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ABSTRACT

We introduce a novel autoencoder model that deviates from traditional autoen-
coders by using the full latent vector to independently modulate each layer in
the decoder. We demonstrate how such an ‘automodulator’ allows for a princi-
pled approach to enforce latent space disentanglement, mixing of latent codes,
and a straightforward way to utilize prior information that can be construed as a
scale-specific invariance. Unlike the GAN models without encoders, autoencoder
models can directly operate on new real input samples. This makes our model
directly suitable for applications involving real-world inputs. As the architectural
backbone, we extend recent generative autoencoder models that retain input iden-
tity and image sharpness at high resolutions better than VAEs. We show that our
model achieves state-of-the-art latent space disentanglement and achieves high
quality and diversity of output samples, as well as faithfulness of reconstructions.

1 INTRODUCTION

This paper introduces a new generative autoencoder for learning representations of image data sets,
in a way that allows arbitrary combinations of latent codes to generate images (see Fig. 1). We
achieve this with an architecture that uses adaptive instance normalization (AdaIn, Dumoulin et al.,
2017b; Huang & Belongie, 2017), and training methods that let the model learn a highly disentangled
latent space by utilizing progressively growing autoencoders (Heljakka et al., 2019). In a typical
autoencoder, input images are encoded into latent space, and the information of the latent variables
is then passed through successive layers of decoding until a reconstruction of the input image has
been formed. In our model, the latent vector independently modulates the statistics of each layer of
the decoder—the output of layer n is no longer solely determined by the input from layer n− 1.

In image generation, the probability mass representing sensible images (such as human faces) lies
concentrated on a low-dimensional manifold. Even if impressive results have been shown for image
generation (e.g., by GANs, Goodfellow et al., 2014; Karras et al., 2019), efficient reconstruction and
manipulation remain open problems. Deep generative autoencoders provide a principled approach
for feature extraction, editing, and image synthesis. We show that modulation of decoder layers
with AdaIn further improves these capabilities. It also yields representations that are more disen-
tangled, a property here broadly defined as something that allows for fine control of one semantic
(image) sample attribute independently of others. Previous works on AdaIn are mostly based on
GAN models (Karras et al., 2019; Chen et al., 2019) with no encoder for new input images.

Autoencoders are typically single-pass encoder–decoder structures, where a sample enters from
one end and is reconstructed at the other. For robustness, the reconstructed samples could be re-
introduced to the encoder, repeating the process, and requiring consistency between the passes. In
comparison to stochastic models (like VAEs, Kingma & Welling, 2014; Rezende et al., 2014),
our deterministic model is better suited to take advantage of this. We can mix the latent codes of
separate samples and measure the conservation of layer-specific information for each. This enforces
disentanglement of layer-specific properties, because we can ensure that the latent code introduced
from a certain layer onwards on the 1st pass should not affect the previous layers on the 2nd pass.
Image autoencoders with convolutional architectures are often used for finding attributes that are
disentangled from each other in the latent space. Often, they have relatively poor output image
quality, and prior information must be fed in either via class-conditioning or by more complex loss
functions for the latent variables. Fully implicit methods avoid this, but without a built-in encoding
mechanism often cover only a relatively small fraction of the variation in the training data. For
the first time, we show a full autoencoder architecture that has a state-of-the-art disentanglement
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Figure 1: Illustration of some automodulator capabilities. The model can directly encode real (un-
seen) input images (left). Inputs can be mixed by modulating one with another or with a randomly
drawn sample, at desired scales (center). Finally, taking random modulations for certain scales
produces novel samples conditioned on the input image (right).

performance even for unsupervised training setup in several data sets, sharp image output quality,
good coverage of the variation of the training data, arbitrary mixing of latent representations and a
principled approach for incorporating scale-specific prior information.

Our contributions are as follows. (i) We introduce the automodulator, a new autoencoder-like model
with powerful properties not found in regular autoencoders, including scale-specific style transfer
(Gatys et al., 2016). In contrast to architecturally similar ‘style’-based GANs, we can now directly
encode and manipulate new inputs. (ii) We present methodology that allows fully unsupervised train-
ing of such a model to learn rich latent representation in high resolutions, and specifically explain
a novel multi-pass training principle that enables the model to learn a more disentangled represen-
tation of training data than regular autoencoders. (iii) We demonstrate qualitative and quantitative
performance and applications on CELEBA-HQ and LSUN Bedrooms and Cars data sets, taking
advantage of the highly disentangled model structure.

2 RELATED WORK

Our work builds upon several lines of previous work in unsupervised representation learning. The
most relevant concepts are variational autoencoders (VAEs, Kingma & Welling, 2014) and genera-
tive adversarial networks (GANs, Goodfellow et al., 2014). In VAEs, an encoder maps data points
to a lower dimensional latent space and a decoder maps the latent representations back to the data
space. The model is learnt by minimizing the reconstruction error together with a regularization
term that encourages the distribution of latents to match a predefined prior. Latent representations
often provide useful features for applications (e.g., image analysis and manipulation) and decod-
ing random samples from the prior allows novel data generation. However, in case of images, the
generated samples are often blurry and not fully photorealistic, with imperfect reconstructions.

Current state-of-the-art in generative image modeling is represented by GAN models (Brock et al.,
2019; Karras et al., 2019) which achieve higher image quality than VAE based models. Neverthe-
less, these GANs lack an encoder for obtaining the latent representation for a given image, limiting
their usefulness. In some cases, a given image can be semantically mapped to the latent space via
generator inversion but this iterative process is prohibitively slow for many applications, and the
result may depend on initialization (Abdal et al., 2019; Creswell & Bharath, 2019).

Bidirectional mapping has been targeted by VAE-GAN hybrids such as Makhzani et al. (2016);
Mescheder et al. (2017); Makhzani (2018), and adversarial models such as Donahue et al. (2017);
Dumoulin et al. (2017a); Donahue & Simonyan (2019). These models learn mappings between
the data space and latent space using combinations of encoders, generators and discriminators. In-
troVAE (Huang et al., 2018) and AGE (Ulyanov et al., 2018) are more compact autoencoders, which
both contain only two deep networks, encoder and decoder, learnt using a combination of recon-
struction loss and adversarial loss, which encourages the distributions of real and generated images
to match with the prior in latent space. A progressively grown version of AGE, PIONEER, was pro-
posed by Heljakka et al. (2018; 2019). There is also recent work on vector quantized variational
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autoencoders (VQ-VAE, Razavi et al., 2019) with a discrete latent space. However, while suitable
for image compression, the discrete latent representation cannot e.g. be interpolated and hence may
not be optimal for semantic image manipulation and learning a disentangled latent space.

The architecture of our generator and AdaIn utilization was inspired by the recent StyleGAN (Kar-
ras et al., 2019), but has no discriminator (nor the ‘mapping network’ f ). Instead, our model simply
contains the generator (i.e., decoder) and an encoder, jointly trained applying a similar progressive
growing strategy as Heljakka et al. (2018), but with a modified loss formulation. Besides the re-
construction loss and adversarial loss from Ulyanov et al. (2018) and Heljakka et al. (2018), we
can also recirculate style-mixed reconstructions as ‘second-pass’ training samples in order to better
encourage the independence and disentanglement of emerging styles and conservation of layer-
specific information. The recirculation idea is biologically motivated and conceptually related to
many works, such as that by Hinton & McClelland (1988). Utilizing the outputs of the model as
inputs for the next iteration is related to, e.g., Zamir et al. (2017), where feedback is shown to benefit
image classification, and in RNN-based methods (Rezende et al., 2016; Gregor et al., 2015; 2016).

3 METHODS

We now describe the model architecture, starting from regular PIONEER and building up to the
automodulator (Sec. 3.1). We then describe the unsupervised training via our extensions to the
regular PIONEER loss function, to support flexible mixing of latents (Sec. 3.2). Finally, we introduce
an additional weakly supervised training method to utilize known invariances (Sec. 3.3).

3.1 AUTOMODULATOR ARCHITECTURE

Our interest is in unsupervised training of an autoencoder wherein the inputs x are images fed
through an encoder φ to form a low-dimensional latent space representation z (we use z ∈ R512,
normalized to unity). This representation can then be decoded back into an image x̂ through a
decoder θ. For stable training, we adopt the progressively growing architecture of Balanced PIO-
NEER (Heljakka et al., 2018; 2019). The convolutional layers of the symmetric encoder and decoder
are faded in gradually during the training, in tandem with the resolutions of training images and
generated images (Fig. 2).

Adaptive Instance Normalization (AdaIn) A traditional decoder architecture would start from
a small-resolution image and expand it layer by layer until the full image is formed, feeding the
full information of the latent code via the decoder layers. In contrast, our decoder is composed of
layer-wise functions θi(ξi−1, z) that separately take a ‘canvas’ variable ξi−1 denoting the content
input from the preceding decoder layer (see Figs. 2 and 3a), and the actual (shared) latent code z.
First, each deconvolutional layer #i computes its feature map output χi from ξi−1 as in traditional
decoders. Second, we take the AdaIn normalization step that uses z to modulate the channel-wise
mean µ and variance σ2 of the output. To do this, we need a map gi : z 7→ (µi,σ

2
i ), arriving at:

ξi = AdaIn(χi, gi(z)) = σi

(
χi − µ(χi)
σ(χi)

)
+ µi. (1)

We implement gi for layer #i as a fully connected linear layer, with output size 2Ci for Ci chan-
nels. Layer #1 starts from a constant input ξ(0) ∈ R4×4. Here, we focus on pyramidal decoders
with monotonically increasing resolution and decreasing number of channels, but any deep decoder
would be applicable. The AdaIn-based architecture allows the output of layer #i to be not solely
determined by the input from layer #i− 1, enabling finer control over the image information, image
mixing schemes (Sec. 3.2), and utilization of scale-specific invariances in training data (Sec. 3.3).

3.2 STRONG CONSERVATION OF CYCLIC INFORMATION: LAYER-SPECIFIC LOSS METRICS

In training of regular AGE and PIONEER models, the encoder φ and the decoder θ are trained at
separate steps, optimizing either the loss Lφ or Lθ, correspondingly:

Lφ = DKL[qφ(z |x) ‖N(0, I)]−DKL[qφ(z | x̂) ‖N(0, I)] + λX dX (x,θ(φ(x))),

Lθ = DKL[qφ(z | x̂) ‖N(0, I)] + λZ dcos(z,φ(θ(z))), (2)
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Figure 2: The model grows step-wise during training; the resolution doubles on every step. Input
x is encoded into a latent enocoding z (a dimensionality of 512 used throughout this paper). The
decoder acts by modulating an empty canvas ξ(0) by the latent encoding and produces the output x̂.

where x is sampled from the training set, x̂ ∼ qθ(x | z), z ∼ N(0, I), dX is L1 or L2 distance,
and dcos is cosine distance. Since the model allows sampling from latent space (similarly to VAEs
and GANs), the KL divergence terms during training can be calculated from empirical distributions,
despite the model itself being fully deterministic. Yet we retain, in principle, the full information
about the image, at every stage of the processing. For an image encoded into a latent vector z,
decoded back to image space as x̂, and re-encoded as latent vector z′, it is possible and desirable to
require that z is as close to z′ as possible, yielding the latent reconstruction error dcos(z,φ(θ(z))).

Layer-specific Loss We now show how to encourage the latent space to become hierarchically
disentangled with respect to the levels of image detail, allowing one to separately retrieve ‘coarse’
and ‘fine’ aspects of a latent code. This allows for e.g. conditional sampling by fixing the latent
code for specific layers of the decoder, or mixing the scale-specific features of two or more input
images—impossible feats for a traditional autoencoder with mutually entangled decoder layers.

The latent reconstruction error as such can be trivially generalized to any layer of θ. We simply
pick the layer of measurement, and from there, pass the sample once through a full encoder-decoder
cycle. But now, in the automodulator, latent codes can be introduced on a per-layer basis, enabling
more powerful reconstruction measurements. (Without loss of generality, here we only consider
mixtures of 2 codes.) We can present a decoder (Fig. 3b) with N layers, split after the jth one,
as a composition of θj+1:N (θ1:j(ξ

(0), zA), zB). Crucially, we can choose zA 6= zB (extending
the method of Karras et al., 2019), such as zA = φ(xA) and zB = φ(xB) for (image) inputs
xA 6= xB . Because the earlier layers #1:j operate on image content at lower resolutions, the output
fusion image mixes the ‘coarse’ features of zA with ‘fine’ features of zB . Now, z holds feature
information at different levels of detail, some of which are mutually independent. Hence, when
re-encoding an image, we should keep the representation of those levels disentangled in z, even if
they originate from separate source images. Hence, when we re-encode the fusion image into ẑAB ,
and decode once more, the output of θ1:j(ξ(0), ẑAB) should be unaffected by zB .

This leads to the following conjecture. Assume that the described network reconstructs input sam-
ples perfectly, i.e. x = θ(φ(x)). Any zA and zB can be mixed, decoded and re-encoded as

ẑAB ∼ qφ(z |x) qθj+1:N
(x | ξ(j), zB) qθ1:j (ξ(j) | ξ(0), zA). (3)

Now, between ξ(j) of the first and ξ(j) of the second pass (see Fig. 3c), the mutual information is

I[qθ1:j (ξ
(j) | ξ(0), ẑAB); qθ1:j (ξ(j) | ξ(0), zA)]. (4)

With zA, zB ∼ N(0, I), for each j, we can now maximize (4) by minimizing

Lj = d(θ1:j(ξ
(0), ẑAB),θ1:j(ξ

(0), zA)) (5)

for some distance function d (here, L2 norm). In other words, the fusion image can be encoded into a
new latent vector ẑAB in such a way that, at each layer, the decoder will treat the new code similarly
to whichever of the original two separate latent codes was originally used there (see Fig. 3b). For a
perfect network, Lj can be viewed as a layer entanglement error. Randomizing j during the training,
we can measure Lj for any layers of the decoder.
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Figure 3: (a) The autoencoder-like usage of the model. (b) Modulations in the decoder can come
from different latent vectors. This can be leveraged in feature/style mixing, conditional sampling,
and during the model training (first pass). (c) The second pass during training.

Final Unsupervised Automodulator Training Loss Our results improved by using a robust im-
age reconstruction loss dρ of Barron (2019) instead of L1/L2. dρ generalizes various norms and
exposes robustness as an explicit continuous parameter vector α. The complete loss functions are

Lφ = max(−Mgap,DKL[qφ(z |x) ‖N(0, I)]−DKL[qφ(z | x̂) ‖N(0, I)]) + λX dρ(x,θ(φ(x)))

Lθ = DKL[qφ(z | x̂) ‖N(0, I)] + λZ dcos(z,φ(θ(z))) + Lj , (6)

where x̂1: 34M
∼ qθ(x | z) with z ∼ N(0, I), and x̂ 3

4M :M ∼ qθ(x | ẑAB), with a set 3:4 ratio of reg-
ular and mixed samples of batch size M and j ∼ U{1, N}. Margin Mgap = 0.5 in low resolutions,
then 0.2 for 1282 and 0.4 for 2562 (see Heljakka et al., 2019). To avoid discontinuities in α, we uti-
lize a progressively-growing variation of dρ, where we first learn theα in the lower resolutions (e.g.,
4×4). Each αi corresponds to one pixel. Then, when switching to the higher resolution stage, we
take take each parameter αi that corresponds to pixels px,y in the lower resolution, to initialize the
α1×4
j that, in the higher resolution, corresponds to px,y , px+1,y , px,y+1 and px+1,y+1, respectively.

3.3 ENFORCING KNOWN INVARIANCES AT SPECIFIC LAYERS

The architecture and the cyclic training method also allow for a novel principled approach to leverage
known scale-specific invariances in training data. Assume that images x1 and x2 share certain
identical characteristics at some scales, but differ on others, with this information further encoded
into z1 and z2, correspondingly. In the automodulator, we could expect to try to represent this
information in decoder layers #j:k. Following the reasoning of the previous section, we then must
have θj:k(ξj−1, z1) = θj:k(ξ

(j−1), z2). Let us assume that it is possible to represent the rest of the
information in the images of that dataset in layers #1:(j− 1) and #(k+1):N . This situation occurs,
e.g., when two images are known to differ only in high-frequency properties, fully representable in
the ‘fine’ layers. Utilizing the independence of the layers, our goal is to have

θk+1:N (θj:k(θ1:j−1(ξ
(0), z2), z1), z2) = θk+1:N (θj:k(θ1:j−1(ξ

(0), z2), z2), z2)

= θ1:N (ξ(0), z2) = θ(φ(x2)) (7)

which turns into the optimization target (for some distance function d)

d(θ(φ(x2)),θk+1:N (θj:k(θ1:j−1(ξ
(0), z2), z1), z2)). (8)

By construction of φ and θ, we immediately see this is equivalent to directly minimizing

Linv = d(x2,θk+1:N (θj:k(θ1:j−1(ξ
(0), z2), z1), z2)) (9)

whose complement term L′inv you can construct by swapping z1 with z2 and x1 with x2. For each
known invariant pair x1 and x2 of the minibatch, you can now add the terms Linv + L′inv to Lφ of
Eq. (6). Note that in the case of z1 = z2, Linv reduces to the regular sample reconstruction loss,
revealing our formulation as a generalization thereof.
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(a) Facial feature mixing

(b) Generated samples: LSUN Bedrooms

(c) Generated samples: LSUN Cars

Figure 4: (a) Style-mixing example using the same source images as Karras et al. (2019) (underlining
that our model can directly work with real input images). (b–c) Random samples at 256×256.

As we push the invariant information to layers #j:k, and the other information away from those
layers, this reduces the number of layers available for the rest of the image information. Thus
we may need to add extra layers to retain the overall decoder capacity. Note that in a pyramidal
deconvolutional stack, the layers #j:k can safely span only one or two consecutive levels of detail.

4 EXPERIMENTS

Table 1: Effect of loss terms, CelebA-HQ.

Method (64×64, 20M steps) FID-10k (normal) FID-10k (mix)

Automodulator architecture 11.54 ± 0.32 15.90 ± 0.22
+ Style-mixing loss 12.71 ± 0.28 14.88 ± 0.16
+ Robust loss (no L1 loss) 12.23 ± 0.21 14.75 ± 0.14

We run our experiments on images using CELEBA-
HQ (Karras et al., 2018), FFHQ (Karras et al.,
2019), and LSUN Bedrooms and Cars (Yu et al.,
2015). To quantify the image quality and diversity
of random draws from the model at 256×256 reso-
lution, we use the Fréchet inception distance (FID,
Heusel et al., 2017), which is comparable across models when sample size is fixed (Binkowski et al.,
2018). However, FID is known to remain constant under changing precision-recall characteristics
(Kynkäänniemi et al., 2019). We use LPIPS (Zhang et al., 2018) as the similarity metric, which
has better correspondence to human evaluation than traditional L2 metrics. The degree of latent
space disentanglement is often considered the most important property of a latent variable model.
Qualitatively, it is the necessary condition for, e.g., style mixing capabilities. Quantitatively, Karras
et al. (2019) noted that, for a constant-length step in the latent space, a more entangled model will
produce a larger overall perceptual change than a less entangled model. The extent of this change,
with LPIPS as the perceptual space metric, is the basis of measuring disentanglement as Perceptual
Path Length (PPL).

Baseline Methods For autoencoders, we compare to Balanced PIONEER by Heljakka et al. (2019),
a vanilla VAE, and a more recent Wasserstein Autoencoder (WAE, Tolstikhin et al., 2017). For non-
autoencoders, we compare to GLOW (Kingma & Dhariwal, 2018) and two recent GAN models:
StyleGAN and Progressively Growing GAN (PGGAN, Karras et al., 2018).
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Table 2: Performance in CELEBA-HQ (CAHQ), FFHQ, and LSUN Bedrooms and Cars. We
measure LPIPS, Fréchet Inception Distance (FID), and perceptual path length (PPL). Resolution
is 256×256, except *128×128. For all numbers, smaller is better.

(a) Encoder–decoder comparison

(Using CAHQ∗) LPIPS (cropped) FID PPL

B-PIONEER 0.092 21.51 92.84
WAE-AdaIn 0.165 100.02 62.17
WAE-classic 0.162 108.93 236.82
VAE-AdaIn 0.267 114.52 83.52
VAE-classic 0.291 173.37 71.75
Automodulator 0.102 36.19 41.45

(b) Generative models comparison

FID FID FID FID PPL PPL
(CAHQ) (FFHQ) (Bedrooms) (Cars) (CAHQ∗) (FFHQ)

StyleGAN 5.17 4.40 2.65 3.27 50.08 195.9
PGGAN 7.79 8.04 8.34 8.36 81.33 412.0
GLOW 68.93 — — — 138.21 —
B-PIONEER 25.25 — 21.52 42.81 92.84 —
Automodulator 51.96 64.07 35.74 35.61 41.45 262.3

Ablation We illustrate the contribution of the style-mixing lossLj and the robust loss dρ on 64×64
CELEBA-HQ (Table 1). Lj increases the FID of regular random samples, but reduces it when two
random latents are mixed. dρ then reduces some of the FID of regular samples.

4.1 ENCODING, DECODING, AND RANDOM SAMPLING

In Table 2a, we compare encoder–decoder performance of the autoencoders on 128×128 CELEBA-
HQ, with our proposed architecture (‘AdaIn’) and the corresponding regular architecture (‘classic’).
We measure LPIPS, FID and PPL. Our method has the best PPL, while Balanced PIONEER has the
best FID (50k batch of generated samples compared to training samples).

Table 2b shows comparison of random sampling (examples in Figs. 4b–4c) performance via FID and
latent space smoothness via PPL for 256×256 images on CELEBA-HQ, FFHQ and LSUN Cars and
Bedrooms. The performance of the automodulator is comparable to the Balanced PIONEER on most
data sets, but the FID is worse in general. Models that only generate random samples have clearly
best FID results on all data sets (NB: a hyper-parameter search with various schemes was used
in Karras et al., 2019, to achieve their PPL for FFHQ). We train on the actual 60k training set of
FFHQ only (StyleGAN trained on all 70k images). We also evaluate the 4-way image interpolation
capabilities in unseen FFHQ test images (Fig. 12 in the appendix) and observe smooth transitions.
We emphasize that in GANs, such interpolations are often made between the codes of generated
samples. As such, they cannot tell much about the recall characteristics of those models.

4.2 STYLE MIXING

We demonstrate the style-mixing capabilities of our model. For comparison with prior work, we use
the source images from the StyleGAN paper (Karras et al., 2019). In Fig. 4a, we mix specific input
faces so that the ‘coarse’ (latent resolutions 4×4 – 8×8), ‘intermediate’ (16×16 – 32×32) or ‘fine’
(64×64 – 256×256) layers of the decoder use one input, and the rest of the layers use the other.
Importantly, StyleGAN cannot take real inputs, so it can only mix between random images created
by the model itself. For new input images, one must run a separate costly optimization process to
determine the most fitting latent code. For our model, those images appear as completely new test
images. Additional style mixing results are included in Figs. 13–14 in the appendix.

4.3 LEVERAGING INVARIANCES IN A WEAKLY SUPERVISED SETUP

We now consider the cases where there is knowledge of some scale-specific invariances within the
training data. Here, we demonstrate a proof-of-concept experiment that uses the simplest image
transformation possible: horizontal flipping. For the CELEBA-HQ face data, this provides us with
pairs of images that share every other property except the azimuth rotation angle of the face, making
the face identity invariant amongst each pair. Since the original rotation of faces in the set varies,
the flip-augmented data set contains faces rotated across a wide continuum of angles. For further
simplicity, we make an artificially strong hypothesis that the 2D projected face shape is the only
relevant feature at 4×4 scale, and does not need to affect scales finer than 8×8. This lets us enforce
the Linv loss for layers #1–2. Since we do not want to restrict the scale 8×8 for the shape features
alone, we add an extra 8×8 layer after layer #2 of the regular stack, so that layers #2–3 both operate
at 8×8, layer #4 only at 16×16, etc. Now, with z2 that corresponds to the horizontally flipped
counterpart of z1, we have θ3:N (ξ(2), z1) = θ3:N (ξ(2), z2). Our choices amount to j = 3, k = N ,
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Figure 5: The effect of training with face identity invariance enforcement under azimuth rotation.
We generate images with the ‘non-coarse’ styles from the source images (left), and the ‘coarse’
styles from each top row image, in turn. With ‘Enforced id. invariance’, the top row only drives
the face pose while conserving identity. In comparison, the ‘Regular’ training lets the top row also
affect other characteristics, including identity. Here, the actual data that defined the invariance was
too simple to allow learning fine-grained control of the hair at coarse levels, making it blurry.

allowing us to drop the outermost part of Eq. (9). Hence, our additional encoder loss terms are

Linv = d(x2,θ3:N (θ1:2(ξ
(0), z2), z1)) and (10)

L′inv = d(x1,θ3:N (θ1:2(ξ
(0), z1), z2)). (11)

Fig. 5 shows the results after training with the new loss (50% of the training samples flipped in each
minibatch). With the invariance enforcement, the model forces decoder layers #1–2 to only affect
the pose. We generate images by driving those layers with faces at different poses, while modulating
the rest of the layers with the face whose identity we seek to conserve. We receive variations of the
original face that only differ in terms of the pose, unlike in regular automodulator training.

5 DISCUSSION AND CONCLUSION

In this paper, we proposed the first generative autoencoder model with a hierarchical latent repre-
sentation that supports controllable image generation and editing, conditional image sampling by
fixing styles of specific layers, and style-mixing of real images. In our model, the latent vector in-
dependently modulates each decoder layer. The model outperforms other generative autoencoders
in terms of latent space disentanglement and matches them in faithfulness of reconstructions, with
slight reduction of output sample quality. We use the term automodulator to denote any autoencoder
that uses the latent code only to modulate the statistical properties of the information that flows
through the layers of the decoder. Such decoders could also include, e.g., 3D or graph convolutions.

Potential future applications include introducing completely independent ‘plugin’ layers or modules
in the decoder, trained afterwards on top of the pretrained base automodulator, leveraging the mu-
tual independence of the layers. The affine maps themselves could also be re-used across domains,
potentially offering mixing of different domains. Such examples highlight that the range of applica-
tions of our model is far wider than the initial ones shown here, making the family of automodulators
a viable alternative to state-of-the-art autoencoders and GANs. Upon acceptance for publication, our
source code will be released at http://github.com/anonymized.
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Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. In International
Conference on Learning Representations (ICLR), 2017.

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin Ar-
jovsky, and Aaron Courville. Adversarially learned inference. In International Conference on
Learning Representations (ICLR), 2017a.

Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A learned representation for artistic
style. In International Conference on Learning Representations (ICLR), 2017b.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image style transfer using convolutional
neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 2414–2423, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems (NIPS), volume 27, pp. 2672–2680. Curran Associates, Inc., 2014.

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Rezende, and Daan Wierstra. DRAW: A recurrent
neural network for image generation. In Proceedings of the 32nd International Conference on
Machine Learning (ICML), volume 37 of PMLR, pp. 1462–1471, 2015.

Karol Gregor, Frederic Besse, Danilo Jimenez Rezende, Ivo Danihelka, and Daan Wierstra. To-
wards conceptual compression. In Advances in Neural Information Processing Systems (NIPS),
volume 29, pp. 3549–3557. Curran Associates, Inc., 2016.

Ari Heljakka, Arno Solin, and Juho Kannala. Pioneer networks: Progressively growing generative
autoencoder. In Asian Conference on Computer Vision (ACCV), pp. 22–38, 2018.

Ari Heljakka, Arno Solin, and Juho Kannala. Towards photographic image manipulation with bal-
anced growing of generative autoencoders. arXiv preprint arXiv:1904.06145, 2019.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In Advances
in Neural Information Processing Systems (NIPS), volume 30, pp. 6626–6637. Curran Associates,
Inc., 2017.

Geoffrey E. Hinton and James L. McClelland. Learning representations by recirculation. In Neural
Information Processing Systems (NIPS), pp. 358–366. American Institute of Physics, 1988.

9



Under review as a conference paper at ICLR 2020

Huaibo Huang, Zhihang Li, Ran He, Zhenan Sun, and Tieniu Tan. IntroVAE: Introspective varia-
tional autoencoders for photographic image synthesis. In Neural Information Processing Systems
(NeurIPS), volume 31, pp. 52–63. Curran Associates, Inc., 2018.

Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normal-
ization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp.
1501–1510, 2017.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for im-
proved quality, stability, and variation. In International Conference on Learning Representations
(ICLR), 2018.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 4401–4410, 2019.

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In International Confer-
ence on Learning Representations (ICLR), 2014.

Durk P. Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
In Advances in Neural Information Processing Systems (NeurIPS), volume 31, pp. 10236–10245.
Curran Associates, Inc., 2018.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. In Advances in Neural Information
Processing Systems (NeurIPS), 2019.

Alireza Makhzani. Implicit autoencoders. arXiv preprint arXiv:1805.09804, 2018.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian Goodfellow. Adversarial autoencoders.
In International Conference on Learning Representations (ICLR), 2016.

Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. Adversarial variational Bayes: Unifying
variational autoencoders and generative adversarial networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning (ICML), volume 70 of PMLR, pp. 2391–2400, 2017.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. In International Conference on Learning Representations
(ICLR), 2018.
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A APPENDIX

In the appendix, we include further details on training and complement the results in the main paper
with examples of random samples, reconstruction, latent space interpolations, and style mixing.

A.1 TRAINING DETAILS

The training method follows largely those in Heljakka et al. (2019), with progressively growing
symmetric encoder and decoder, and decreasing the batch size when moving to higher resolutions.
The encoder and decoder consist of 7 blocks each containting two residual blocks with a 3×3 filter.
In the encoder, these are followed by a spectral normalization operation (Miyato et al., 2018) and
binomial filtering. In the decoder, by AdaIn normalization and binomial filtering. A leaky ReLU
(p = 0.2) is used as activation. In the encoder, each block halves the resolution of the convolution
map, while in the decoder, each block doubles it. The output of the final encoder layers is flattened
into a 512-dimensional latent block. As in Karras et al. (2019), the block is mapped by affine
mapping layers so that each convolutional layer C in the decoder block is preceded by its own fully
connected layer that maps the latent to two vectors each of length N , when N equals the number of
channels in C.

Each resolution phase until 32×32 for all data sets use a learning rate α = 0.0005 and thereafter
0.001. Optimization is done with ADAM (β1 = 0, β2 = 0.99, ε = 10−8). After the first two
resolution steps, the KL margin is turned on and fixed to 0.5. The length of training phases amounts
to 2.4M training samples until 64×64 resolution phase, which lasts for 10.4M samples. For FFHQ
and CelebAHQ, the 128×128 phase uses 13.0M samples while LSUN Bedrooms and Cars use
10.0M samples. The final 256×256 phase uses 7–10M samples for each data set. The training of
the final stage was generally cut off when reasonable FID results had been obtained. More training
and learning rate optimization would likely improve results. With two Titan V100 GPUs for pre-
training stages and four GPUs for the 256×256 stage, the training time for CELEBA-HQ and FFHQ
were 18 days each, and for LSUN Bedfrooms 17 days and Cars 19 days.

For evaluating the model after training, a moving expontential running average of generator weights
was used, as in both Karras et al. (2018) and Heljakka et al. (2019). For all data sets, training/test
set splits were used as given or defined by data set authors, except for LSUN Cars, where we used
4,968,695 samples for training and 552,061 for testing. Note that in regular GAN training, complete
data sets are often used without train/test split, leading them to use larger training sets.

For baselines, we used pre-trained models for StyleGAN, PGGAN, PIONEER, and GLOW with
default settings provided by the authors. We trained the VAE and WAE models manually. For all
VAE baselines the weight for KLD loss was 0.005. For all WAE baseline, we used the WAE-MMD
algorithm. The weights for the MMD loss with automodular architecture (WAE-AdaIn) was 4 and
with Balanced PIONEER (WAE-classic) architecure it was 2. For VAEs, the learning rate for the
encoder was 0.0001, and for the generator 0.0005. For WAEs, the learning rate for both was 0.0002.

For evaluating the encoding and decoding performance, we used 10k unseen test images from the
FFHQ data set, cropped the input and reconstruction to 128×128 as in Karras et al. (2019) and
evaluated the LPIPS distance between the inputs and reconstructions. We evaluated 50k random
samples in all data sets and compare against the provided training set. The GLOW model has not
been shown to work with 256×256 resolution on LSUN (the authors show qualitative result only
for 128×128). Training of PIONEER did not converge on FFHQ, however we believe this is an issue
with the default hyper-parameters not suitable for FFHQ.

For Perceptual Path Length (PPL), we repeatedly take a random vector of length ε = 10−4 in the
latent space, generate images at its endpoints, crop them around mid-face to 128×128 or 64×64,
and measure the LPIPS between them (Karras et al., 2019). PPL equals the scaled expectation of
this value (for a sample of 100k vectors).

Pre-trained models for PGGAN and GLOW were used with default settings provided by the authors.
Note that we train on the actual 60k training images of FFHQ only (unlike StyleGAN that trained
on all 70k images).
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A.2 RANDOM SAMPLES

Our model is capable of fully random sampling by specifying z ∼ N(0, I) to be draws from a
unit Gaussian. Fig. 6–8 show samples from an automodulator trained with the FFHQ/CELEBA-
HQ/LSUN data sets up to resolution 256×256. The samples here indicate the full range of samples
and face features the model can support.

Figure 6: Random samples from the automodulator trained on FFHQ at a resolution 256×256.

Figure 7: Random samples for an automodulator trained on CELEBA-HQ at resolution 256×256.

(a) LSUN Bedrooms (b) LSUN Cars

Figure 8: Additional samples from an automodulator trained on LSUN Bedrooms and Cars a reso-
lution of at 256×256.

A.3 RECONSTRUCTIONS

We include examples of the reconstruction capabilities of the automodulator at 256×256 in for
uncurated test set samples from the FFHQ and CELEBA-HQ data sets. These examples are provided
in Figs. 9–10.
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Figure 9: Uncurated examples of reconstruction quality in 256×256 resolution with images from
the FFHQ test set (top row).

Figure 10: Uncurated examples of reconstruction quality in 256×256 resolution with images from
the CELEBA-HQ test set (top row).

A.4 CONDITIONAL SAMPLING

The automodulator directly allows for conditional sampling in the sense of fixing a latent encoding
zA, but allowing some of the modulations come from a random encoding zB ∼ N(0, I). In Fig. 11,
we show conditional sampling of 128×128 random face images based on ‘coarse’ (latent resolutions
4×4 – 8×8) and ‘intermediate’ (16×16 – 32×32) latent features of the fixed input. The input image
controls the coarse features (such as head shape, pose, gender) on the top and more fine features
(expressions, accessories, eyebrows) on the bottom.

A.5 STYLE MIXING AND INTERPOLATION

The well disentangled latent space allows for interpolations between encoded images. We show
regular latent space interpolations between the reconstructions of new input images (Fig. 12).

As two more systematic style mixing examples, we include style mixing results based on both
FFHQ and LSUN Cars. The source images are unseen real test images, not self-generated images.
In Figs. 13 and 14 we show a matrix of cross-mixing either ‘coarse’ (latent resolutions 4×4 – 8×8)
or ‘intermediate’ (16×16 – 32×32) latent features. Mixing coarse features results in large-scale
changes, such as pose, while the intermediate features drive finer details, such as color.
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Input Samples with coarse features from input

Input Samples with intermediate features from input

Figure 11: Conditional sampling of 128×128 random face images based on ‘coarse’ (latent reso-
lutions 4×4 – 8×8) and ‘intermediate’ (16×16 – 32×32) latent features of the fixed input. The
input image controls the coarse features (such as head shape, pose, gender) on the top and more fine
features (expressions, accessories, eyebrows) on the bottom.

Figure 12: Interpolation between random test set CELEBA-HQ images in 128×128 (in the corners)
which the model has not seen during training. The model captures most of the salient features in the
reconstructions and produces smooth interpolations at all points in the traversed space.
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(a) Using ‘coarse’ (latent resolutions 4×4 – 8×8) latent features from B and
the rest from A.

Source B

So
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(b) Using the ‘intermediate’ (16×16 – 32×32) latent features from B and the
rest from A.

Figure 13: Style mixing of FFHQ face images. The source images are unseen real test images, not
self-generated images.
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Source B
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(a) Using ‘coarse’ (latent resolutions 4×4 – 8×8) latent features from B and
the rest from A. Most notably, the B cars drive the car pose.

Source B

So
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ce
A

(b) Using the ‘intermediate’ (16×16 – 32×32) latent features from B and the
rest from A.

Figure 14: Style mixing of LSUN Cars. The source images are unseen real test images, not self-
generated images.
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