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ABSTRACT

We introduce instability analysis, a framework for assessing whether the outcome
of optimizing a neural network is robust to SGD noise. It entails training two
copies of a network on different random data orders. If error does not increase
along the linear path between the trained parameters, we say the network is stable.
Instability analysis reveals new properties of neural networks. For example, stan-
dard vision models are initially unstable but become stable early in training; from
then on, the outcome of optimization is determined up to linear interpolation.
We leverage instability analysis to examine iterative magnitude pruning (IMP),
the procedure underlying the lottery ticket hypothesis. On small vision tasks, IMP
finds sparse matching subnetworks that can train in isolation from initialization to
full accuracy, but it fails to do so in more challenging settings.
We find that IMP subnetworks are matching only when they are stable. In cases
where IMP subnetworks are unstable at initialization, they become stable and
matching early in training. We augment IMP to rewind subnetworks to their
weights early in training, producing sparse subnetworks of large-scale networks,
including Resnet-50 for ImageNet, that train to full accuracy.

1 INTRODUCTION

The lottery ticket hypothesis (Frankle & Carbin, 2019) conjectures that neural networks contain
sparse subnetworks that are capable of training in isolation from initialization to full accuracy. The
sole empirical evidence in support of the lottery ticket hypothesis is a series of experiments using
a procedure called iterative magnitude pruning (IMP). IMP returns a subnetwork of the original,
randomly initialized network by training the network to completion, pruning the lowest-magnitude
weights (Han et al., 2015), and resetting each remaining weight to its original initialization. On
small networks for MNIST and CIFAR-10, IMP subnetworks can match the accuracy of the full
network (we refer to such subnetworks as matching subnetworks) at sparsity levels far beyond those
at which randomly reinitialized or randomly pruned subnetworks can do the same.

The lottery ticket hypothesis offers a new perspective on the role of overparameterization and raises
the tantalizing prospect that there may exist much smaller neural networks that are capable of re-
placing the larger models we typically train today. Unfortunately, in more challenging settings,
there is no empirical evidence that the lottery ticket hypothesis holds. IMP subnetworks of VGG
and Resnet-style networks on CIFAR-10 and ImageNet perform no better than other kinds of sparse
networks (Liu et al., 2019; Gale et al., 2019).

In this paper, we describe a new framework called instability analysis, which measures whether the
outcome of optimizing a network is robust to SGD noise (in which case we call it stable). Insta-
bility analysis offers a range of new insights into the behavior of unpruned networks. For example,
the outcome of optimization becomes stable to SGD noise early in training (3% for Resnet-20 on
CIFAR-10 and 20% on Resnet-50 for ImageNet). Moreover, it distinguishes known cases where
IMP succeeds and fails to find a matching subnetwork; namely, IMP subnetworks are only matching
when they are stable. It also allows us to identify new scenarios where sparse, matching subnet-
works emerge early in training in more challenging settings, including Resnet-50 and Inception-v3
on ImageNet. In doing so, our results demonstrate that instability analysis is a valuable scientific
tool for investigating the behavior of neural networks.
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Figure 1: A diagram of instabil-
ity analysis (text left).

Instability analysis. Instability analysis is a technique to deter-
mine whether the outcome of optimization is robust to SGD noise.
Figure 1 visualizes this process. We train two copies of the same
network from initialization (W0) on different data orders (which
models different samples of SGD noise). We then linearly inter-
polate (dashed line) between the trained weights (W 1

T and W 2
T )

and examine the error along this path (blue curve). The instabil-
ity of the network to SGD noise is the maximum increase in train
or test error along this path (red line). We say a network is stable
if error does not increase along the path, i.e., instability is 0. To
examine instability at a later iteration k, we first train the network
to iteration k (Wk) and make two copies afterwards. Instability is
a property of a network with respect to an optimization procedure;
we focus on the standard procedure prescribed for the networks we examine.

Instability analysis assesses a linear form of mode connectivity, a phenomenon where the minima
found by two networks are connected by a path of constant error. Draxler et al. (2018) and Garipov
et al. (2018) show that the modes of standard vision networks trained from different initializations
are connected by piece-wise linear paths of constant error or loss. Based on this work, we expect
that our networks will be connected by such paths. However, the modes found by Draxler et al.
and Garipov et al. are not connected by linear paths. The only extant example of linear mode
connectivity is by Nagarajan & Kolter (2019), who train MLPs from the same initialization on
disjoint subsets of MNIST and find that the resulting networks are connected by linear paths of
constant test error; we explore linear mode connectivity from points throughout training, we do so at
a larger scale, and we focus on different samples of SGD noise rather than disjoint samples of data.

Results. We begin by examining the instability of unpruned networks for MNIST, CIFAR-10, and
ImageNet. All but the smallest MNIST network we study are unstable at initialization. However,
by a point early in training (3% for Resnet-20 on CIFAR-10 and 20% for Resnet-50 on ImageNet),
all networks become stable. In other words, from this point forward, the outcome of optimization
is determined modulo linear interpolation. In fact, the entire trajectory of a stable network is so
determined: when we train two copies of the network on different data orders, the states of the
networks at each epoch are connected by linear paths over which test error does not increase.

In the lottery ticket context, we find that extremely sparse IMP subnetworks are matching only when
they are stable, providing the first basis for understanding the mixed results in the literature. In do-
ing so, we make a new connection between lottery ticket behavior and the optimization dynamics
of neural networks. Inspired by our full network results, we modify IMP to rewind subnetwork
weights to their values at iteration k rather than resetting them to initialization. For values of k that
are early in training (in fact, earlier than the full networks), IMP subnetworks become stable in all
cases we consider. Correspondingly, they also become matching. At these sparsity levels, randomly
reinitialized and randomly pruned networks are neither stable nor matching. This connection be-
tween stability and accuracy suggests that linear mode connectivity is fundamental to sparse neural
networks found by IMP and, thereby, to our current knowledge of the lottery ticket hypothesis.

Contributions. We make the following contributions:

• We introduce instability analysis, which measures the maximum increase in error along the linear
path between minima found by training the same network on different data orders.

• On a range of image classification benchmarks including Resnet-50 on ImageNet, we observe that
networks become stable to SGD noise early in training.

• We show that stable networks are stable throughout the training process.

• We use instability analysis to distinguish successes and failures of IMP (the core algorithm be-
hind the lottery ticket hypothesis) as identified in previous work. Namely, extremely sparse IMP
subnetworks are only matching when they are stable.

• We augment IMP with rewinding to study subnetworks initialized after iteration 0. We show that
IMP subnetworks become stable and matching early in training if not at initialization.

• Using rewinding, we show how to find sparse, matching subnetworks in much larger settings than
in previous work by setting the weights of IMP subnetworks to their values from early in training.
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Network Dataset Params Train For Batch Accuracy Opt Rate Schedule Warmup Density Pruning

Lenet MNIST 266K 24K Iters 60 98.3± 0.1% adam 12e-4 constant 0 3.5% Iterative

Resnet-20 (standard) 91.7± 0.1% mom. 0.1 10x drop at
32K, 48K

0 16.8%
IterativeResnet-20 (low) CIFAR-10 274K 63K Iters 128 88.8± 0.1% mom. 0.01 0 8.6%

Resnet-20 (warmup) 89.7± 0.3% mom. 0.03 30K 6.9%

VGG-16 (standard) 93.7± 0.1% mom. 0.1 10x drop at
32K, 48K

0 1.5%
IterativeVGG-16 (low) CIFAR-10 14.7M 63K Iters 128 91.7± 0.1% mom. 0.01 0 5.5%

VGG-16 (warmup) 93.4± 0.1% mom. 0.1 30K 1.5%

Resnet-50 ImageNet 25.5M 90 Eps 1024 76.1± 0.1% mom. 0.4 10x drop at 30,60,80 5 Eps 30% Oneshot
Inception-v3 ImageNet 27.1M 171 Eps 1024 78.1± 0.1% mom. 0.03 linear decay to 0.005 0 30% Oneshot

Table 1: Our networks and hyperparameters. Accuracies are the averages and standard deviations
across three initializations. Hyperparameters for Resnet-20 (standard) are from He et al. (2016). Hy-
perparameters for VGG-16 (standard) are from Liu et al. (2019). Hyperparameters for low, warmup,
and Lenet are adapted from Frankle & Carbin (2019). Hyperparameters for ImageNet networks are
from Google’s reference TPU code (Google, 2018).

2 PRELIMINARIES AND METHODOLOGY

Instability analysis via linear mode connectivity. Instability analysis evaluates whether the min-
ima found when training two copies of a neural network on different samples of SGD noise (i.e.,
the random data order used during SGD) are linearly connected by a path over which error does
not increase. The neural network in question could be randomly initialized (W0 in Figure 1) or
the result of k training iterations (Wk). To perform instability analysis, we make two copies of the
network and train them to completion with different random data orders (W 1

T and W 2
T ). We then

linearly interpolate between the trained weights (dashed line) and compute the train or test error at
each point (blue curve) to determine whether it increased (minima are not linearly connected) or did
not increase (minima are linearly connected).

Formally, we capture training with SGD (or a variant) by a function As→t : RD ×U → RD, which
maps weights Ws at iteration s and SGD randomness u ∼ U to updated weights Wt at iteration t by
training for t− s steps (for s, t ∈ {1, .., T} and s < t). Algorithm 1 describes our procedure:

Algorithm 1 Stability analysis from iteration k.
1: Create a neural network with randomly initialized weights W0 ∈ Rd.
2: Train W0 to Wk under SGD noise u ∼ U . That is, Wk ← A0→k(W0, u).
3: Train Wk to W 1

T under SGD noise u1 ∼ U . That is, W 1
T ← Ak→T (Wk, u1).

4: Train Wk to W 2
T under SGD noise u2 ∼ U . That is, W 2

T ← Ak→T (Wk, u2).
5: Evaluate E(αW 1

T + (1− α)W 2
T ) for α ∈ [0, 1].

We describe the result of linear interpolation (step 5) with a quantity that we term instabil-
ity. Let E(W ) denote the train or test error of a network parameterized by W . Let Ē =
mean(E(W 1

T ), E(W 2
T )) be the average test error of W 1

T and W 2
T . Let Emax = supα∈[0,1] E(αW 1

T +

(1−α)W 2
T ) be the highest test error when linearly interpolating betweenW 1

T andW 2
T . The instabil-

ity is Emax − Ē (red line in Figure 1). When instability ≈ 0, the minima are linearly connected and
the network is stable. In practice, we average the instability from three initializations and three data
orders per initialization (nine combinations in total). We use 30 evenly-spaced values of α ∈ [0, 1].

Networks and datasets. We study image classification networks on MNIST, CIFAR-10, and Ima-
geNet as specified in Table 1. All hyperparameters listed are the standard values for these networks
from reference implementations or prior work as cited in Table 1. The warmup and low variants of
Resnet-201 and VGG-16 are adapted from hyperparameters chosen by Frankle & Carbin (2019).

1Frankle & Carbin (2019) mistakenly refer to Resnet-20 as “Resnet-18,” which is a separate network.
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Figure 2: The train and test error when linearly interpolating between the minima found by randomly
initializing a network and training it twice under different data orders. Each line is the mean and
standard deviation across three initializations and three data orders (nine samples in total). The
errors of the trained networks are at interpolation = 0 and 1. Inception train data is progress.
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Figure 3: The instability when linearly interpolating between the minima found by networks that
are trained on different data orders from step k. Each line is the mean and standard deviation across
three initializations and three data orders (nine samples in total). Inception train data is progress.

3 NEURAL NETWORK INSTABILITY TO SGD NOISE

In this section, we study whether the outcome of optimization becomes robust to SGD noise after a
certain amount of training. Concretely, we perform instability analysis (Algorithm 1) on the standard
networks in Table 1 from many points during training to understand when, if ever, networks become
stable to SGD noise. We find that, although only Lenet is stable at initialization, every network
becomes stable early in training.

Neural networks are unstable at initialization. We begin by studying the instability of neural
networks at initialization. We do so by training two copies of the same, randomly-initialized network
under different samples of SGD noise (that is, Algorithm 1 with k = 0). Figure 2 shows the
train error (purple) and test error (red) when linearly interpolating between the minima found by
these copies. With the exception of Lenet on MNIST, none of the networks we study are stable at
initialization. In fact, both training and test error rise to the point of random guessing when linearly
interpolating between the minima found under different data orders. Lenet’s error does rise slightly,
but the increase is a small fraction of a percentage point. We conclude that, in general, larger-scale
image classification networks are not stable at initialization.

Stability improves early in training. Although nearly all networks are unstable at initialization,
they will inevitably become stable at some point. In the limit, they will be stable by the end of
training, and it seems reasonable to expect that the final few steps of SGD are too insignificant to
cause the network to enter linearly unconnected minima. In this experiment, we ask how early neural
networks become stable. In other words, after what point in training is the outcome of optimization
determined modulo linear interpolation regardless of the sample of SGD noise? To explore this
behavior, we train a single copy of the network for k iterations or epochs before making two copies
that we train to completion on different data orders (Algorithm 1 with k ≥ 0).

Figure 3 plots the instability of the networks for various values of k. We measure instability as the
maximum error during interpolation (the peaks in Figure 2) minus the mean of the errors of the two
networks (the endpoints in Figure 2). In all cases, instability decreases as k increases, culminating in
networks that are stable (i.e., instability≈ 0). The iteration at which stability emerges is surprisingly
early. For example, it occurs from approximately iteration 2000 for Resnet-20 and VGG-16; in other
words, after 3% of training, SGD noise cannot affect the final minimum modulo linear interpolation.
Stability occurs later for Resnet-50: about epoch 18 (20% into training).
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Figure 4: Test instability throughout training. At each epoch, linearly interpolate between the states
of two networks trained with different SGD noise and compute instability. Each line involves train-
ing to iteration k and then training two copies on different data orders after.

Instability is essentially identical when measured in terms of train or test error (although train in-
stability is slightly higher than test instability for Resnet-50), indicating that the minimum becomes
determined on both the train and test surfaces around the same time. Going forward, we present all
results with respect to test error for simplicity.

Stable networks are linearly connected throughout training. Stable networks arrive at minima
that are linearly connected, but do the trajectories they follow throughout training also have this
property? In other words, when training two copies of the same network with different noise, is
there a linear path over which test error does not increase connecting the states of the networks at
each iteration? To study this behavior, we linearly interpolate between the networks at every epoch
of training and compute the test error instability. That is, we compute instability throughout training.

Figure 4 plots instability throughout training for Resnet-20 and VGG-16 from different starting
iterations k. For k = 0 (blue line), instability increases rapidly. In fact, it follows the same pattern
as test error: as the test error of each network decreases, the maximum possible instability increases
(since instability never exceeds random guessing). With larger values of k, instability increases
more slowly throughout training. When k is sufficiently large that the networks are stable at the end
of training, they are stable at every epoch of training (k = 2000, pink line). In other words, after
iteration 2000, the networks follow identical optimization trajectories modulo linear interpolation.

Discussion. Our observations implicitly divide training into two phases: an initial, unstable phase
in which the final “linearly connected” minimum is undetermined on account of SGD noise and a
subsequent, stable phase in which the final linearly connected minimum becomes determined. From
this perspective, our observations contribute to a growing body of literature suggesting that training
experiences a noisy initial phase and a less stochastic second phase. For example, the eigenspectrum
of the Hessian settles into a bulk of small eigenvalues and a few large outlier eigenvalues after
some amount of training (Gur-Ari et al., 2018), and networks trained with large batch sizes and
high learning rates benefit from learning rate warmup during the first part of training (Goyal et al.,
2017). One possible way to exploit our observations could be to explore changing aspects of the
optimization process (e.g., learning rate schedule or optimizer) similar to Goyal et al. (2017) once
the network enters the stable phase in order to improve the performance of training; instability
analysis makes it possible to evaluate the consequences of doing so.

As a scientific tool, we also believe instability analysis provides a framework for studying topics
related to the scale and distribution of SGD noise, e.g., the relationship between batch size, learning
rate, and generalization (Keskar et al., 2017; Smith & Le, 2018; Smith et al., 2018) and the efficacy
of alternative learning rate schedules (Smith, 2017; Smith & Topin, 2018; Li & Arora, 2019).

4 INSTABILITY AND SPARSITY

We have long known that it is possible to prune neural networks after training, often removing 90%
of connections or more with no reduction in accuracy after small amount of additional training (e.g.,
LeCun et al., 1990; Reed, 1993; Han et al., 2015; Gale et al., 2019; He et al., 2018). However,
sparse networks are more difficult to train from scratch. At the most extreme levels of sparsity
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achievable by pruning, sparse networks trained in isolation generally reach lower test accuracy than
dense networks (Han et al., 2015; Li et al., 2016; Liu et al., 2019; Frankle & Carbin, 2019).

However, there is a known class of networks that remains accurate at these sparsity levels: win-
ning lottery tickets. On small vision networks, iterative magnitude pruning (IMP) retroactively finds
sparse subnetworks that were capable of training in isolation to full accuracy (Frankle & Carbin,
2019); we refer to subnetworks with this capability as matching subnetworks. The existence of
winning lottery tickets raises the possibility that we might be able to replace conventional, dense
networks with sparser subnetworks, creating new opportunities to improve the performance of train-
ing. However, in more challenging settings, subnetworks found by IMP with k = 0 are not matching
at particularly high sparsities and perform no better than other subnetworks (Liu et al., 2019; Gale
et al., 2019). In these contexts, there is no evidence that the lottery ticket hypothesis holds.

Motivated by the possibility of training more efficient networks and a desire to explain the successes
and failures of IMP, we study the relationship between instability and the accuracy of extremely
sparse neural networks. Our central finding is that, although the accuracy of full networks in Section
3 seems unaffected by instability, the sparsest IMP subnetworks are matching only when they are
stable. In other words, when SGD noise is sufficient to change the minimum that an IMP network
finds (up to linear interpolation), test accuracy is lower. Randomly reinitialized and randomly pruned
subnetworks are always both unstable and non-matching at all sparsity levels we consider.

4.1 METHODOLOGY

Iterative magnitude pruning. Iterative magnitude pruning (IMP) is a procedure to retroactively
find a subnetwork of the state of the full network at iteration k of training. As outlined in Algorithm
2, IMP trains a network to completion, prunes weights with the lowest magnitudes globally, and
rewinds the remaining weights back to their values at iteration k. The result is a subnetwork (Wk,m)
whereWk ∈ Rd is the state of the full network at iteration k andm ∈ {0, 1}d is a fixed binary vector
that, when multiplied element-wise with Wk, produces the pruned network m�Wk. We can either
run IMP iteratively (training, pruning 20% of weights (Han et al., 2015; Frankle & Carbin, 2019),
rewinding, and repeating until we reach a target sparsity) or in one-shot (pruning to the target sparsity
in a single step). We use one-shot pruning on ImageNet networks for efficiency and iterative pruning
in all other cases (Table 1). Frankle & Carbin (2019) only study rewinding to iteration 0; one of our
contributions is to generalize IMP to any rewinding iteration k. When training a subnetwork from
iteration k, we also rewind the learning rate schedule to its state at iteration k.

Algorithm 2 Iterative Magnitude Pruning (IMP) with rewinding to iteration k and N iterations.
1: Create a neural network with randomly initialized weights W0 ∈ Rd and initial pruning mask m = 1d.
2: Train W0 to Wk under SGD noise u ∼ U . That is, Wk ← A0→k(W0, u).
3: for n ∈ {1, . . . , N} do
4: Train m�Wk to m�WT under SGD noise u′ ∼ U . That is, WT ← Ak→T (m�Wk, u

′).
5: Prune the remaining entries with the lowest magnitudes from WT . Let m[i] = 0 if WT [i] is pruned.
6: Return m,Wk

Sparsity levels. Although we are interested in the behavior of networks at all sparsities, computa-
tional limits force us to focus on a specific sparsity level.2 In light of these restrictions, we focus on
the highest sparsities for which IMP returns a matching network at any rewinding iteration k. The
densities we examine are in Table 1, and Appendix A explains these choices. Doing so provides the
best contrast between sparse networks that are matching and (1) the full, overparameterized neural
networks and (2) other classes of sparse networks.

Experimental approach. We study the relationship between stability and accuracy in extremely
sparse subnetworks uncovered by IMP. IMP produces particularly sparse matching subnetworks and
is the algorithm behind current lottery ticket results, so it merits close examination for both better
scientific understanding and potential practical lessons for training sparse networks. As a basis

2IMP entails training a network at least a dozen times to reach high levels of sparsity, and instability analysis
requires training each of these networks a further nine times (three data orders and three kinds of sparsity) for
many rewinding iterations. For rigor, we replicate each experiment three times with different initializations.
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Figure 5: Test accuracy of IMP subnetworks, randomly pruned subnetworks, and randomly reini-
tialized IMP subnetworks at all levels of sparsity. The black line is the accuracy of the unpruned
network. Each line is the mean and standard deviation across three initializations.

for comparison, we also examine two kinds of subnetworks that are not matching at the sparsities
we consider: (1) IMP subnetworks that are randomly reinitialized and (2) subnetworks found by
randomly pruning weights rather than pruning those with the lowest magnitudes. We exploit the fact
that not all IMP subnetworks are matching: we contrast settings where IMP succeeds and fails to
further understand the conditions under which IMP subnetworks are matching.

4.2 EXPERIMENTS

IMP subnetworks are matching at initialization only when stable. We begin by studying sparse
subnetworks trained in isolation from initialization (k = 0). As noted previously, not all IMP
subnetworks are matching at the sparsity levels we consider for k = 0. Figure 5 shows the accuracy
of the IMP subnetworks (blue) across all levels of sparsity for each of the hyperparameters in Table 1
(alongside randomly pruned subnetworks in orange and randomly reinitialized subnetworks in green
for comparison). On Lenet, IMP subnetworks are matching at sparsities well beyond those at which
other subnetworks are matching. The same is true for variants of Resnet-20 and VGG-16 with lower
learning rates or learning rate warmup, changes proposed by Frankle & Carbin (2019) specifically to
make it possible for IMP to find matching subnetworks. In contrast, IMP subnetworks of Resnet-50,
Inception-v3, and standard configurations of Resnet-20 and VGG-16 perform similarly to randomly
reinitialized and randomly pruned subnetworks.

In Figure 6, we analyze the instability of these subnetworks. At the sparsity levels we consider, IMP
subnetworks are matching only when they are stable. The IMP subnetworks of Lenet, Resnet-20
(low, warmup), and VGG-16 (low, warmup) are stable and matching, while no other IMP subnet-
works have either property. The low and warmup experiments are notable because these hyperpa-
rameters were selected by Frankle & Carbin (2019) to make it possible for IMP to find matching
subnetworks without awareness that they also improve stability. This inadvertent causal experiment
adds further evidence of a connection between instability and accuracy in IMP subnetworks.

With the exception of Lenet, no randomly reinitialized or randomly pruned subnetworks are stable or
matching at these levels of sparsity. On Lenet, these subnetworks are not matching but test error only
rises slightly when interpolating. For all other networks we consider, the error of these subnetworks
approaches or reaches that of random guessing when interpolating.

IMP subnetworks become stable and matching early in training. In the previous experiment,
we saw that the IMP subnetworks are matching only when they are stable to SGD noise. In Section
3, we observed that unpruned networks become stable to SGD noise only after a certain amount of
training. In this experiment, we combine these observations: we study whether IMP subnetworks
become stable during training and, if so, whether improved accuracy follows. To do so, we examine
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Figure 6: The test error when linearly interpolating between the minima found by training sparse
subnetworks twice from initialization under different data orders. Each line is the mean and standard
deviation across three initializations and three data orders (nine samples in total). The test errors of
the trained networks are at 0 and 1. Percents are percents of weights remaining.

0 2 4 6 8 10
Rewinding Epoch (linear)

0

20

40

60

80

In
sta

bi
lit

y 
(%

)

Resnet-50 (30.0%)

0 100 500 2K 10K
Rewinding Iteration (log)

0

20

40

60

80

In
sta

bi
lit

y 
(%

)

Resnet-20 (16.8%)

0 100 500 2K 10K
Rewinding Iteration (log)

0

20

40

60

80

In
sta

bi
lit

y 
(%

)

Resnet-20 Low (8.6%)

0 100 500 2K 10K
Rewinding Iteration (log)

0

20

40

60

In
sta

bi
lit

y 
(%

)

Resnet-20 Warmup (6.9%)

0 25 100 500 2K
Rewinding Iteration (log)

0.0

0.5

1.0

In
sta

bi
lit

y 
(%

)

Lenet (3.5%)

0 2 4 6 8 10
Rewinding Epoch (linear)

24

25

26

27

Te
st 

Er
ro

r (
%

)

0 100 500 2K 10K
Rewinding Iteration (log)

8

9

10

11

12

Te
st 

Er
ro

r (
%

)

0 100 500 2K 10K
Rewinding Iteration (log)

12

14

16

18

Te
st 

Er
ro

r (
%

)

0 100 500 2K 10K
Rewinding Iteration (log)

10

12

14

16

Te
st 

Er
ro

r (
%

)

0 25 100 500 2K
Rewinding Iteration (log)

1.5

2.0

2.5

3.0

3.5

Te
st 

Er
ro

r (
%

)

0 4 8 12
Rewinding Epoch (linear)

0

20

40

60

80

In
sta

bi
lit

y 
(%

)

Inception-v3 (30.0%)

0 25 100 500 2K 10K
Rewinding Iteration (log)

0

20

40

60

80

In
sta

bi
lit

y 
(%

)

VGG-16 (1.5%)

0 25 100 500 2K 10K
Rewinding Iteration (log)

0

20

40

60

80

In
sta

bi
lit

y 
(%

)

VGG-16 Low (5.5%)

0 25 100 500 2K 10K
Rewinding Iteration (log)

0

20

40

60

80

In
sta

bi
lit

y 
(%

)

VGG-16 Warmup (1.5%)

0 4 8 12
Rewinding Epoch (linear)

22

23

24

25

Te
st 

Er
ro

r (
%

)

0 25 100 500 2K 10K
Rewinding Iteration (log)

6

8

10

Te
st 

Er
ro

r (
%

)

0 25 100 500 2K 10K
Rewinding Iteration (log)

8.5

9.0

9.5

10.0

Te
st 

Er
ro

r (
%

)

0 25 100 500 2K 10K
Rewinding Iteration (log)

7

8

9

10

Te
st 

Er
ro

r (
%

)

IMP
Random Pruning
Random Reinit
Unpruned Network

Figure 7: The instability of subnetworks that are created from the state of the full network at iteration
k and trained on different data orders from there. Each line is the mean and standard deviation across
three initializations and three data orders (nine samples in total). The gray lines are the accuracies
of the full networks to one standard deviation. Percents are percents of weights remaining.

the sparse subnetworks that result from training unpruned networks for k steps and subsequently
applying pruning masks (and possibly reinitializing). We find these masks by running IMP with
rewinding: we train the full network to completion, prune, and rewind each remaining weight to its
value at step k. We then run standard instability analysis on these sparse networks from iteration k.

The blue dots in Figure 7 show the instability (rows 1 and 3) and test accuracy (rows 2 and 4) when
rewinding IMP subnetworks to various points early in training. Those subnetworks that are unstable
when rewound to iteration 0 (Resnet-20, VGG-16, Resnet-50, Inception-v3) become stable when
rewound to points slightly later in training. IMP subnetworks of Resnet-20, VGG-16, and Resnet-50
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become stable at about iteration 500 (0.8% into training), iteration 1000 (1.6%), and epoch 4 (4.4%).
Stability and accuracy of these sparse IMP subnetworks continue to correlate. Test error decreases
alongside instability, with IMP subnetworks reaching the performance of the unpruned networks
(gray lines) approximately when they become stable. IMP subnetworks that were matching and
stable at iteration 0 generally remain so at other rewinding points, although Resnet-20 low and
VGG-16 low experience increased test error at the latest rewinding points we consider.

IMP subnetworks become stable at least as early as the unpruned networks (red) and much earlier
for Resnet-50 (epoch 4 vs. 18). In contrast, randomly pruned subnetworks (orange) and randomly
reinitialized IMP subnetworks (green) are unstable and non-matching at every rewinding iteration
(with Lenet again the sole exception). We believe these subnetworks will eventually become stable
later on; in some cases, instability of randomly pruned subnetworks decreases at the latest rewinding
points we consider. This behavior suggests a potential broader link between subnetwork stability and
accuracy: IMP subnetworks are matching and maintain or improve upon the stability behavior of
the full networks, while other subnetworks are less accurate and become stable later if at all.

4.3 DISCUSSION

The “lottery ticket hypothesis.” The lottery ticket hypothesis (Frankle & Carbin, 2019) conjectures
that any “randomly initialized, dense neural network contains a subnetwork that—when trained in
isolation—matches the accuracy of the original network.” The authors support this hypothesis by
using IMP to find matching subnetworks at initialization in small vision networks. However, follow-
up studies show (Liu et al., 2019; Gale et al., 2019) and we confirm that IMP does not find matching
subnetworks in more challenging settings. We use instability analysis to distinguish the successes
and failures of IMP as identified in previous work. In doing so, we make a new connection between
the lottery ticket hypothesis and the optimization dynamics of neural networks.

Moreover, by augmenting IMP with rewinding, we show how to find sparse, matching subnetworks
in much larger settings than in previous work, albeit with subnetworks from early in training rather
than at initialization. Our technique has already been adopted to create trainable subnetworks that
transfer to new settings (Morcos et al., 2019), as a pruning method in its own right (Anonymous,
2020a), and to further study the lottery ticket hypothesis (Anonymous, 2020e;c;g;f;b).

Pruning. On larger-scale networks and tasks, we find that IMP subnetworks at extreme sparsities
only become stable and matching after the full network has been trained for a small number of
iterations or epochs. Recent methods have explored pruning neural networks at initialization (Lee
et al., 2019; Anonymous, 2020d), but our results suggest that the best time to prune may be slightly
later in training. By that same token, most modern pruning methods only begin to sparsify networks
late in training or after training (Han et al., 2015; Gale et al., 2019; He et al., 2018). In these cases,
the fact that there are matching subnetworks early in training suggests that there is potentially a
substantial unexploited opportunity to prune neural networks much earlier than current methods.

SGD noise and overparameterization. While dense neural networks train to full accuracy regard-
less of their stability, sparse networks in our experiments are only matching when they are stable.
Although our results speak only to specific kinds of sparse networks (IMP subnetworks and our
randomly reinitialized and randomly pruned baselines) at particularly extreme sparsity levels, they
suggest a possible broader relationship between instability and accuracy of sparse networks. It is
possible that sparse networks, which have fewer parameters than their dense counterparts, are less
robust to instability during the early part of training.
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Figure 8: At all sparsity levels, the maximum test accuracy achieved by IMP subnetworks for any
rewinding iteration (red). Also includes the test accuracy of IMP subnetworks with k = 0, randomly
pruned subnetworks, and randomly reinitialized IMP subnetworks with k = 0 at all levels of sparsity.
The black line is the accuracy of the unpruned network. Each line is the mean and standard deviation
across three initializations.

A SELECTING EXTREME SPARSITY LEVELS FOR IMP SUBNETWORKS

In this appendix, we describe how we select the sparsity level that we examine for each IMP sub-
network. For each network and hyperparameter configuration, our goal is to study the most extreme
sparsity level at which matching subnetworks are known to exist early in training. To do so, we use
IMP to generate subnetworks at many different sparsities for many different rewinding iterations
(specifically, all of the rewinding iterations Figure 7). We then select the most extreme sparsity level
at which any rewinding iteration produces a matching subnetwork.

Figure 8 plots the maximum accuracy found by any rewinding iteration in red. The black line is
the accuracy of the unpruned network to one standard deviation. For each network, we select the
most extreme sparsity for which the red and black lines overlap. As a basis for comparison, Figure
8 also includes all of the other lines from Figure 5: the result of performing IMP with k = 0 (blue
line), random pruning (orange line), and random reinitialization of the IMP subnetworks with k = 0
(green line).

Note that, for computational reasons, Resnet-50 and Inception-v3 are pruned using one-shot prun-
ing, meaning the networks are pruned to the target sparsity all at once. All other networks are pruned
using iterative pruning, meaning the networks are pruned by 20% after each iteration of IMP until
they reach the target sparsity.

B INTERPOLATION DATA FOR UNPRUNED NETWORKS

In this appendix, we present the interpolation data for the instability analysis on the unpruned net-
works in Section 3.
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B.1 TEST ERROR

These graphs plot the test error when linearly interpolating for select values of k for the networks in
Figure 3.
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B.2 TRAIN ERROR

These graphs plot the train error when linearly interpolating for select values of k for the networks
in Figure 3.
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C INTERPOLATION DATA FOR SPARSE NETWORKS

In this appendix, we present the interpolation data for the instability analysis on the sparse networks
in Section 4.

C.1 TEST ERROR OF IMP SUBNETWORKS

These graphs plot the test error when linearly interpolating for select values of k for the IMP sub-
networks in Figure 7. Percents in all figures are densities—the percent of weights remaining after
pruning.
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C.2 TEST ERROR OF RANDOMLY PRUNED SUBNETWORKS

These graphs plot the test error when linearly interpolating for select values of k for the randomly
pruned subnetworks in Figure 7. Percents in all figures are densities—the percent of weights re-
maining after pruning.
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C.3 TEST ERROR OF RANDOMLY REINITIALIZED IMP SUBNETWORKS

These graphs plot the test error when linearly interpolating for select values of k for the randomly
reinitialized IMP subnetworks in Figure 7. Percents in all figures are densities—the percent of
weights remaining after pruning.
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D L2 DISTANCES FOR UNPRUNED NETWORKS

In this appendix, we present the L2 distances between pairs of full networks trained on different data
orders from iteration k, the experiment in Section 3. This data parallels Figure 3. We do not yet
have L2 distance data for the ImageNet networks, although we plan to add it to the next version of
the paper.
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The L2 distance between the networks decreases linearly as k increases. Interestingly, we observe
no clear relationship between the L2 distance and the network instability. For example, there does
not appear to be a critical L2 distance threshold that is crossed when the networks become stable.
This is in contrast to our observations in Appendix E, where L2 distance between IMP networks
correlates with instability, dropping to a lower value when the subnetworks become stable.

E L2 DISTANCES FOR SPARSE NETWORKS

In this appendix, we present the L2 distances between pairs of sparse networks trained on different
data orders from iteration k, the experiment in Section 4. This data parallels Figure 7. We do not yet
have L2 distance data for the ImageNet networks, although we plan to add it to the next version of
the paper.
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The L2 distance between IMP subnetworks follows the same pattern as instability. When the net-
work is unstable, the L2 distance plateaus at a higher level, the same level as randomly reinitialized
and randomly pruned networks. As instability decreases, L2 distance also decreases. When the
subnetwork becomes stable, L2 distance plateaus at a lower level than the randomly reinitialized
and randomly pruned networks. Importantly, this lower level is still non-zero. These results con-
trast with thise in Appendix D, where we do not observe a relationship between instability and L2

distance between the full networks.
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