2B on GSM8k and AQuA-RAT with varying granularity
levels and padding conditions.
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Figure 3: Scatter plots of teacher (GPT-4o, x-axis) vs.
student accuracy (y-axis) across datasets and granularity
levels. Each point marker represents a specific dataset.

Correlation between Granularity and Student329

Models Figure 3 illustrates the overall relation-330

ship between teacher and student performance 331

across datasets at varying granularity levels. We 332

further list the Pearson correlation coefficient (r) 333

for each student model. The results reveal a clear 334

trend: as student model capacity increases, its 335

performance aligns more closely with the teacher 336

model’s preferences for reasoning granularity 337

Stronger student models demonstrate signifi- 338

cantly higher alignment with the teacher’s opti- 339

mal granularity, indicating better transferability of 340

reasoning structures. In contrast, weaker student 341

models show a lower correlation, suggesting the 342

limited ability to adapt to the teacher’s granular- 343

ity preferences. This highlights the importance of 344

tailoring granularity configurations to match the 345

capabilities of student models, rather than relying 346

solely on the teacher’s performance trends. 347

Increasing CoT granularity does not lead to
monotonic improvements in student models.
Stronger models benefit from higher granular-
ity, whereas weaker models peak at intermediate
levels and struggle with complex tasks. Optimiz-
ing granularity based on student capacity, rather
than uniformly following the teacher model, is
key to maximizing CoT distillation efficiency.

Conclusion
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Dataset CoT Format BLOOM 560M BLOOM 1.1B BLOOM 1.7B BLOOM 3B Gemma 2B LLaMA 3.2 1B LLaMA 3.2 3B

SVAMP

Original CoT 5.56±2.41↑ 10.67±1.00↑ 16.56±0.51↑ 22.22±0.69↑ 67.11±1.35↑ 52.44±1.71↑ 69.78±1.07↑
Least-to-most 6.11±1.07↑ 10.44±0.69↓ 14.67±1.00↓ 24.00±1.45↑ 66.56±0.69↓ 54.44±1.26↑ 75.00±0.67↑

RaR 4.89±0.19↓ 9.00±0.58↓ 14.11±0.69↓ 24.22±1.58↑ 65.67±1.73↓ 54.56±0.69↑ 73.89±1.26↑
Symbolic CoT 5.89±0.51↑ 6.44±0.38↓ 9.00±0.67↓ 19.22±1.07↓ 64.78±0.77↓ 51.78±1.07↓ 72.89±1.50↑

GSM8K

Original CoT 8.19±0.27↑ 13.09±0.83↑ 16.86±1.25↑ 22.47±0.86↑ 53.42±0.83↑ 39.58±1.04↑ 62.29±1.22↑
Least-to-most 7.88±0.35↓ 13.52±0.87↑ 15.54±0.72↓ 21.86±0.56↓ 51.93±0.07↓ 39.25±1.10↓ 62.07±0.70↓

RaR 5.89±0.22↓ 10.84±0.40↓ 13.72±0.59↓ 20.02±0.27↓ 51.99±1.22↓ 38.09±0.46↓ 63.02±0.56↑
Symbolic CoT 5.94±0.62↓ 10.74±0.64↓ 13.27±0.20↓ 19.33±0.73↓ 47.12±0.39↓ 34.70±0.89↓ 58.94±0.83↓

AQuA

Original CoT 18.64±1.98↑ 21.92±3.66↑ 22.31±1.38↑ 25.85±0.45↑ 44.88±0.79↑ 33.20±2.17↑ 47.24±4.77↑
Least-to-most 19.69±3.22↑ 20.73±0.91↓ 23.10±2.17↑ 24.41±1.42↓ 38.32±1.86↓ 28.48±2.17↓ 41.60±2.77↓

RaR 21.26±3.94↑ 22.57±2.79↑ 24.28±2.50↑ 25.07±3.94↓ 41.86±3.16↓ 31.10±2.39↓ 45.93±4.60↓
Symbolic CoT 16.14±1.97↓ 19.16±2.41↓ 21.00±1.38↓ 20.87±2.36↓ 40.94±0.00↓ 28.08±3.06↓ 42.13±1.80↓

OBQA

Original CoT 36.73±0.76↑ 46.07±2.23↑ 48.00±1.40↑ 54.87±2.02↑ 69.93±1.36↑ 63.60±2.12↑ 78.80±0.80↑
Least-to-most 31.40±1.74↓ 43.33±2.02↓ 45.53±2.39↓ 53.20±2.50↓ 68.27±1.03↓ 62.80±2.23↓ 78.33±1.62↓

RaR 40.47±1.68↑ 47.47±2.23↑ 49.87±1.42↑ 56.40±1.97↑ 72.73±2.19↑ 64.40±2.75↑ 82.00±0.20↑
Symbolic CoT 31.67±1.36↓ 35.13±0.23↓ 37.73±3.25↓ 41.13±1.81↓ 61.80±0.92↓ 52.47±0.70↓ 72.13±0.64↓

Table 3: Performance of student models with different CoT formats. For each dataset, the best performance is
boldfaced, and arrows show that the performance is increased (↑) or decreased (↓) over original CoT.

6 Effects of Format348

Beyond granularity, the format of reasoning has349

been widely believed to influence model perfor-350

mance in prior research. However, SLMs often351

face limitations in processing complex reasoning352

structures. This raises a research question: Do353

these alternative formats consistently improve stu-354

dent model performance, or are their benefits task-355

specific and limited?356

Choice of Reasoning Formats In this section,357

we systematically evaluate the impact of alternative358

reasoning structures on student model performance.359

Since student models tend to perform stably at inter-360

mediate granularity levels, we let GPT-4o modify361

the format of the original CoT without changing362

the granularity (More details can be seen in Ap-363

pendix D). We compare the original CoT format364

with three alternative structures:365

• Least-to-most (Zhou et al. 2023): A reason-366

ing approach that decomposes a complex prob-367

lem into a sequence of sub problems. Least-to-368

most excels in systematically breaking down369

problems into manageable parts to facilitate370

understanding and solution synthesis.371

• Rephrase and Respond (RaR) (Deng et al.,372

2024): A method where questions are373

rephrased to reduce ambiguity before answer-374

ing, enabling iterative clarification and im-375

proving the LLM’s ability to respond accu-376

rately to nuanced queries.377

• Symbolic CoT (Xu et al., 2024a): A reason-378

ing structure that combines symbolic logic379

and CoT prompting, translating natural lan- 380

guage into symbolic expressions for step-by- 381

step logical deduction, enhancing faithfulness 382

and flexibility in problem-solving. 383

Our results, summarized in Table 3, highlight 384

a clear trend: the original CoT format often out- 385

performs more complex or modified structures, pri- 386

marily due to its simplicity and adaptability. This 387

contrasts with previous findings in LLMs, where 388

these alternative formats frequently yield improve- 389

ments. For SLMs, however, the added complexity 390

of alternative formats generally increases cognitive 391

load and hardly improve the performance. 392

Task-Specific Gains While most tasks favor the 393

original CoT format, certain alternative structures 394

offer measurable benefits for specific scenarios. For 395

example, RaR improves commonsense reasoning 396

tasks by reducing ambiguity and enabling iterative 397

clarification. Least-to-most sometimes excels in 398

mathematical reasoning by breaking problems into 399

logical steps or symbolic expressions. 2 400

Model-Specific Trends Stronger student mod- 401

els, such as LLaMA 3.2 3B, show improved per- 402

formance under alternative formats, leveraging 403

structural cues to refine problem-solving processes. 404

However, these improvements are tied to specific 405

tasks and do not generalize across all datasets. 406

Overall, our findings indicate that while CoT for- 407

mats can occasionally enhance performance, their 408

benefits are often task-dependent and come at the 409

cost of introducing additional tokens. Moreover, 410

2A possible reason for the suboptimal performance of Sym-
bolic CoT is analyzed with examples in the Appendix G.
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SLMs have relatively limited pretraining corpora,411

which likely contain fewer instances of these rea-412

soning formats. As a result, weaker models strug-413

gle to effectively learn and utilize them, making it414

even harder for CoT format variations to yield con-415

sistent improvements. Given these observations,416

we argue that adjusting CoT formats alone may not417

be the most effective approach for improving SLM418

performance. This contrasts with the consistent419

impact of granularity, as highlighted in Section 5,420

suggesting that focusing on granularity is a more421

effective strategy than altering CoT formats.422

While alternative CoT formats sometimes offer
some task-specific benefits, the original CoT for-
mat from teacher models often remains the most
effective for general-purpose SLM training.

Conclusion

7 Effects of Teacher Model423

In CoT distillation, teacher models serve as the424

source of CoT reasoning annotations for training425

student models. Prior research of KD assumes that426

teacher models with better performance naturally427

lead to better student models (Zong et al., 2023).428

This assumption stems from the belief that higher-429

performing teachers generate more accurate reason-430

ing steps and answers, which, when distilled into431

student models, enhance their capabilities. How-432

ever, this assumption may not hold universally as433

SLMs might have limited capacity to replicate the434

reasoning complexity of strong teachers.435

In this section, we analyze the performance436

of student models under four teachers, GPT-4o,437

LLaMA 3 70B, Gemini-1.5-Flash and the human438

expert. We aim to determine whether the choice439

of teacher affects the ability of student models to440

effectively distill and replicate CoT reasoning.441

Is Higher Teacher Accuracy Always Better?442

We first investigate whether a higher teacher ac-443

curacy directly translates into improved student444

performance. As shown in Figure 4, we selected445

the best-performing student model for each dataset446

under different teacher models’ CoT supervision.447

It can be observed that points closer to the right448

side of the x-axis are not always positioned near the449

top of the y-axis. This indicates that, contrary to450

intuitive expectations, while a reasonably accurate451

teacher can effectively impart essential reasoning452
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Figure 4: Scatter plots of teacher (x-axis) vs. student
model accuracy (y-axis) across datasets. GPT refers to
GPT-4o, LLaMA refers to LLaMA 3 70B, and Gemini
refers to Gemini-1.5-Flash.

patterns, excessively high teacher accuracy does 453

not always yield proportional improvements in stu- 454

dent accuracy. Teacher accuracy alone is not the 455

determining factor for student performance, which 456

aligns with our findings in Section 5. 457

Moreover, we do not observe a significant pref- 458

erence pattern within the same model family. How- 459

ever, we find that stronger student models tend to 460

benefit more significantly when trained under the 461

guidance of stronger teacher models. This suggests 462

that the trade-off between teacher model capabil- 463

ity and computational cost should be carefully ad- 464

justed based on the target student model’s capacity. 465

For simpler tasks, a less advanced teacher model 466

is often sufficient, producing results comparable to 467

those obtained from more powerful, computation- 468

ally expensive teachers. 469

Human vs LLM: Task-Specific Effectiveness 470

As seen in Figure 5, in mathematical reasoning 471

tasks, student models achieve higher accuracy 472

when fine-tuned on LLM-generated CoTs com- 473

pared to human annotations, although the accu- 474

racy of the teacher model itself performs poorly 475

on difficult mathematical datasets compared with 476

human-labeled data. Conversely, for commonsense 477

reasoning tasks like StrategyQA, human-annotated 478

CoTs dramatically improve student model perfor- 479

mance. This phenomenon arises because LLMs 480

generate structured and detailed reasoning chains 481

that closely align with the symbolic and procedural 482

nature of mathematical tasks. In contrast, human- 483

annotated CoTs often lack the rigorous step-by- 484
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Figure 5: Student model performance across different
teacher models. Each bar represents the average accu-
racy of a specific student model trained on CoT from
different teacher models.

step structure required for effective mathematical485

reasoning. However, Human annotations excel at486

capturing nuanced contextual understanding, cre-487

ative inferences, and interpretive reasoning, which488

are crucial for tasks involving ambiguous or open-489

ended questions. These findings underscore the490

importance of selecting CoT sources based on task491

characteristics rather than assuming a universal492

superiority of either LLMs or human annotations.493

Full results can be found in Appendix H.494

The Matthew Effect in SLMs We explore the495

relationship between student model capacity and496

the benefits gained from CoT distillation, shedding497

light on the uneven distribution of performance498

improvements across models of varying capabil-499

ities. Figure 6 presents two heatmaps compar-500

ing student model performance before and after501

CoT distillation. The results reveal a Matthew502

Effect: stronger student models achieve greater503

performance gains from CoT distillation than504

weaker models, demonstrating their potential abil-505

ity to leverage detailed reasoning steps. This phe-506

nomenon aligns with Vygotsky’s Zone of Proxi-507

mal Development (ZPD) (Vygotsky, 1978), where508

weaker student models have a narrower ZPD, limit-509

ing their ability to absorb complex CoT reasoning.510

If reasoning complexity is too high relative to a511

model’s ZPD, it may fail to extract useful patterns,512

limiting the effectiveness of CoT distillation. In513

contrast, stronger models have a wider ZPD, en-514

abling them to integrate and generalize from multi-515

step reasoning. CoT distillation provides gains on 516

more challenging ones, where their capacity allows 517

them to fully leverage structured reasoning. This 518

highlights the need for adaptive CoT supervision, 519

where reasoning depth is modulated based on the 520

student’s ability to process and learn from it. 521
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Figure 6: The Only Answer heatmap represents the
baseline accuracy of student models without reasoning
supervision, while the Average Performance heatmap
shows the average accuracy of student models trained
on CoT from ChatGPT-4o.

The assumption that a better teacher always pro-
duces a better student does not universally hold
for SLMs. Stronger student models benefit more
from advanced teacher models. Teacher choice
should be task-specific: LLM-generated CoTs
improve mathematical reasoning, while human
annotations excel in commonsense reasoning.

Conclusion

8 Conclusion 522

This study systematically examined key factors 523

influencing CoT distillation in SLMs, including 524

teacher selection, granularity, and format. First, 525

We found that finer-grained CoT benefits stronger 526

SLMs, and weaker models perform better with sim- 527

pler annotations. Then, while CoT format signifi- 528

cantly impacts LLMs, its effect on SLMs is more 529

subtle. Importantly, better teacher models do not 530

always yield better students, as the effectiveness of 531

CoT distillation depends on a model’s ability to ab- 532

sorb reasoning complexity within its ZPD. Notably, 533

human-annotated CoTs underperform on mathe- 534

matical tasks but can surpass LLM-generated CoTs 535

in certain commonsense reasoning tasks. Overall, 536

CoT distillation proves more effective for stronger 537

SLMs and complex tasks, emphasizing the need 538

for tailored granularity and teacher selection strate- 539

gies to optimize reasoning performance in resource- 540

constrained settings. 541
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Limitations542

Despite the promising results of our study, several543

limitations must be acknowledged. First, during544

data generation and testing, some tasks triggered545

safety concerns in the models, causing them to546

refuse to generate CoTs. In these cases, we re-547

sorted to directly using the provided answers for548

fine-tuning, which may have constrained the diver-549

sity and quality of the reasoning chains, potentially550

affecting the distillation outcomes. Second, the551

ability of teacher models to generate CoTs is inher-552

ently tied to their reasoning capabilities. For cer-553

tain tasks, teacher models were unable to reverse-554

engineer plausible CoTs from the given answers555

due to their limited capabilities, resulting in in-556

complete or suboptimal reasoning chains. Lastly,557

this study did not focus on exploring novel KD558

techniques but instead aimed to systematically an-559

alyze the effects of existing approaches on CoT560

granularity, format, and teacher selection. These561

limitations underscore the need for further research562

into CoT generation and the development of ad-563

vanced distillation methods tailored to task-specific564

requirements.565

Ethics Statement566

This study adheres to ethical standards in AI re-567

search by ensuring that all experiments were con-568

ducted using publicly available datasets and pre-569

trained models. During the data generation pro-570

cess, measures were taken to respect model safety571

constraints, avoiding harmful or inappropriate out-572

puts. While some tasks required bypassing CoT573

generation due to safety concerns, we ensured that574

these adjustments did not compromise the ethical575

integrity of the fine-tuning process. Furthermore,576

this research aims to optimize reasoning capabili-577

ties in SLMs while minimizing computational re-578

sources, promoting environmentally sustainable AI579

practices. We acknowledge that KD techniques580

may inadvertently propagate biases from teacher581

models to student models. To mitigate this, we582

recommend conducting comprehensive evaluations583

of distillation pipelines to identify and address po-584

tential biases before deployment in real-world ap-585

plications. This work ultimately seeks to advance586

AI accessibility while prioritizing ethical consider-587

ations in model development and deployment.588
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Appendix878

A Overview of Training and Test Datasets879

For our experiments, we used three models (Llama3 70B, Gemini-1.5-Flash, GPT-4o) on multiple880

existing datasets, including mathematical reasoning datasets (SVAMP, GSM8K, AQuA-RAT, MATH) and881

commonsense reasoning datasets (OpenBookQA, CommonsenseQA, and StrategyQA) to generate CoT882

outputs. Table 4 shows the overview of the training and test datasets (Yue et al., 2024). Table 5 shows883

some examples of our datasets.884

Training Dataset Samples Fields Human Annotation
Training Testing

SVAMP 700 300 Arithmetic problems Yes
GSM8K 7.4k 1.3k Grade-school math Yes

AQuA-RAT 6.1k 254 Algebraic reasoning, multi-step Yes
Math 1.3k 500 Pre-Algebra, Algebra, Counting & Probability, Number Theory Yes

CommonsenseQA 9.7k 1.2k Commonsense knowledge Yes
OpenBookQA 4.9k 500 Domain-specific knowledge No

StrategyQA 2k 290 Multi-step reasoning Yes

Table 4: Overview of Training and Test Datasets.

Dataset Problem Characteristics

SVAMP There are 87 oranges and 290 bananas in Philip’s
collection. If the bananas are organized into 2 groups
and oranges are organized into 93 groups How big
is each group of bananas?

290.0 / 2.0 = 145.0. The answer is 145.0.

GSM8K Natalia sold clips to 48 of her friends in April, and
then she sold half as many clips in May. How many
clips did Natalia sell altogether in April and May?

Natalia sold 48/2 = «48/2=24»24 clips in May. Na-
talia sold 48+24 = «48+24=72»72 clips altogether
in April and May. 72

AQuA-RAT A man can swim in still water at 7.5 km/h, but takes
twice as long to swim upstream than downstream.
The speed of the stream is? Answer Choices: (A) 3
(B) 2.5 (C) 2.25 (D) 1.5 (E) 4

M = 7.5 S = x DS = 7.5 + x US = 7.5 + x 7.5 + x =
(7.5 - x)2 7.5 + x = 15-2x 3x = 7.5 x = 2.5 Answer:
C

Math Find the sum of all positive divisors of 50 that are
also divisors of 15.

The positive factors of 50 are 1, 2,5, 10, 25, 50. Of
these, only 1 and 5 divide 15. Their sum is 1+5 = 6.

CommonsenseQA Bill did not abandon the fight, but did what to the
enemy? Answer choices: A: arrogate, B: retain, C:
embrace, D: smile, E: engage

Bill engaged in a fight with enemy. Other options
are not a type of fights one takes with enemy. The
answer is E.

StrategyQA Are more people today related to Genghis Khan than
Julius Caesar?

Julius Caesar had three children. Genghis Khan
had sixteen children. Modern geneticists have de-
termined that out of every 200 men today has DNA
that can be traced to Genghis Khan. The answer is
True.

Table 5: Examples of Human Annotation for All Datasets.
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B Training setup 885

Our experiment uses the LLaMA-Factory framework (Zheng et al., 2024) to fine-tune models, and the 886

training parameters are as follows: 887

Parameter Value

Learning Rate 3e-5
Num Train Epochs 3
LR Scheduler Cosine
Max Grad Norm 1.0
Optimizer AdamW
Template gemma/alpaca/llama3

Table 6: Configuration for training parameters.

C Different CoT Granularity Dataset Collection 888

C.1 Workflow 889

The granularity dataset processing steps are detailed below: 890

1. 0-Shot Example Generation: The same question is first provided to the three models using a 0-shot 891

prompt. The models generate a single 1-shot example (including both a question and a corresponding 892

output) as the output. This step ensures that the models first generate a baseline example. The generated 893

example serves as a guide for subsequent responses. 894

2. Input Construction: Each question is provided to the models, along with its corresponding ground- 895

truth answer from the original dataset and the generated 1-shot example (from Step 1). Including the 896

1-shot example in the input establishes a reference point for the model, enhancing coherence and quality 897

of generated outputs. 898

3. Generation with Multi-Granularity Outputs: Using the constructed input (original question + 899

ground truth + 1-shot example), all three teacher models are prompted to generate answers at multiple 900

granularity levels (G = {g1, g2, . . . , g6}). These levels range from concise summaries to highly detailed, 901

step-by-step reasoning. By solving each question across six levels of granularity, this step systematically 902

evaluates the models’ ability to adapt their reasoning to different levels of abstraction. 903

4. Ranking and Alignment: The generated outputs are sorted to align with the original dataset’s order, 904

ensuring consistency and enabling a systematic evaluation of the results. Sorting the generated outputs 905

ensures that the evaluation is systematic and comparable against the original dataset. 906

907

Why do we use 1-shot example in the prompt: 908

We have decided to incorporate a 1-shot example into the prompt instead of using a 0-shot prompt, 909

based on our trial-and-error findings. 910

Our initial attempt used a forward-generation approach, where we prompted the model to produce the 911

most succinct response and then enrich it level by level. However, we encountered significant challenges 912

with this approach. The model struggled to demonstrate consistent incremental increases in granularity, as 913

the initial requirement for conciseness often constrained its reasoning and led to inaccuracies or incomplete 914

answers. The model’s inability to build upon a succinct base made this method unsuitable for achieving 915

the desired level of granularity. 916

To address this, we reversed the approach by asking the model to provide the most elaborate response, 917

intending to progressively reduce the level of detail in subsequent steps. While this method initially 918

produced more detailed outputs, the responses often lacked sufficient depth and structure to support 919

multiple rounds of granularity reduction. As a result, achieving consistent decreases in detail also proved 920

to be a challenge. 921

These findings highlighted the need for a more structured and balanced approach. We identified that 922

including a 1-shot example in the prompt could effectively guide the model to produce outputs with 923

consistent and balanced granularity across levels. A well-designed 1-shot example helps the model 924
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demonstrate high-quality reasoning even in concise answers, ensuring alignment with task requirements925

regardless of the level of detail. It also provides a clear reference for maintaining consistency when926

transitioning between levels of granularity.927

In summary, 1-shot prompts strike an effective balance between flexibility and structure, enabling the928

model to generalize across tasks while maintaining coherence and consistency. This approach significantly929

enhances the model’s ability to generate high-quality training samples with varying levels of reasoning930

granularity.931

As a result, we have decided to generate a 1-shot example to include in the prompt. The first prompt932

will be used to create the 1-shot example, and the second prompt will leverage it for data generation.933

C.2 Prompts934

CoT Prompt Template

You are a math teacher. Please think step by step for the following question.

Output the result strictly in the following format. DO NOT generate any other explanations.

The generated answer must be consistent with the given answer.

Question: "<your question>" Answer: "<original answer>"

The output format should be as follows:
"instruction": "<your question>", "output": "<Solution Path> The answer is

<answer>"

Here is the example:
<example>

Figure 7: Prompt for generating CoT dataset.
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Synthetic 1-shot CoT Example Based on Granularity Prompt Template

You are a math teacher. Please think step by step for the following questions in six different
Granularity levels.

Ensure that the explanations become progressively more detailed as the Granularity increases. The
difference in the number of words between each Granularity should be as large as possible.

The generated answer must be consistent with the given answer. DO NOT generate any other
explanations. Output the result strictly in the following format:

"instruction": "<your question>", "output": "<Solution Path>\n The answer is
<answer>"

Granularity definitions:

- Level 1: Provide the most essential steps to reach the answer, minimizing explanations and
focusing on the direct path to the solution.
- Level 2: Provide the essential steps required to reach the answer, including some intermediate
calculations. It should be more detailed than level 1 but shorter than level 3.
- Level 3: Provide a detailed breakdown that includes all necessary calculations and explanations
but shorter and less detailed than level 4. Ensure it is more detailed than level 2.
- Level 4: Provide a very detailed breakdown that includes all necessary calculations and explana-
tions but avoids extra clarifications that would belong to level 5. It should be more detailed than
level 3.
- Level 5: Provide an extremely detailed breakdown, covering almost all aspects and sub-steps, but
shorter and less detailed than level 6. It should include additional clarifications and checks beyond
level 4.
- Level 6: Provide the most detailed and comprehensive breakdown, covering all possible aspects
and sub-steps. Ensure this explanation is significantly longer and more detailed than level 5.

The output format should be as follows:

{ "Granularity": "level 1", "instruction": "<your question>", "output":
"Explanation: <Explanation>\n The answer is <answer>" }
{ "Granularity": "level 2", "instruction": "<your question>", "output":
"Explanation: <Explanation>\n The answer is <answer>" }
{ "Granularity": "level 3", "instruction": "<your question>", "output":
"Explanation: <Explanation>\n The answer is <answer>" }
{ "Granularity": "level 4", "instruction": "<your question>", "output":
"Explanation: <Explanation>\n The answer is <answer>" }
{ "Granularity": "level 5", "instruction": "<your question>", "output":
"Explanation: <Explanation>\n The answer is <answer>" }
{ "Granularity": "level 6", "instruction": "<your question>", "output":
"Explanation: <Explanation>\n The answer is <answer>" }

Figure 8: Synthetic 1-shot CoT prompt example based on granularity levels, demonstrating progressively detailed
reasoning steps from Level 1 to Level 6 explanations.
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C.3 Granularity case study935

Question: At the beginning of every period of British Literature, Mrs. Crabapple picks a random student936

to receive a crabapple as a gift. Given that there are 11 students in her class and her class meets four times937

a week, how many different sequences of crabapple recipients are possible in a week?938

C.3.1 GPT-4o939

Granularity Generated Output

Level 1 1. Number of students = 11

2. Class meets per week = 4 times

3. Each day, 1 student can receive a crabapple

4. Choices per day = 11

5. Total choices = 114 = 14641

The answer is 14,641
Level 2 1. Each period is an independent random event where 1 of 11 students is chosen.

2. There are 4 periods per week.

3. Each of the 4 periods has 11 possible choices.

4. The total number of sequences is 114.

5. Calculate 114: 11× 11 = 121, 121× 11 = 1331, 1331× 11 = 14641

The answer is 14,641
Level 3 1. Each time Mrs. Crabapple picks a student, she has 11 choices.

2. Since the class meets four times a week, there are four independent selections, each with 11 choices.

3. The number of different sequences of crabapple recipients is calculated by raising the number of choices
to the power corresponding to the number of selections: 114.

4. Calculate this value: 11× 11× 11× 11 = 14, 641.

The answer is 14,641
Level 4 1. Each class session, Mrs. Crabapple picks one of the 11 students.

2. Multiply the number of choices per session: 11 choices per session.

3. Since the class meets four times a week, we need to raise the number of choices to the power of the
number of sessions: 114.

4. Calculate 114: 11× 11× 11× 11.

5. Perform the multiplication step-by-step: 11× 11 = 121, 121× 11 = 1331, 1331× 11 = 14, 641.

6. Review all steps for consistency: 11 choices per session, 4 sessions total, 114 computation confirms
14,641 possibilities.

The answer is 14,641
Level 5 1. Identify key variables: 11 students, 4 class meetings.

2. Recognize the problem’s nature: finding the number of different sequences (order matters) of recipients
over 4 periods.

3. Analyze each period’s choice: Each of the 4 periods can be filled by any one of the 11 students.

4. Calculate total sequences using the multiplication principle: Each of 4 periods has 11 possible choices.

5. Compute total different sequences: 11× 11× 11× 11 = 114.

6. Evaluate numerical result: 114 = 11× 11× 11× 11 = 14, 641.

The answer is 14,641
Level 6 1. Determine possible choices per class: Mrs. Crabapple can choose one out of 11 students each time.

2. Confirm weekly meetings: The class has four periods a week.

3. Establish sequence combination formula: For each period, there are 11 choices, resulting in 11 choices for
the first period, 11 for the second, 11 for the third, and 11 for the fourth.

4. Calculate total sequences: Multiply available choices for each period to find total combinations: 11×
11× 11× 11 = 114.

5. Compute final result: Raising 11 to the power of 4, we get 114 = 14, 641 sequences.

The answer is 14,641

Table 7: Comparison of Different CoT granularity for the same problem generated by GPT-4o.
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C.3.2 LLaMA 3 70B 940

Granularity Generated Output

Level 1 The number of possible recipients for each class is 11.

Since class meets 4 times a week, the total number of sequences is 11*11*11*11 = 114 = 14641.

The answer is 14,641

Level 2 First, we need to find the number of possible recipients for each class period, which is 11.

Then, we need to find the number of possible sequences for the week, which is the number of possible recipients
for each class period raised to the power of the number of class periods in a week: 114 = 14641.

The answer is 14,641

Level 3 Step 1: Determine the number of students in the class. There are 11 students in Mrs. Crabappleś British Literature
class.

Step 2: Determine the number of times the class meets in a week. The class meets 4 times a week.

Step 3: Calculate the number of different sequences of crabapple recipients possible in a week. Since there are 11
students and the class meets 4 times a week, we can calculate the number of different sequences by raising 11 to
the power of 4, which represents the number of choices for each of the 4 days. 114 = 14641

The answer is 14,641

Level 4 Step 1: Determine the number of students in the class. There are 11 students in Mrs. Crabappleś British Literature
class.

Step 2: Determine the number of times the class meets in a week. The class meets 4 times a week.

Step 3: Calculate the number of different sequences of crabapple recipients possible in a week. Since Mrs.
Crabapple picks a random student each time, the number of sequences is equal to the number of permutations of
11 students taken 4 at a time, allowing for repetition (since the same student can be picked more than once). This
is calculated as 114.

Step 4: Calculate 114. 114 = 11 * 11 * 11 * 11 = 14641.

The answer is 14,641

Level 5 To solve this problem, we need to use the concept of permutations.

Since Mrs. Crabapple picks a random student each time, the order of selection matters. We have 11 students to
choose from for each of the 4 periods in a week.

For the first period, there are 11 possible choices. For the second period, there are again 11 possible choices, and
so on. Since the choices are independent of each other, we can multiply the number of choices for each period to
get the total number of different sequences. This gives us (11 times 11 times 11 times 11 = 114 = 14641).

Therefore, there are 14641 different sequences of crabapple recipients possible in a week.

The answer is 14,641

Level 6 To solve this problem, we need to use the concept of permutations.

Since Mrs. Crabapple picks a random student to receive a crabapple as a gift in each class, and there are 11
students in her class, there are 11 possible choices for the first class.For the second class, there are also 11
possible choices, and so on.

Since her class meets four times a week, we need to find the total number of different sequences of crabapple
recipients for four classes. This can be calculated by multiplying the number of choices for each class together.

So, the total number of different sequences is (11 times 11 times 11 times 11 = 114). To calculate (114), we can
multiply 11 by itself four times.

This gives us 11 times 11 = 121, 121 times 11 = 1331, and 1331 times 11 = 14641. Therefore, the total number
of different sequences of crabapple recipients possible in a week is 14641.

The answer is 14,641

Table 8: Comparison of Different CoT granularity for the same problem generated by LLaMA 3 70B.
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C.3.3 Gemini-1.5-Flash941

Granularity Generated Output

Level 1 There are 11 choices for the recipient of the crabapple in each of the four class periods.

The number of possible sequences is therefore 11 * 11 * 11 * 11 = 114. 114 = 14641.

The answer is 14,641

Level 2 There are 11 students in the class.

Mrs. Crabapple picks a student each of the four class periods. The number of choices for the first period is 11.
The number of choices for the second period is 11. The number of choices for the third period is 11. The number
of choices for the fourth period is 11.

To find the total number of different sequences, we multiply the number of choices for each period together: 11 *
11 * 11 * 11 = 114 = 14641.

The answer is 14,641

Level 3 There are 11 students in the class.

Mrs. Crabapple picks a student each of the four class periods. The number of choices for the first period is 11.
The number of choices for the second period is also 11 (since the same student can receive a crabapple multiple
times). Similarly, there are 11 choices for the third period and 11 choices for the fourth period.

To find the total number of different sequences, we multiply the number of choices for each period together. This
is 11 times 11 times 11 times 11 = 114. Calculating 114 gives us 14641.

The answer is 14,641

Level 4 There are 11 students in the class, and the class meets 4 times a week.

Each time Mrs. Crabapple picks a student, there are 11 choices.

Since there are four periods, we multiply the number of choices for each period together to find the total number
of different sequences. This is 11 * 11 * 11 * 11 = 114. Calculating 114: 11 * 11 = 121; 121 * 11 = 1331; 1331
* 11 = 14641.

The answer is 14,641

Level 5 There are 11 students in the class, and the class meets four times a week.

Each time the class meets, Mrs. Crabapple picks one student to receive a crabapple. The number of choices for
the first period is 11. The number of choices for the second period is also 11 (since the same student can receive
a crabapple again). Similarly, there are 11 choices for the third period and 11 choices for the fourth period.

To find the total number of different sequences of crabapple recipients, we multiply the number of choices for
each period together. This is because each choice is independent of the others. Therefore, the total number of
sequences is 11 * 11 * 11 * 11 = 114.

Calculating 114: 11 * 11 = 121; 121 * 11 = 1331; 1331 * 11 = 14641.

The answer is 14,641

Level 6 There are 11 students in the class, and the class meets four times a week.

Each time the class meets, Mrs. Crabapple picks one student to receive a crabapple. The number of ways to
choose a student for the first period is 11. The number of ways to choose a student for the second period is also
11. Similarly, there are 11 ways to choose a student for the third period and 11 ways to choose a student for the
fourth period.

Since these choices are independent, we multiply the number of choices for each period together to find the total
number of different sequences of crabapple recipients in a week. This is 11 * 11 * 11 * 11 = 114.

Calculating 114, we get 14641. Therefore, there are 14,641 different sequences of crabapple recipients possible
in a week.

The answer is 14,641

Table 9: Comparison of Different CoT granularity for the same problem generated by Gemini-1.5-Flash.
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D Different CoT Format Dataset Collection 942

D.1 Workflow 943

The dataset with format processing steps are detailed below: 944

1. 0-Shot Example Generation: The same question is first provided to ChatGPT using a 0-shot prompt 945

in three formats. ChatGPT generates a single 1-shot example for each format (including both the question 946

and a corresponding output in the specific format). This step ensures that ChatGPT establishes a baseline 947

example for each format. These generated examples serve as templates for subsequent responses, ensuring 948

consistency in style and logic. 949

2. Input Construction: Each question is then re-input into ChatGPT, along with: - Its corresponding 950

original ChatGPT-generated outputs. - The 1-shot examples generated in Step 1 for all three reasoning 951

formats. 952

Including the 1-shot examples in the input serves as explicit format demonstrations, guiding ChatGPT 953

to generate outputs that align with the desired styles. This process improves the coherence and quality of 954

the resulting outputs. 955

3. Multi-Format Output Generation: Using the constructed input (original question + original outputs 956

+ 1-shot examples), ChatGPT generates reformatted outputs for each question across three reasoning 957

formats while preserving the original logic: Least-to-most, RaR and SymbolicCoT. 958

4. Ranking and Alignment: The reformatted outputs are then sorted to align with the original dataset’s 959

order. This step ensures consistency and enables systematic evaluation. Sorting the outputs guarantees 960

that the evaluation is both structured and comparable across different reasoning formats and the original 961

dataset. 962

D.2 Prompt 963

Symbolic CoT Prompt Template

Please rewrite the output by following the Symbolic CoT (SymbCoT) reasoning to solve the given question step-by-step.
You can ONLY change the format but not the original steps. In your rewrite, translate the question’s context into
symbolic logic format, identifying key variables and relationships. Ensure to use logical symbols such as ∃ (exists), ∀
(for all), ∧ (and), ∨ (or) and =⇒ (implies), etc., to represent relationships between variables.
You should use symbolic thinking steps in the output. The generated output must follow this specific structure and
include logical symbols. Output the result strictly in the following format. DO NOT generate any other explanations.
The generated answer must be consistent with the given answer. After modification, you must add The answer is
<answer> at the end.
Here is the original output:

{instruction: <question>, output: <solution_path>}

The output format should be as follows:

{instruction: <question>, output: <SymbCoT Solution Path> The answer is <answer>}

Here is the example: <example>

Figure 9: Prompt for generating Symbolic Chain-of-Thought (SymbCoT) reasoning, requiring the transformation of
problem contexts into symbolic logic representations using logical operators (∃, ∀, ∧, ∨ and =⇒ ).
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Rephrase and Respond (RaR) CoT Prompt Template

Please rewrite the output and answer them individually. You can ONLY change the format but not the original steps.
The generated answer must be consistent with the given answer. Output the result strictly in the following format. DO
NOT generate any other explanations.
After modification, you must add The answer is <answer> at the end.
Here is the original output:

{instruction: <question>, output: <solution_path>}

Rephrase and expand the given question, and then respond carefully.
The output format should be as follows:

{instruction: <question>,

output: <Rephrase and expand the given question>

<solution path> The answer is <answer>}

Here is the example: <example>

Figure 10: Prompt for Rephrase and Respond (RaR), which restructures the question while maintaining the original
reasoning steps.

Least-to-Most CoT Prompt Template

Please rewrite the output by generating sub-questions and answer them individually. You can ONLY change the format
but not the original steps.
The generated answer must be consistent with the given answer. Output the result strictly in the following format. DO
NOT generate any other explanations.
After modification, you must add The answer is <answer> at the end.
Here is the original output:

{instruction: <question>, output: <solution_path>}

The output format should be as follows:

{instruction: <question>,

output: <Subquestion_1><Explanation_1>

<Subquestion_2><Explanation_2>... The answer is <answer>}

Here is the example: <example>

Figure 11: Prompt for Least-to-Most CoT, which restructures the solution by generating and answering sub-questions
step-by-step while preserving the original reasoning process.
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D.3 Format Case Study 964

Different CoT Format Examples

Original CoT:
Bert currently has 20 kangaroos. Kameron has 100 kan-
garoos. The difference in the number of kangaroos is
100 - 20 = 80 kangaroos. Bert buys kangaroos at a rate
of 2 kangaroos per day. Therefore, the number of days
required for Bert to have the same number of kangaroos
as Kameron currently has is 80 / 2 = 40 days. The answer
is 40.

Symbolic CoT:
1. Let K0 = 100 ∃K0. (Kameron has 100 kangaroos).
2. Let B0 = 20 ∃B0. (Bert has 20 kangaroos).
3. The difference in kangaroos, D = K0 −B0 ∃D:

D = 100− 20 = 80

4. Rate of buying kangaroos per day, r = 2 ∀r:

r = 2

5. Number of days required, N = D
r
∃N :

N =
80

2
= 40

The answer is 40.

Rephrase and Respond:
On Kameron’s large farm, there are currently 100 kanga-
roos, whereas Bert’s farm has only 20 kangaroos. Bert
aims to increase his kangaroo population, purchasing 2
new kangaroos each day, until he reaches the current num-
ber of kangaroos on Kameron’s farm.
Calculate the number of days Bert will need to achieve
this goal. Bert currently has 20 kangaroos. Kameron has
100 kangaroos. The difference in the number of kangaroos
is 100 - 20 = 80 kangaroos. Bert buys kangaroos at a rate
of 2 kangaroos per day. Therefore, the number of days
required for Bert to have the same number of kangaroos
as Kameron currently has is 80 / 2 = 40 days. The answer
is 40.

LEAST-TO-MOST:
How many kangaroos does Bert currently have? Bert
currently has 20 kangaroos. How many kangaroos does
Kameron currently have? Kameron has 100 kangaroos.
What is the difference in the number of kangaroos be-
tween Bert and Kameron? The difference in the number
of kangaroos is 100 - 20 = 80 kangaroos. What is the rate
at which Bert buys kangaroos per day? Bert buys kanga-
roos at a rate of 2 kangaroos per day. How many days will
it take for Bert to have the same number of kangaroos as
Kameron? The number of days required for Bert to have
the same number of kangaroos as Kameron currently has
is 80 / 2 = 40 days.
The answer is 40.

Figure 12: Comparison of Different CoT Formats for the same problem: Kameron has 100 kangaroos on his
large farm; Bert has 20 kangaroos on his farm. In how many more days will Bert have the same number of
kangaroos as Kameron does now if he buys kangaroos at the same rate of 2 new kangaroos per day?
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E Whole Results of Granularity Experiments965

Dataset Only Answer Gemma 2B Performance
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

SVAMP 47.70 59±4.58 64.33±0.00 65.22±0.69 65.89±0.38 67.11±1.35
↑13.74% 66.89±1.02

GSM8K 8.20 49.66±0.27 52.36±0.98 53.37±0.33 52.69±0.13 53.42±0.83 53.45±1.48
↑7.63%

AQuA-RAT 20.47 40.68±1.27 42.91±1.42 43.7±2.58 39.9±1.49 44.88±0.79
↑12.48% 44.49±2.36

MATH 9.00 23.4±1.06 21.53±2.16 24.4±0.20
↑16.19% 21.93±0.42 23.0±1.22 21.0±0.69

CSQA 69.86 67.38±0.82 67.98±0.37 68.74±1.30 66.75±0.53 67.54±0.47 66.01±1.50

OBQA 69.60 71.53±1.94 69.93±0.90 69.93±1.36 68.33±1.27 72.00±1.64
↑5.37% 70.13±1.62

STQA 60.69 67.59±1.04
↑7.11% 63.1±1.79 64.6±1.56 63.45±1.24 65.75±1.77 64.14±1.58

Dataset Only Answer LLaMA 3.2 1B Performance
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

SVAMP 37.70 52.67±2.52 52.11±2.27 52.78±0.84 53.44±1.17
↑2.55% 52.44±1.71 52.78±3.5

GSM8K 6.70 36.8±0.77 39.73±0.67 40.08±0.98
↑8.91% 39.32±1.33 39.58±1.04 38.54±0.96

AQuA-RAT 24.00 34.12±1.82
↑12.57% 30.31±1.42 30.58±1.2 31.23±2.02 33.2±2.17 30.45±0.91

MATH 7.00 8.87±0.92
↑11.85% 8.07±1.10 8.4±0.35 8.27±0.12 7.93±1.14 8.33±0.12

CSQA 19.57 64.48±1.20
↑5.39% 63.25±0.34 62.9±1.21 61.94±1.58 62.68±1.18 61.18±0.41

OBQA 51.60 64.4±1.25
↑2.01% 63.73±1.36 63.6±2.12 63.6±1.25 63.27±1.36 63.13±0.70

STQA 53.10 63.33±1.59 60.11±1.30 63.56±1.59 64.14±1.50
↑6.70% 61.84±1.44 63.33±2.30

Dataset Only Answer LLaMA 3.2 3B Performance
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

SVAMP 53.70 69±3.61 65.89±3.53 68.33±1.86 68.11±3.27 69.78±1.07 74.33±1.45
↑12.81%

GSM8K 9.30 59.59±1.59 62.29±1.41 62.57±0.80 63.48±0.16
↑6.53% 62.29±1.22 60.98±0.31

AQuA-RAT 19.60 44.36±2.31 44.88±2.19 45.01±2.37 46.19±3.94 47.24±4.77
↑6.49% 46.33±3.01

MATH 9.40 19.07±0.90 19.6±1.06 19.73±1.72 20.27±1.42
↑11.37% 19.93±2.20 18.2±1.64

CSQA 62.00 72.62±0.82 70.71±0.70 74.12±0.50
↑4.82% 71.75±0.62 71.17±1.03 71.44±0.90

OBQA 74.40 79.33±0.42 79.73±0.70 78.8±0.80 77.8±0.92 79.27±2.04 80.2±1.78
↑3.08%

STQA 55.52 66.44±1.55 62.76±2.82 67.47±1.44 66.78±1.39 63.91±2.79 68.62±1.20
↑9.34%

Dataset Only Answer BLOOM 560M Performance
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

SVAMP 0.00 5.11±0.19 4.56±0.77 6.67±1.33
↑46.27% 6.56±1.90 5.56±2.41 5.11±0.69

GSM8K 3.90 7.25±0.77 8.11±0.08 8.47±0.12
↑16.83% 7.73±0.82 8.19±0.27 8.11±0.77

AQuA-RAT 20.90 22.05±3.43
↑18.29% 20.6±2.56 21.13±4.55 21.52±1.59 18.64±1.98 19.69±1.04

MATH 4.00 2.6±0.53 2.33±1.01 2.13±0.61 2.13±1.15 1.67±0.42 1.87±0.50

CSQA 20.15 37.76±1.29 37.95±0.29
↑18.02% 37.84±0.74 33.99±0.83 33.96±1.57 31.89±1.23

OBQA 34.00 41.07±0.95
↑18.04% 38.27±0.42 36.73±0.76 35.73±1.40 34.8±3.64 36.27±2.04

STQA 56.90 53.1±1.25 52.18±1.30 52.07±0.35 52.99±0.40 53.45±1.58 54.83±1.73

Dataset Only Answer BLOOM 1.1B Performance
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

SVAMP 1.00 7.22±0.69 9.11±0.51 13.00±1.86
↑80.06% 11.33±1.20 10.67±1.00 9.89±1.64

GSM8K 4.20 11.32±0.16 14.3±0.37 14.33±0.79
↑26.59% 14.28±0.66 13.09±0.83 11.78±0.77

AQuA-RAT 22.40 21.39±2.27 21.78±1.20 21.92±1.94 21.78±1.27 21.92±3.66 23.36±3.16
↑9.21%

MATH 3.20 2.33±0.31 2.73±0.31 2.4±0.40 2.07±0.58 2.2±1.22 2.87±0.76

CSQA 41.69 49.14±2.21
↑18.35% 48.21±2.35 48.57±0.36 43.87±0.82 45.37±0.79 41.52±0.91

OBQA 48.60 48.4±3.30 47.27±1.81 46.07±2.23 46.00±2.09 46.2±2.62 46.4±2.96

STQA 58.97 57.93±2.39 59.65±2.48
↑6.35% 58.05±2.08 58.97±2.41 56.09±2.22 57.36±1.21

Dataset Only Answer BLOOM 1.7B Performance
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

SVAMP 0.00 10±1.67 9.44±1.02 17.11±1.17
↑71.1% 16.44±1.39 16.56±0.51 11.33±2.91

GSM8K 5.10 13.12±0.33 17.11±0.62 16.68±0.46 17.89±1.25
↑36.36% 16.86±1.25 15.21±0.12

AQuA-RAT 23.60 25.07±0.91
↑14.37% 23.88±0.45 22.05±5.46 22.7±0.82 22.31±1.38 21.92±2.17

MATH 3.60 2.87±0.50 1.9±0.14 2.8±0.53 1.87±0.12 2.0±0.60 2.6±0.53

CSQA 21.38 53.37±2.21
↑15.12% 51.24±0.90 51.52±0.62 49.06±0.59 46.79±0.68 46.36±0.59

OBQA 48.20 49.93±3.00 50.93±0.99
↑8.99% 48.0±1.40 47.6±1.00 47.67±2.50 46.73±2.37

STQA 58.62 54.94±1.55 56.44±2.49 58.28±0.91 57.24±2.69 56.89±5.10 56.44±1.90

Dataset Only Answer BLOOM 3B Performance
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

SVAMP 5.00 15.44±0.51 23.67±0.00 23.11±1.26 24.00±0.67
↑55.44% 22.22±0.69 22.22±1.02

GSM8K 4.60 18.2±0.57 22.34±1.14 23.81±0.65
↑30.82% 22.57±0.88 22.47±0.86 20.85±0.15

AQuA-RAT 28.00 24.67±0.82 24.41±1.72 20.34±1.82 26.90±2.41 25.85±0.45 24.28±2.17
MATH 4.60 3.2±1.04 2.8±0.40 2.33±0.61 2.73±0.23 3.53±0.50 2.8±0.20

CSQA 20.56 57.44±1.12
↑11.38% 55.23±1.47 55.42±0.64 53.65±0.22 52.96±0.29 51.57±1.15

OBQA 37.80 57.2±1.59 52.33±0.61 54.87±2.02 54.6±1.04 57.47±2.64
↑9.82% 52.93±1.81

STQA 54.14 58.85±1.74 61.04±3.06
↑3.72% 60.58±3.09 59.89±3.13 59.19±1.21 59.08±2.87

Table 10: Performance of various models at six granularity levels, including standard deviation (±std). The best
performance is boldfaced, and red text shows the relative improvement (%) for the highest vs. lowest performance
in six levels. Only Answer: Student models are fine-tuned to directly predict answers without CoT.
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F Padding Procedure for Matched-Length CoT Variants 966

The following algorithm outlines the process of constructing matched-length CoT variants D′
g, ensuring 967

that sequences from lower granularity levels are padded to match the length of higher granularity sequences. 968

This process is designed to isolate the impact of granularity from sequence length during evaluation. 969

Algorithm 1: Dynamic Padding for Matched-Length CoT Variants
Input: D1,D5 (CoT outputs for levels 1, 5)
Output: D′

1: Padded D1 matching D5

Load D1,D5, ensure lengths match;
foreach (x1, x5) ∈ (D1,D5) do

Tokenize x1, x5 to get lengths len(T1) and len(T5);
if len(T1) < len(T5) then

Compute repeat_factor = len(T5)/len(T1);
Repeat and truncate T1 to match len(T5), decode to x

tmp
1 ;

if "The answer is" in x1 then
Split x1 as [prefix, suffix] at "The answer is";
x′1 = prefix + x

tmp
1 + "The answer is" + suffix;

else
x′1 = x

tmp
1 ;

Append x′1 to D′
1;

Save D′
1 and log statistics;

G Analysis of Symbolic CoT Performance in CoT distillation 970

To investigate the suboptimal performance of Symbolic CoT, we conducted a case study. 971

Question: janet’s ducks lay 16 eggs per day. she eats three for breakfast every morning and bakes 972

muffins for her friends every day with four. she sells the remainder at the farmers’ market daily for $2 per 973

fresh duck egg. How much in dollars does she make every day at the farmers’ market? 974

BLOOM 3B Output

Let:

D = 16 (eggs laid per day)
E = 3 (eggs eaten per day)
B = 3 (breakfasts per day)
M = 4 (muffins per day)
S = D − E = 16− 3 = 13 (sold eggs per day)
R = remaining eggs after breakfasts and muffins
T = total daily earnings

1. ∀E : E = 3 (Janet eats 3 eggs per day)
2. ∀B : B = 3 (Janet bakes muffins for her friends every day)
3. ∀M : M = 4 (Janet sells the remaining eggs at the farmers’ market daily for $2 per fresh duck egg)
4. ∀R : R = D − E −M = 16− 3− 4 = 9 (remaining eggs after breakfasts and muffins)
5. ∀T : T = R× 2 ⇒ T = 13× 2 = 26 (total daily earnings)

The answer is 26.
975
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Gemma 2B Output

Let:

E = 16 (total eggs laid per day by ducks)
B = 3 (eggs eaten for breakfast per day)
M = 4 (eggs baked into muffins per day)
R = remaining eggs after breakfast and muffins
S = eggs sold at farmers’ market per day
P = 2 ($ per egg at farmers’ market)
T = total earnings per day at farmers’ market

1. ∀E : E = 16 (total eggs laid per day)
2. ∀B : B = 3 (Janet eats 3 eggs for breakfast)
3. ∀M : M = 4 (Janet bakes 4 muffins daily)
4. Remaining eggs after breakfast and muffins:

R = E −B −M ⇒ R = 16− 3− 4 = 9

5. ∀S : S = R ⇒ S = 9 (Janet sells the remaining eggs)
6. Total earnings:

T = S × P ⇒ T = 9× 2 = 18

The answer is 18.
976

The error in BLOOM 3B arises from unnecessary variable assignments and mismanagement of977

numerical values. While it correctly defines and calculates R = 9 (the remaining eggs), it later incorrectly978

substitutes R = 13 into the final computation, leading to an incorrect total earnings prediction of $26979

instead of $18. The symbolic expressions themselves are structurally correct, but the model fails to980

maintain numerical consistency throughout the reasoning process. This suggests that Symbolic CoT lacks981

a robust mechanism for tracking variable dependencies and verifying intermediate values, especially for982

weaker SLMs. We identified and summarized several possible reasons for its poor performance:983

1. Task Relevance and Reasoning Depth: According to the original paper, Symbolic CoT is primarily984

designed for logical reasoning tasks (Xu et al., 2024a). However, our datasets focus on mathemat-985

ical and commonsense reasoning, where the advantages of symbolic reasoning—particularly its986

effectiveness in handling deeper reasoning—do not manifest as clearly.987

2. Implementation Differences: The original study employed multiple stages and corresponding988

special tokens to enhance symbolic reasoning. In contrast, our implementation only adopted the989

symbolic reasoning format without these additional mechanisms, which might have impacted its990

effectiveness.991

3. Pretraining Data Constraints: SLMs have relatively limited pretraining corpora, which likely992

contain fewer instances of symbolic reasoning formats. As a result, weaker models struggle to993

acquire symbolic reasoning capabilities with only a small number of training samples.994
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H Student Performance across Different Teacher Models 995
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Figure 13: Student model performance across different teacher models. Each bar represents the average accuracy of
a specific student model trained on CoT from different teacher models.
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