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ABSTRACT

In structured output prediction tasks, labeling ground-truth training output is often
expensive. However, for many tasks, even when the true output is unknown,
we can evaluate predictions using a scalar reward function, which may be easily
assembled from human knowledge or non-differentiable pipelines. But searching
through the entire output space to find the best output with respect to this reward
function is typically intractable. In this paper, we instead use efficient truncated
randomized search in this reward function to train structured prediction energy
networks (SPENs), which provide efficient test-time inference using gradient-
based search on a smooth, learned representation of the score landscape, and have
previously yielded state-of-the-art results in structured prediction. In particular,
this truncated randomized search in the reward function yields previously unknown
local improvements, providing effective supervision to SPENs, avoiding their
traditional need for labeled training data.

1 INTRODUCTION

Structured output prediction tasks are common in computer vision, natural language processing,
robotics, and computational biology. The goal is to find a function from an input vector x to multiple
coordinated output variables y. For example, such coordination can represent constrained structures,
such as natural language parse trees, foreground-background pixel maps in images, or intertwined
binary labels in multi-label classification.

Structured prediction energy networks (SPENs) (Belanger & McCallum, 2016) are a type of energy-
based model (LeCun et al., 2006) in which inference is done by gradient descent. SPENs learn an
energy landscape E(x,y) on pairs of input x and structured outputs y. In a successfully trained
SPEN, an input x yields an energy landscape over structured outputs such that the lowest energy
occurs at the target structured output y∗. Therefore, we can infer the target output by finding the
minimum of energy function E conditioned on input x: y∗ = argminy E(x,y).

In SPENs we parameterize E(x,y) with a deep neural network—providing not only great represen-
tational power over complex structures but also machinery for conveniently obtaining gradients of
the energy. Crucially, this then enables inference over y to be performed by gradient descent on the
energy function. Although this energy function is non-convex, gradient-descent inference has been
shown to work well in practice, with successful applications of gradient-based inference to semantic
image segmentation (Gygli et al., 2017), semantic role labeling (Belanger et al., 2017), and neural
machine translation (Hoang et al., 2017) (paralleling successful training of deep neural networks with
non-convex objectives).

Traditional supervised training of SPENs requires knowledge of the target structured output in
order to learn the energy landscape, however such labeled examples are expensive to collect in
many tasks, which suggests the use of other cheaply acquirable supervision. For example, Mann
and McCallum (2010) use labeled features instead of labeled output, or Ganchev et al. (2010) use
constraints on posterior distributions of output variables, however both directly add constraints as
features, requiring the constraints to be decomposable and also be compatible with the underlying
model’s factorization to avoid intractable inference.

Alternatively, scalar reward functions are another widely used source of supervision, mostly in
reinforcement learning (RL), where the environment evaluates a sequence of actions with a scalar
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reward value. RL has been used for direct-loss minimization in sequence labeling, where the reward
function is the task-loss between a predicted output and target output (Bahdanau et al., 2017; Maes
et al., 2009), or where it is the result of evaluating a non-differentiable pipeline over the predicted
output (Sharma et al., 2018). In these settings, the reward function is often non-differentiable or has
low-quality continuous relaxation (or surrogate) making end-to-end training inaccurate with respect
to the task-loss.

Interestingly, we can also rely on easily accessible human domain-knowledge to develop such reward
functions, as one can easily express output constraints to evaluate structured outputs (e.g., predicted
outputs get penalized if they violate the constraints). For example, in dependency parsing each
sentence should have a verb, and thus parse outputs without a verb can be assigned a low score.

More recently, Rooshenas et al. (2018) introduce a method to use such reward functions to supervise
the training of SPENs by leveraging rank-based training and SampleRank (Rohanimanesh et al.,
2011). Rank-based training shapes the energy landscape such that the energy ranking of alternative y
pairs are consistent with their score ranking from the reward function. The key question is how to
sample the pairs of ys for ranking. We don’t want to train on all pairs, because we will waste energy
network representational capacity on ranking many unimportant pairs irrelevant to inference; (nor
could we tractably train on all pairs if we wanted to). We do, however, want to train on pairs that are in
regions of output space that are misleading for gradient-based inference when it traverses the energy
landscape to return the target. Previous methods have sampled pairs guided by the thus-far-learned
energy function, but the flawed, preliminarily-trained energy function is a weak guide on its own.
Moreover, reward functions often include many wide plateaus containing most of the sample pairs,
especially at early stages of training, thus not providing any supervision signal.

In this paper we present a new method providing efficient, light-supervision of SPENs with margin-
based training. We describe a new method of obtaining training pairs using a combination of the
model’s energy function and the reward function. In particular, at training time we run the test-time
energy-gradient inference procedure to obtain the first element of the pair; then we obtain the second
element using randomized search driven by the reward function to find a local true improvement over
the first.

Some previous research has also used similar margin-based loss functions Peng et al. (2017); Iyyer
et al. (2017), but with greedy beam search over predicated variables, unlike a SPEN, which searches
the joint space via a learned representation of the energy using efficient gradient-descent inference.

Using this search-guided approach we have successfully performed lightly-supervised training of
SPENs with reward functions and improved accuracy over previous state-of-art baselines.

2 SEARCH-GUIDED TRAINING

Search-guided training of SPENs relies on a randomized search procedure S(x,ys) which takes the
input x and starting point ys and returns a successor point yn such that

R(x,yn) > R(x,ys) + δ, (1)

where δ > 0 is the search margin. The choice of search margin δ is based on features of the reward
function (e.g. range and plateaus) and indicates the minimum local improvement over the starting
point ys. This also impacts the complexity of search, as smaller improvements are more accessible
than larger improvements. In this work we use a simple randomized search: starting from the
gradient-descent inference output, visiting variables in a random order, uniformly sampling a new
state for each, and returning the new sample as soon as the reward increases more than the margin.
We truncate the randomized search by bounding the number of times that it can query the reward
function to evaluate structured outputs for each input x at every training step. As a result, the search
procedure may not be able to find a local improvement, in which case we simply ignore that training
example in the current training iteration. However, the next time that we visit an ignored example,
the inference procedure may provide better starting points or truncated randomized search may find
a local improvement. In practice we observe that, as training continues, the truncated randomized
search finds local improvements for every training point.

In addition, if readily available, domain knowledge may be injected into the search to better explore
the reward function, which is the target of our future work.
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Figure 1: Search-guided training: the solid and dashed lines show a schematic landscape of energy
and reward functions, respectively. The blue circles indexed by yi represent the gradient-descent
inference trajectory with five iterations over the energy function. Dashed arrows represent the
mapping between the energy and reward functions, while the solid arrows show the direction of
updates.

Intuitively, we expect that gradient-descent inference returns some ŷ as an approximate solution
of argminy Ew(x,y). Via the search procedure, however, we find some S(x, ŷ) which is a better
solution than ŷ with respect to the reward function. Therefore, we have to train the SPEN model such
that, conditioning on x, gradient-descent inference returns S(x, ŷ), thus guiding the model toward
predicting a better output at each step. Figure 1 depicts an example of such a scenario.

For the gradient-descent inference to find ŷn = S(x, ŷ), the energy of (x, ŷn) must be lower than
the energy of (x, ŷ) by margin M . We define the margin using scaled difference of their rewards:

M(x, ŷ, ŷn)) = α(R(x, ŷn)−R(x, ŷ)), (2)

where α > 1 is a task-dependent scalar. Given the pairs and the margin, we can use standard
margin-based training as described in Algorithm 1.

Algorithm 1 Search-guided training of SPENs
D ← unlabeled mini-batch of training data
R(., .)← reward function
Ew(., .)← input SPEN
repeat
L ← 0
for each x in D do

ŷ← argminy Ew(y,x) //using gradient-descent inference
ŷn← S(x, ŷ) //search in reward function R starting from ŷ
ξw(x)←M(x, ŷ, ŷn)− Ew(x, ŷ) + Ew(x, ŷn)
L ← L+max(ξw(x), 0)

end for
L ← L+ c||w||2
w← w − λ∇wL //λ is learning rate

until convergence

3 CITATION FIELD EXTRACTION

Citation field extraction is a structured prediction task in which the structured output is a sequence
of tags such as Author, Editor, Title, and Date that distinguishes the segments of a citation text. We
used the Cora citation dataset (Seymore et al., 1999) including 100 labeled examples as the validation
set and another 100 labeled examples for the test set. We discard the labels of 300 examples in the
training data and added to them another 700 unlabeled citation text acquired from the web.

The citation text, including the validation set, test set, and unlabeled data, have the maximum length
of 118 tokens, which can be labeled with one of 13 possible tags. We fixed the length input data by
padding all citation text to the maximum citation length in the dataset. We report token-level accuracy
measured on non-pad tokens.
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Table 1: Token-level accuracy for citation-field extraction.

Method Accuracy Average Inference
reward Time (sec.)

GE 37.3% N/A -
Iterative Beam Search
(Restart=10)
K=1 30.5% -6.545 159
K=2 35.7% -4.899 850
K=5 39.3% -4.626 2,892
K=10 39.0% -4.091 6,654
PG
+EMA baseline 41.8% -13.111 < 1
+parametric baseline 42.0% -9.232 < 1
DVN 29.6% -30.303 < 1
R-SPEN 48.3% -9.402 < 1
SG-SPEN 50.3% -10.101 < 1

Our knowledge-based reward function is equivalent to Rooshenas et al. (2018), which takes input
citation text and predicated tags and evaluates the consistency of the prediction with about 50 given
rules describing the human domain-knowledge about citation text.

We compare SG-SPEN with R-SPEN (Rooshenas et al., 2018), iterative beam search with ran-
dom initialization, deep value networks (DVNs) (Gygli et al., 2017), generalized expectation
(GE) (Mann & McCallum, 2010), and recurrent neural networks trained using policy gradient
methods (PG) (Williams, 1992). For PG, to reduce the variance of gradients, we used two different
baseline models: exponential moving average (EMA) baseline and parametric baseline.

SG-SPEN, R-SPEN, and DVN have similar energy model, which consists of a text CNN (Kim, 2014)
over joint representation of token embedding and the given tag distribution, followed by a 2-layer
multi-layer perceptron.

Our reward functions of citation-field extraction dose not have access to any labeled data, and in none
of our experiments the models have access to any labeled data for training or pretraining.

We reported the token-level accuracy of SG-SPEN and the other baselines in Table 1. SG-SPEN
achieves highest performance in this task with 50.3% token-level accuracy. We notice that using
exhaustive search through a noisy and incomplete reward function may not improve the accuracy
despite finding structured outputs with higher scores.

As Table 1 indicates, the reward values for the iterative beam search is better than the reward values
of both R-SPEN and SG-SPEN training methods, showing that R-SPEN and SG-SPEN training help
SPENs to generalize the reward function using the unlabeled data. When the reward function is not
accurate, using unlabeled data facilitates training models such as SPENs to generalize the reward
function, while providing efficient test-time inference.

DVN struggles in the absence of labeled data, and having an inaccurate reward function exacerbates
the situation since it tries to match the energy values with the reward values for the generated
structured outputs by the gradient-descent inference. Moreover, DVN learns best if it can evaluate the
reward function on relaxed continuous structured outputs, which is not available for the human-written
reward function in this scenario.

4 CONCLUSION

We introduce SG-SPEN to enable training of SPENs using supervision provided by reward functions,
including human-written functions or complex non-differentiable pipelines. The key ingredient
of our training algorithm is sampling from reward function through truncated randomized search,
which is used to generate informative optimization constraints. These constraints gradually guide
gradient-descent inference toward finding better prediction according to reward function. We show
that SG-SPEN trains models that achieve better performance compared to previous methods.
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