
Implicit bias of gradient descent on convolutional
generators

Reinhard Heckel∗ and Paul Hand†

∗Dept. of Electrical and Computer Engineering, Rice University
†Dept. of Mathematics and Khoury College of Computer Sciences, Northeastern University

May 5, 2019

Abstract

The majority of image generating neural networks have a convolutional architecture, and
this architecture has empirically been proven to be efficient at representing natural images. It is
widely acknowledged that convolutional neural networks incorporate strong prior assumptions
about natural images, sometimes referred to as an inductive or implicit bias. An instantiation of
this bias towards simple, natural images, is that an un-trained overparmeterized convolutional
network optimized with gradient descent fits a single natural image significantly faster than
complex images such as noise. In this paper, we isolate this effect and demonstrate that it is
most pronounced if the network incorporates convolutions with a fixed and smooth upsampling
kernel. This effect can be understood as the network architecture imposing constraints so that
an natural image is closer in parameter space to a random initialization than a highly complex
image such as noise.

1 Introduction

Convolutional neural networks are extremely popular for classification problems arising in computer
vision. A convolutional network is designed with the two-dimensional structure of an image in mind
and incorporates implicit assumptions about the structure of the objects to be classified, such as
locality. Implicit assumptions in the form of the (convolutional) architecture are widely believed
to contribute to the ability of neural networks to generalize to unseen data. In a classic paper,
Tom Mitchell [Mit80] refers to this as a “bias for choosing one generalization over the other”, and
argues that such a bias is necessary for a method to make the “inductive leap to characterize new
instances”. Since then, prior modeling assumptions are often referred to as “inductive biases”.

Convolutional neural networks are equally popular for image generation. Specifically, the major-
ity of image generating networks are convolutional, ranging from the Deep Convolutional Generative
Adversarial Networks (DCGANs) [Rad+15] to the U-Net [Ron+15], suggesting that those networks
are efficient are representing images. A recent work, the deep image prior [Uly+18], demonstrated
that convolutional image generating networks indeed have a bias towards “natural” or simple im-
ages by showing that an un-trained overparameterized convolutional auto-encoder network fits a
single natural image faster when optimized with gradient descent (i.e., with significantly fewer it-
erations) than it fits pure noise. This observation enables image restoration performance on par
with state of the art methods.

Building on those insights, in a recent work, we have proposed a deep image generating net-
work [HH19], termed the deep decoder, that in contrast to the deep image prior is underparame-
terized, which besides having obvious computational advantages, enables compression in addition
to state of the art image restoration performance. The deep decoder has an architecture similar

1



to convolutional neural network in that it consists of upsampling operations and learned 1 × 1
convolutions.

Both works [Uly+18; HH19] illustrate a bias of convolutional convolutional architectures to-
wards natural images. The deep decoder is explicitly biased towards natural images in that with
few parameters it can fit natural images (as shown empirically), but cannot fit noise (provably).
The deep image prior is overparameterized and thus can fit noise in principle, but does so much
slower compared to fitting a natural images, a phenomena in the intersection of architecture and
optimization. The goal of this paper is to isolate and study this phenomena. We hasten to add
that the phenomena that convolutional neural networks optimized with gradient descent fit struc-
ture faster than noise has also been observed in the context of classification, specifically [Zha+16,
Fig. 1(a)] shows that true labels are fitted faster than the shuffled labels.

In this paper, we consider a simple untrained convolutional neural network that only consists of
convolutional-like operations. We consider architectures that have a sufficient number of parameters
to represent an arbitrary image and study the following phenomena in the intersection of the
network’s architecture and optimization:

Convolutional generators optimized with gradient descent

fit natural images faster than complex ones.

With complex images, we mean images that consist of a large number of ‘edges’, such an extremely
fine checkerboard or images of noise.

The paper is organized as follows. We first introduce the architecture we consider, and then
perform experiments demonstrate the effect, validating it on a large datset, and demonstrating that
the distance between the final and initial networks weights is a key feature that determines the
difference of fitting a simple and a complex image. In the appendix, we then identify a simple toy
models that exhibits the effect.

2 Convolutional generators

Throughout, we consider convolutional generators G, that map a randomly chosen and fixed tensor
B0 = [b01, . . . ,b0k] ∈ Rn0×k consisting of k many n0-dimensional channels or images to an nd×kout
dimensional image, where kout = 1 for a grayscale image, and kout = 3 for an RGB image with
three color channels. The network transforms the fixed input tensor B0 to an image only using
upsampling/no-upsampling and convolutional operations, followed by channel normalization (a
special case of batch normalization) and an application of a ReLU non-linearity, see Figure 1 for an
illustration. We initially consider the following four closely related architectural choices, which differ
in the upsampling/no-upsampling and convolutional operations which generate the activations in
the (i+ 1)-st layer, Bi+1, from the activations in the i-th layer, Bi:

i) Bilinear upsampling and linear combinations. Layer i+ 1 is obtained by linearly com-
bining the channels of layer i with learnable coefficients, followed by bi-linear upsampling.
Note that linearly combining the channels is equivalent to performing one-times-one convo-
lutions. This is the deep decoder architecture proposed in [HH19],

ii) Fixed interpolation kernels and linear combinations. Layer i + 1 is obtained by
linearly combining the channels of layer i with learnable coefficients followed by convolving
each channel with the same 4x4 interpolation kernel that is used in the linear upsampling.

2



n
0

k

B0

n
1

k

B1

n
2

k

B2

n
d

k

Bd. . .

Convolution + ReLU + normalization

lin. combinations, sigmoid

0 50,0001 · 105
0

0.002

0.004

0.006

0.008

optimizer steps

re
la

ti
ve

d
is

ta
n
ce

natural image

0 50,0001 · 105
0

0.2

0.4

0.6

optimizer steps

noise

Figure 1: Left panel: In the generators we study, the output is generated through repeated
convolutional layers, ReLU activations, and channel normalization. Right panel: The relative
distances of the weights in each layer from its random initialization. The weights need to change
significantly more to fit the noise, compared to an image, thus a natural image lies closer to a
random initialization than noise.

iii) Parameterized convolutions: Layer i+ 1 is obtained from layer i though a convolutional
layer with 4x4 convolutions.

iv) Deconvolutional network: Layer i + 1 is obtained from layer i though a deconvolution
layer with 4x4 convolutions.

To emphasize that i)-iv) are structurally extremely similar operations, we recall that each opera-
tion consists only of upsampling and convolutional operations. Let T(c) : Rn → Rn be the con-
volutional operator with kernel c, let u the linear upsampling kernel (equal to u = [0.5, 1, 0.5]
in the one-dimensional case), and let U : Rn → R2n be an upsampling operator, that in the
one dimensional case transforms [x1, x2, . . . , xn] to [x1, 0, x2, 0, . . . , xn, 0]. In each of the archi-
tectures i)-iv), the `-th channel of layer i + 1 is obtained from the channels in the i-th layer as:

bi+1,` = relu
(∑k

j=1 M(cij`)bi

)
, where the linear operator M is defined as follows for the four

architectures

i) M(c) = cT(u)U, ii) M(c) = cT(u), iii) M(c) = T(c), iv) M(c) = T(c)U .

The coefficients associated with the i-th layer are given by Ci = {cij`}, and all coefficients of the
networks are C = {cij`}. Note that here, the coefficients or parameters of the networks are the
weights and not the input to the network.

3 Demonstrating implicit bias of convolutional generators

In this section, we demonstrate the phenomenon that convolutional generators, in particular those
with fixed convolutional operations, fit natural or simple images significantly faster than noise and
other complex unnatural images. Throughout this section, for each image or signal x∗ we fit weights
by minimizing the loss

L(C) = ‖G(C)− x∗‖22
with respect to the network parameters C using plain gradient descent with a fixed stepsize.

3



0
0.05
0.1

0.15

bilinear

1

4

16

fixed kernels

1

4

16

param. convs

1

4

16

deconvolutions

1

4

16

102 104 106
0

0.02
0.04
0.06
0.08

optimizer steps

102 104 106

optimizer steps

102 104 106

optimizer steps

102 104 106

optimizer steps

Figure 2: Fitting the phantom MRI and noise with different architectures, for different number of
overparameterization factors (1,4, and 16). Gradient descent on convolutional generators involving
fixed convolutional matrixes fit an image significantly faster than noise.

Evidence of phenomenon: In order to exemplify the effect, we fit the phantom MRI image
as well as noise for each of the architectures above for a 5-layer network. We choose the number
of channels, k, such that the overparameterization factor (i.e., the ratio of number of parameters
of the network over the output dimensionality) is 1, 4, and 16, respectively. The results show that
for architectures i) and ii) involving fixed convolutional operations, gradient descent requires more
than an order of magnitude fewer iterations to obtain a good fit of the phantom MRI image relative
to noise. For architectures ii) and iii), we see a smaller effect, but the effect essentially vanishes
when the network is highly overparameterized.

Replication: The effect above is replicable for natural images. Figure 3 in the appendix shows
the average and standard deviation of the loss curves of 100 randomly chosen images from the
ImageNet dataset for architecture i. The natural images are fit by gradient descent several orders
of magnitude faster than noise is. We also note that the effect continues to exist for other unnatural
images, such as checkerboard images in which each pixel alternates between 1 and 0.

Hint at an explanation: We highlight a strong contrast between fitting natural images and
noise: with natural images, the distance between final and initial network weights is significantly
smaller than it is when fitting images of noise. As demonstration, we again fit the phantom MRI
image and noise for architecture i) and an overparameterization factor of 4 and record, for each layer

i the relative distance ‖C(t)
i −C

(0)
i ‖/(‖C

(t)
i ‖+ ‖C(0)

i ‖), where C
(0)
i are the weights at initialization

(we initialize randomly), and C
(t)
i are the weights at the optimizer step t. Figure 1 shows that to fit

noise, the weights have to change significantly, while for fitting a natural image they only have to
change slightly. We hasten to add the the weight change should be understood relative to a scaling
and bias introduced by the channel normalization. Specifically, the channel normalization operation,
applied at each layer, normalizes each channel individually. Specifically, let Zi be the channels in
the i-th layer right before the ReLU operation, and let zij be the j-th channel in the i-th layer.

Then channel normalization performs the following transformation: z′ij =
zij−mean(zij)√

var(zij)+ε
γij + βij ,

where mean and var compute the empirical mean and variance, and γij and βij are parameters,
optimized for independently for each channel, and ε is a fixed small constant.

4



References

[HH19] R. Heckel and P. Hand. “Deep Decoder: Concise image representations from untrained
non-convolutional networks”. In: International Conference on Learning Representa-
tions. 2019.

[Mit80] T. Mitchell. “The need for biases in learning generalizations”. In: Rutgers Computer
Science Tech. Rept. CBM-TR-117 (1980).

[Rad+15] A. Radford, L. Metz, and S. Chintala. “Unsupervised representation learning with deep
convolutional generative adversarial networks”. In: arXiv preprint arXiv:1511.06434
(2015).

[Ron+15] O. Ronneberger, P. Fischer, and T. Brox. “U-net: Convolutional networks for biomedical
image segmentation”. In: International Conference on Medical image computing and
computer-assisted intervention. Springer. 2015, pp. 234–241.

[Uly+18] D. Ulyanov, A. Vedaldi, and V. Lempitsky. “Deep image prior”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp. 9446–9454.

[Zha+16] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. “Understanding deep learning
requires rethinking generalization”. In: arXiv preprint arXiv:1611.03530 (2016).

100 101 102 103 104
0

0.05

0.1

optimizer steps

(a) fitting images

100 101 102 103 104
0

0.02

0.04

0.06

0.08

optimizer steps

(b) fitting noise

Figure 3: The loss curves for architecture i), a convolutional generator with linear upsampling
operations, averaged over 100 3 × 512 × 512 (color) images from the Imagenet dataset. The error
bars in the right panel are present but are very small. Convolutional generators fit natural images
significantly faster than noise.

A toy example isolating the effect: We end this section with a minimal example where the
effect is still visible. Towards this goal, we consider a one-dimensional convolutional generator
with architecture i). Note that this generator can be written as G(C) = relu(T(u)UB1C1)c2,
where C1 ∈ Rk×k and c2 ∈ Rk are the coefficients of the generator. Figure 4 show that even for
this simple model, the convolutional generator fits the simple image (i.e., the step function) faster
than the complex one (the noise). This is the simplest model that we could find for which this

5



0

0.5

1

200 400
0

0.5

1

optimizer steps
100 101 102 103

optimizer steps

Figure 4: The toy model can accurately fit the 1d step funtion and noise functions in the left
panenls. The right panels show the loss versus iteration number for fitting these functions. The
step function is fit by the toy model almost an entire order of magnitude earlier than the noisy
image.

effect can reliably observed, thus suggesting that fixed convolutional operations (for example due
to upsampling) are at the heart of the effect.

6


	Introduction
	Convolutional generators
	Demonstrating implicit bias of convolutional generators

