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ABSTRACT

Semi-Supervised Learning (SSL) approaches have been an influential framework
for the usage of unlabeled data when there is not a sufficient amount of labeled
data available over the course of training. SSL methods based on Convolutional
Neural Networks (CNNs) have recently provided successful results on standard
benchmark tasks such as image classification. In this work, we consider the general
setting of SSL problem where the labeled and unlabeled data come from the same
underlying probability distribution. We propose a new approach that adopts an
Optimal Transport (OT) technique serving as a metric of similarity between discrete
empirical probability measures to provide pseudo-labels for the unlabeled data,
which can then be used in conjunction with the initial labeled data to train the
CNN model in an SSL manner. We have evaluated and compared our proposed
method with state-of-the-art SSL algorithms on standard datasets to demonstrate
the superiority and effectiveness of our SSL algorithm.

1 INTRODUCTION

Recent developments in CNNs have provided promising results for many applications in machine
learning and computer vision Krizhevsky et al. (2012); Zagoruyko & Komodakis (2016). However,
the success of CNN models requires a vast amount of well-annotated training data, which is not
always feasible to perform manually Krizhevsky et al. (2012). There are essentially two different
solutions that are usually used to deal with this problem: 1) Transfer Learning (TL) and 2) Semi-
Supervised Learning (SSL). In TL methods Tan et al. (2018), the learning of a new task is improved
by transferring knowledge from a related task which has already been learned. SSL methods Oliver
et al. (2018), however, tend to learn discriminative models that can make use of the information from
an input distribution that is given by a large amount of unlabeled data. To make use of unlabeled
data, it is presumed that the underlying distribution of data has some structure. SSL algorithms make
use of at least one of the following structural assumptions: continuity, cluster, or manifold Chapelle
et al. (2009). In the continuity assumption, data which are close to each other are more likely to
belong to the same class. In the cluster assumption, data tends to form discrete clusters, and data
in the same cluster are more likely to share the same label. In the manifold assumption, data lies
approximately on a manifold of much lower dimension than the input space which can be classified
by using distances and densities defined on the manifold. Thus, to define a natural similarity distance
or divergence between probability measures on a manifold, it is important to consider the geometrical
structures of the metric space in which the manifold exists Bronstein et al. (2017).

There are two principal directions that model geometrical structures underlying the manifold on
which the discrete probability measures lie. The first direction is based on the principal of invariance,
which relies on the criterion that the geometry between probability measures should be invariant under
invertible transformations of random variables. This perspective is the foundation of the theory of
information geometry, which operates as a base for the statistical inference Amari (2016). The second
direction is established by the theory of Optimal Transport (OT), which exploits prior geometric
knowledge on the base space in which random variables are valued Villani (2008). Computing OT or
Wasserstein distance between two random variables equals to achieving a coupling between these
two variables that is optimal in the sense that the expectation of the transportation cost between the
first and second variables is minimal. The Wasserstein distance between two probability measures
considers the metric properties of the base space on which a structure or a pattern is defined. However,
traditional information-theoretic divergences such as the Hellinger divergence and the Kullback-
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Leibler (KL) divergence are not able to properly capture the geometry of the base space. Thus, the
Wasserstein distance is useful for the applications where the structure or geometry of the base space
plays a significant role Amari & Nagaoka (2007). In this work, similar to other SSL methods, we
make a structural assumption about the data in which the data are represented by a CNN model.
Inspired by the Wasserstein distance, which exploits properly the geometry of the base space to
provide a natural notion of similarity between the discrete empirical measures, we use it to provide
pseudo-labels for the unlabeled data to train a CNN model in an SSL fashion. Specifically, in our
SSL method, labeled data belonging to each class is a discrete measure. Thus, all the labeled data
create a measure of measures and similarly, the pool of unlabeled data is also a measure of measures
constructed by data belonging to different classes. Thus, we design a measure of measures OT plan
serving as a similarity metric between discrete empirical measures to map the unlabeled measures
to the labeled measures based on which, the pseudo-labels for the unlabeled data are inferred. Our
SSL method is based on the role of Wasserstein distances in the hierarchical modeling Nguyen et al.
(2016). It stems from the fact that the labeled and unlabeled datasets hierarchically create a measure
of measures in which each measure is constructed by the data belonging to the same class.

Computing the exact Wasserstein distance, however, is computationally expensive and usually is
solved by a linear program (Appendix A and D ). Cuturi (2013) introduced an interesting method
which relaxes the OT problem using the entropy of the solution as a strong convex regularizer. The
entropic regularization provides two main advantageous: 1) The regularized OT problem relies on
Sinkhorns algorithm Sinkhorn (1964) that is faster by several orders of magnitude than the exact
solution of the linear program. 2) In contrast to exact OT, the regularized OT is a differentiable
function of their inputs, even when the OT problem is used for discrete measures. These advantages
have caused that the regularized OT to receive a lot of attention in machine learning applications such
as generating data Arjovsky et al. (2017); Gulrajani et al. (2017), designing loss function Frogner
et al. (2015), domain adaptation Damodaran et al. (2018); Courty et al. (2017), clustering Cuturi &
Doucet (2014); Mi et al. (2018) and low-rank approximation Seguy & Cuturi (2015).

2 RELATED WORK

Pseudo-Labeling is a simple approach whereby a model incorporates it’s own predictions on unla-
beled data to obtain additional information during the training Rosenberg et al. (2005); Lee (2013);
Rasmus et al. (2015). The main downside of these methods is that they are unable to correct their
own mistakes where predictions of the model on unlabeled data are confident but incorrect. In such
a case, the erroneous data not only can not contribute to the training, but the error of the models is
amplified during the training as well. This effect is aggravated where the domain of the unlabeled
data is different from that of labeled data. Note that pseudo-labeling in Lee (2013) is similar to
entropy regularization Pereyra et al. (2017), in the sense that it forces the model to provide higher
confidence predictions for unlabeled data. However, it differs because it only forces these criteria on
data which have a low entropy prediction due to the threshold of confidence.

Consistency Regularization can be considered as a way of using unlabeled data to explore a smooth
manifold on which all of the data points are embedded Belkin et al. (2006). This simple criterion
has provided a set of methods that are currently considered as state of the art for the SSL challenge.
Some of these methods are stochastic perturbations Sajjadi et al. (2016b), π-model Laine & Aila
(2016), mean teacher Tarvainen & Valpola (2017), and Virtual Adversarial Training (VAT) Miyato
et al. (2018). The original idea behind stochastic perturbations and π-model was first introduced
in Bachman et al. (2014) and has been referred to as pseudo-ensembles. The pseudo-ensembles
regularization techniques are usually designed such that the prediction of the model ideally should
not change significantly if the data given to the model is perturbed; in other words, under realistic
perturbations of a data point x (x→ x′), output of the model fθ(x) should not change significantly.
This goal is achieved by adding a weighted loss term such as d(fθ(x), fθ(x

′)) to the total loss of the
model fθ(x), where d(., .) is mean squared error or Kullback-Leibler divergence which measures a
distance between outputs of the prediction function. The main problem of pseudo-ensemble methods,
including π-model is that they rely on a potentially unstable target prediction, which can immediately
change during the training.

To address this problem, two methods, including temporal ensembling Laine & Aila (2016) and
mean teacher Tarvainen & Valpola (2017), were proposed to obtain a more stable target output f ′θ(x).
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Specifically, temporal ensembling uses an exponentially accumulated average of outputs, fθ(x), to
make the target output smooth and consistent. Inspired by this method, mean teacher instead uses
a prediction function which is parametrized by an exponentially accumulated average of θ during
the training. Like the π-model, mean teacher adds a mean squared error loss d(fθ(x), f ′θ(x)) as
a regularization term to the total loss function for training the network. It has been shown that
mean teacher outperforms temporal ensembling in practice Tarvainen & Valpola (2017). Contrary
to stochastic perturbation methods which rely on constructing fθ(x) stochastically, VAT in the first
step approximates a small perturbation r to add it to x which significantly changes the prediction
of the model fθ(x). In the next step, a consistency regularization technique is applied to minimize
d(fθ(x), fθ(x+ r)) with respect to θ which is the parameters of the model.

Entropy Minimization methods use a loss term which is applied on the unlabeled data to force
the model fθ(x) to produce confident predictions (i.e., low-entropy) for all of the samples, re-
gardless of what the actual labels are Grandvalet & Bengio (2005). For example, by assuming
the softmax layer of a CNN has c outputs, the loss term applied on unlabeled data is as follows:
−
∑c
i=1 f

(i)
θ (x) log f

(i)
θ (x). Ideally, this class of methods penalizes the decision boundary that passes

near the data points, while they instead force the model to provide a high-confidence prediction
Grandvalet & Bengio (2005). It has been shown that entropy minimization on its own, can not
produce competitive results Sajjadi et al. (2016a). However, entropy minimization can be used in
conjunction with VAT (i.e., EntMin VAT) to provide state of the art results in which VAT assumes a
fixed virtual label prediction in the regularization d(fθ(x), fθ(x+ r)) Miyato et al. (2018).

3 MEASURE OF MEASURES OT

For any subset θ ⊂ Rc, assume that S(θ) represents the space of Borel probability measures on
θ. The Wasserstein space of order k ∈ [1,∞) of probability measures on θ is defined as follows:
Sk(θ) = {F ∈ S(θ) :

∫
||x||kdF(x) < ∞}, where, ||.|| is the Euclidean distance in Rc. Let

Π(P,Q) denote the set of all probability measures on θ× θ which have marginals P andQ; then the
k-th Wasserstein distance between P and Q in Sk(θ), is defined as follows Villani (2008):

Wk(P,Q) =

(
inf

π∈Π(P,Q)

∫
θ2
||x− x′||kdπ(x, x′)

)1/k

, (1)

where x ∼ P , x′ ∼ Q and k ≥ 1. Explicitly, Wk(P,Q) is the optimal cost of moving mass from P
to Q, where the cost of moving mass is proportional to the Euclidean distance raised to the power k.

In Eq. (1), the Wasserstein between two probability measures was defined. However, using a recursion
of concepts, we can talk about measure of measures in which a cloud of measures (M′) is transported
to another cloud of measures (M). We define a relevant distance metric on this abstract space as
follows: let the space of Borel measures on Sk(θ) be represented by Sk(Sk(θ)); this space is also a
Polish, complete and separable metric space as Sk(θ) is a Polish space (cf. section. 3 in Nguyen et al.
(2016)). It will be endowed with a Wasserstein metric W ′k(.) of order k that is induced by a metric
Wk(.) on Sk(θ) as follows: for anyM′ ∈ Sk(Sk(θ)) andM∈ Sk(Sk(θ))

W ′k(M′,M) =

(
inf

π∈Π(M′,M)

∫
Pk(θ)×Pk(θ)

W k
k (Q,P)dπ(Q,P)

)1/k

, (2)

where, Q ∼M′, P ∼M, and Π(M′,M) is the set of all probability measures on Sk(θ)× Sk(θ)
that have marginalsM′ andM. Note that the existence of an optimal solution, π ∈ Π(M′,M),
is always guaranteed (Appendix E). In words, W ′k(M′,M) corresponds to the optimal cost of
transporting mass fromM′ toM , where the cost of moving unit mass in its space of support, Sk(θ),
is proportional to the power k of the Wasserstein distance Wk(.) in Sk(θ).

4 MATCHING MEASURES VIA MEASURE OF MEASURES OT FOR SSL

The goal of our algorithm is to use OT to provide pseudo-labels for the unlabeled data to train a CNN
model in an SSL manner. The basic premise in our algorithm is that the discrepancy between two
discrete empirical measures which come from the same underlying distribution is expected to be less
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than the case where these measures come from two different distributions. In this work, since we
make a structural assumption about the data and assume that the labeled and unlabeled data belonging
to the same class come from the same distribution (i.e., general setting in SSL), we leverage OT
metric to map similar measures from two measure of measures. This is because OT exploits well the
structure or geometry of the underlying metric space to provide a natural notion of similarity between
empirical measures in the metric space. Here, labeled data belonging to the same class is a measure.
Thus, all the initially labeled data construct a measure of measures and similarly, all the unlabeled
data is also a measure of measures constructed by data from different classes. Thus, we design a
measure of measures OT plan to map the unlabeled measures to the similar labeled measures based
on which, pseudo-labels for the unlabeled data in each measure are inferred. The mapping between
the labeled and unlabeled measures based on the measure of measures OT is formulated as follows:

Given an image zi ∈ Rm×n from the either labeled or unlabeled dataset, the CNN acts as a function
f(w, zi) : Rm×n → Rc with the parameters w that maps zi to a c-dimensional representation, where
c is number of the classes. Assume that X = {x1, ..., xm} and X ′ = {x′1, ..., x′m} are the sets of
c-dimensional outputs represented by the CNN for the labeled and unlabeled images, respectively.
Let Pi = 1/ni

∑ni

j=1 δxj denote a discrete measure constructed by the labeled data belonging to the
i-th class, where δxj

is a Dirac unit mass on xj and ni is number of the data within the i-th class.
Thus, all the labeled data construct a measure of measuresM =

∑c
i=1 αiδPi

, where αi = ni/m
represents amount of the mass in the measure Pi and δPi

is a Dirac unit mass on the measure Pi.
Similarly unlabeled data construct a measure of measuresM′ =

∑c
j=1 βjδQj

in that each measure
Qi, is created by the unlabeled data belonging to the unknown but the same class, where βj = n′j/m
is amount of the mass in the measure Qj and δQi

is a Dirac unit mass on Qj .
The goal of our SSL method is to use the OT to find a coupling between the measures inM′ and
M that is optimal in the sense that it has a minimal expected transportation cost. This is because
the transportation cost between two empirical measures which come from the same distribution
(data from the same class) is expected to be less than the case where these measures come from two
different distributions (data from different classes). Thus, we design an OT cost function defined in
Eq. (3) to obtain an optimal coupling between measures inM′ andM based on which the labels of
data in the unlabeled measures are inferred:

f(α, β,X) = min
T∈T (α,β)

〈
T,X

〉
− λE(T ), (3)

where T is the optimal coupling matrix in which T (i, j) indicates amount of the mass that should
be moved from Qi to Pj to provide an OT plan between M′ and M. Thus, if highest amount
of the mass from Qi is transported to Pk (i.e., Qi is mapped to Pk); the data belonging to the
measure Qi are annotated by k which is the label of the measure Pk. Variable X is the pairwise
similarity matrix between measures within M and M′ in which X(i, j) = Wk(Qi,Pj) which
is the Wasserstein distance between two clouds of data points Qi and Pj . Note that the ground
metric used for computing Wk(Qi,Pj) is the Euclidean distance. Moreover,

〈
T,M

〉
denotes the

Frobenius dot-product between T andX matrices, and T is transportation polytope defined as follows:
T (α, β) = {T ∈ Rc×c|T>1c = β, T1c = α} where 1c is a c-dimensional vector with all elements
equal to one. Finally, E(T ) is entropy of the optimal coupling matrix T which is used for regularizing
the OT, and λ is a hyperparameter that balances between two terms in Eq. (3). The optimal coupling
solution for the regularized OT defined in Eq. (3) is obtained by an iterative algorithm relied on
Sinkhorn algorithm (Appendix D).

5 WASSERSTEIN BARYCENTERS FOR EXPLORING UNLABELED MEASURES

In Sec. 4, we represented the pool of unlabeled data as a measure of measuresM′ =
∑c
j=1 βjδQj

in which each measure is constructed by data that belong to the same class. However, label of the
unlabeled data is unknown to allow us to identify these unlabeled measures. Moreover, CNN as a
classifier trained on a limited amount of the labeled data simply miss-classifies these unlabeled data.
In such a case, there is little option other than to use unsupervised methods, such as the clustering
to explore the unlabeled data belonging to the same class. This is because in structural assumption
based on the clustering, it is assumed that the data within the same cluster are more likely to share the
same label. Here, we leverage the Wasserstein metric to explore these unknown measures underlying
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the unlabeled data. Specifically, we relate the clustering algorithm to the problem of exploring
Wasserstein barycenter of the unlabeled data.

Wasserstein barycenter was initially introduced by Agueh & Carlier (2011). Given probability
measuresR1, ...,Rl ∈ S2(θ) for l ≥ 1, their Wasserstein barycenter R̃l,µ is defined as follows:

R̃l,µ = argmin
R∈S2(θ)

l∑
i=1

µiW
2
2 (R,Ri), (4)

where µi is the weight associated withRi. In the case whereR1, ...,Rl are discrete measures with
finite number of elements and the weights in µ are uniform, it is shown by Anderes et al. (2016) that
the problem of exploring Wasserstein barycenter R̃l,µ on the space of S2(θ) in (4) is recast to search
only on Or(θ) denoting as a set of probability measures with at most r support points in θ, where
r =

∑l
i=1 ei − l+ 1 and ei is the number of elements inRi for all 1 ≤ i ≤ l. Moreover, an efficient

algorithm for exploring local solutions of the Wasserstein barycenter problem over Or(θ) for some
r ≥ 1 has been studied by Cuturi & Doucet (2014).

Beside, the popular K-means clustering can be considered as solving an optimization problem that
comes up in the quantization problem, a simple but very practical connection Pollard (1982); Graf &
Luschgy (2007). The connection is as follows: Given m unlabeled data x′1, ..., x

′
m ∈ θ. Suppose that

these data are related to at most k clusters where k ≥ 1 is a given number. The K-means problem finds
the set Z containing at most k atoms θ1, ..., θk ∈ θ that minimizes: infZ:|Z|≤k

1
m

∑m
i=1 d

2(x′i, Z).

Let Q = 1
m

∑m
i=1 δx′

i
be a measure created by data x′1, ..., x

′
m. Then, infZ:|Z|≤k

1
m

∑m
i=1 d

2(x′i, Z)
is equivalent to explore a discrete measureH including finite number of support points and minimizing
the following objective: infH∈Ok(θ)

∑m
i=1W

2
2 (H,Q). This problem can also be thought of as a

Wasserstein barycenter problem when l = 1. From this prospective, as denoted by Cuturi & Doucet
(2014), the algorithm for finding the Wasserstein barycenters is an alternative for the popular Loyds
algorithm to find local minimum of the K-means objective. Thus, we adopt the algorithm introduced
in Cuturi & Doucet (2014) used for computing the Wasserstein barycenters of empirical probability
measures to explore the clusters underlying the unlabeled data (Appendix B).

6 TRAINING CNN IN SSL FASHION WITH PSEUDO-LABELS

Our SSL method finally leverages the unlabeled image data annotated by pseudo-labels obtained
from the OT in conjunction with the supervision signals of the initial labeled image data to train the
CNN classifier. Thus, we use the generic cross entropy as our discriminative loss function to train the
parameters of our CNN as follows: Let Xl be all of the labeled training data annotated by true labels
Y , and Xu be the unlabeled training data annotated by pseudo-labels Y ′, then the total loss function
L(.), used to train our CNN in an SSL fashion is as follows:

L(w,Xl,Xu,Y,Y ′) = Lc(w,Xl,Y) + αLc(w,Xu,Y ′), (5)

where w is parameters of the CNN, and Lc(.) denotes cross entropy loss function, and α is a
hyperparameter that balances between two losses obtained from the labeled and unlabeled data. For
training, we initially train the CNN using the labeled data as a warm up step, and then use OT to
provide pseudo-labels for the unlabeled data to train the CNN in conjunction with the initial labeled
data for the next epochs. Specifically, after training the CNN using the labeled data, in each epoch,
we select the same amount of initial labeled data from the pool of unlabeled data and then use OT to
compute their pseudo-labels; then, we train the CNN in a mini-batch mode. Our overall SSL method
is described in Algorithm 2 (Appendix C).

7 EXPERIMENTS AND SET-UP

For evaluating our SSL technique and comparing it with the other SSL algorithms, we follow
the concrete suggestions and criteria which are provided in Oliver et al. (2018). Some of these
recommendations are as follows: 1) we use a common CNN architecture and training procedure to
conduct a comparative analysis, because differences in CNN architecture or even implementation
details can influence the results. 2) We report the performance of a fully-supervised case as a baseline
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Methods # Labels Supervised ROT Soft-ROT π Model Mean Teacher VAT VAT + EntMin Pseudo-Label
CIFAR-10 4000 20.89(±0.47) 6.06(±0.12) 6.82(±0.17) 16.37(±0.63) 15.87(±0.28) 13.86(±0.27) 13.13(±0.39) 17.78(±0.57)

SVHN 1000 13.11(±0.53) 3.11(±0.45) 3.51(±0.49) 7.19(±0.27) 5.65(±0.47) 5.63(±0.20) 5.35(±0.19) 7.62(±0.29)

Table 1: Comparing deep SSL models using test error rate on SVHN, and CIFAR-10.

because the goal of SSL is to greatly outperform the fully-supervised settings. 3) We change the
amount of labeled and unlabeled data when reporting the performance of our SSL algorithm because
an ideal SSL method should remain efficient even with the small amount of labeled and additional
unlabeled data. 4) We also perform an analysis on realistic small validation sets. This is because,
in real-world applications, the large validation set is instead used as the training, therefore, an SSL
algorithm which needs heavy tuning on a per-task or per-model basis to perform well would not be
applicable if the validation sets are realistically small (This analysis is done in Appendix F).

For the first criterion, we have used the ’WRN-28-2’ model (i.e., ResNet with depth 28 and width
2) Zagoruyko & Komodakis (2016), including batch normalization Ioffe & Szegedy (2015) and
leaky ReLU nonlinearities Maas et al. (2013). We conducted our experiments on the widely used
CIFAR-10 Krizhevsky & Hinton (2009), and SVHN Netzer et al. (2011) datasets. Note that in our
experiments, we tackle the general SSL challenge where the labeled and unlabeled data come from
the same underlying distribution, and a given unlabeled data belongs to one of the classes in the
labeled set and therefor, there is no class distribution mismatch. Moreover, for each of these datasets,
we split the training set into two different sets of labeled and unlabeled data. For training, we use the
well-known Adam optimizer Kingma & Ba (2014) with the default hyperparameters values and a
learning rate of 3× 10−3 in our experiments, and all the experiments have been done on a NVIDIA
TITAN X GPU. The batch size in our experiments is set to 100. We have not used any form of early
stopping; however, we have consistently monitored the performance of the validation set and reported
test error at the point of lowest validation error. The stopping criteria for the Sinkhorn algorithm is
either maxIter = 10,000 or tolerance = 10−8, where maxIter is the maximum number of iterations
and tolerance is a threshold for the integrated stopping criterion based on the marginal differences. In
experiments, we followed the data augmentation and standard data normalization used in Oliver et al.
(2018). Specifically, for SVHN, we converted pixel intensity values of the images to floating point
values in the range of [-1, 1]. For the data augmentation, we only applied random translation by up to
2 pixels. We used the standard training and validation split, with 65,932 images for the training set
and 7,325 for the validation set. For CIFAR-10, we applied global contrast normalization. The data
augmentation on CIFAR-10 are random translation by up to 2 pixels, random horizontal flipping, and
Gaussian input noise with standard deviation 0.15. We used the standard training and validation split,
with 45,000 images for the training set and 5,000 images for the validation set.

7.1 FULLY SUPERVISED BASELINE AND DEEP SSL METHODS

Here, we consider the second criterion for evaluation of our SSL method. The purpose of SSL is
mainly to achieve a better performance when it uses the unlabeled data than the case where using
the labeled data alone. To ensure that our SSL model benefits from the unlabeled data during the
training, we report the error rate of the WRN model for both cases where we only use the labeled
data (i.e., Supervised in Table. 1), and the case where we leverage the unlabeled data by using the OT
technique during the training (i.e., ROT in Table. 1). Moreover, we have reported the performance of
other SSL algorithms in Table. 1 which also leverage the unlabeled data during the training. All of
the compared SSL methods use the common CNN model (i.e., ’WRN-28-2’) and training procedure
as suggested in the first criterion for the realistic evaluation of SSL models. The result of all SSL
methods reported in Table. 1 is the test error at the point of lowest validation error for tuning their
hyperparameters. For a fair evaluation with other SSL algorithms, we selected 4,000 samples of the
training set as the labeled data and the remaining as the unlabeled data for the CIFAR-10 dataset,
and we chose 1,000 samples of the training set as the labeled data and the rest as the unlabeled data
for the SVHN dataset. We ran our SSL algorithm over five times with different random splits of
labeled and unlabeled sets for each dataset, and we reported the mean and standard deviation of the
test error rate in Table. 1. The results in Table. 1 indicates that on both CIFAR-10 and SVHN, the
gap between the fully-supervised baseline and ROT is bigger than this gap for the other SSL methods.
This indicates the potential of our model for leveraging the unlabeled data in comparison to other
methods that also use the unlabeled data to improve the classification performance of a CNN model
in SSL fashion. Moreover, we trained our baseline WRN on the entire training set of CIFAR-10 and
SVHN and the test error over five runs are 4.23(±0.18) and 2.56(±0.04), respectively.
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Methods # Labels ROT Soft-ROT S-M-GNN S-S-GNN
CIFAR-10 4000 6.06(±0.12) 6.82(±0.17) 13.95(±0.53) 18.63(±0.32)

SVHN 1000 3.11(±0.45) 3.51(±0.49) 7.91(±0.34) 11.89(±0.48)

Table 2: Comparing test error over five runs between ROT and S-S-GNN and S-M-GNN baselines.
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Figure 1: a) and b) are the OT cost between the labeled and unlabeled measures during the training,
c) and d) indicate the number of accurate predicted labels for the remaining training unlabeled data.

Besides the particular manner in which we choose the one particular pseudo-label, we also use ”soft
pseudo-labels”. Essentially, instead of having the one-hot target in the usual classification loss (i.e.,
cross-entropy), we can have the row of the transport plan corresponding to the unlabeled data points
as the target. We used the soft pseudo-labels produced by OT to train the CNN. The comparison of
results in Table. 1 show that one-hot targets used in ROT outperforms the soft pseudo-labels used in
ROT. Why this is happening can be supported by SSL methods based on the entropy minimization
criterion. This set of methods force the model to produce confident predictions (i.e., low entropy
for output of the model). Similarly here, once we use one-hot targets, we encourage the network to
produce more confident predictions than when using soft-pseudo labels.

7.2 OT BASELINES FOR SSL

In this section, we compare ROT which is based on the measure of measure OT with two other
baselines. Both the baselines assign pseudo-labels for the unlabeled samples based on the greedy
nearest neighbor (GNN) search. The first baseline is sample to sample (S-S-GNN) case, where pseudo-
labels for the unlabeled data are obtained by GNN on the outputs of softmax layer. Specifically,
for each of the unlabeled sample, we annotate it with the label of the closest labeled sample in the
training set. The second baseline is sample to measure (S-M-GNN) case where, pseudo-labels of the
unlabeled samples are obtained based on the GNN between the unlabeled samples and the probability
measures constructed by initial labeled data in the training set. When transporting from a Dirac to
a probability measure, the OT problem (regularized or not) has a closed form. Essentially, there is
only one admissible coupling. Thus, in such a case, the Wasserstein distance between a sample to
a probability measure is simply computed as follows: Given an unlabeled Dirac δx′

i
and a labeled

measure Pj =
∑m
i=1 aiδxi

, then Wk(x′i,Pj) =
∑m
k=1 ak||x′i − xk||k.

The comparison of results between ROT, and these baselines on the SVHN and CIFAR-10 in Table. 2
shows the benefit of measure of measure OT for training a CNN in an SSL manner.

7.3 CONTRIBUTION OF OPTIMAL TRANSPORT TO DEEP SSL

Instead of using the CNN as a classifier to produce pseudo-labels for the unlabeled data, we used
the Wasserstein barycenters to cluster the unlabeled data. This allowed us to explore the unlabeled
measures that we could then match them with the labeled measures for pseudo-labeling. This was
because the CNN, as a classifier trained on a limited amount of the labeled data, simply miss-classifies
the unlabeled data. To compare these two different strategies for producing the pseudo-labels to train
the CNN classifier in an SSL fashion, we experimentally show how the clustering-based method
(i.e., ROT) can have a greater positive influence on the training of our CNN classifier. We report
the number of pseudo-labels which are accurately predicted by ROT. This result allows us to know
the level of accuracy of the pseudo-label obtained for the unlabeled data, which the CNN can then
benefit from during the training. We also report these results with that of predicted labels achieved
by the baseline CNN classifier (i.e., WRN) on the unlabeled training data. This comparison also
allows us to know whether or not the CNN classifier can benefit from our strategy for providing
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Figure 2: Test error of the ROT algorithm with varying amount of labeled and unlabeled data.

pseudo-labels during the training, because, otherwise, the WRN can simply use its own predicted
labels on unlabeled training data over the course of training. To indicate the efficiency of our method
during the training of the CNN, we changed the number of initial labeled data in the training set and
reported the number of accurately predicted pseudo-labels by the baseline WRN, and ROT on the
remaining unlabeled training data. Fig. 2(c) and Fig. 1(d) show that, for both CIFAR and SVHN
datasets, the labels predicted by ROT on the unlabeled training data are more accurate than the
WRN, which means that the entire CNN network can better benefit from the ROT strategy than the
case where it is trained solely by its own predicted labels. Moreover, we monitored the trend of
transportation cost between the labeled and unlabeled measures obtained by Eq. 3 during the training.
Fig. 2(a) and Fig. 2(b) show that the transportation cost is reduced as the images fed into the CNN
are represented by a better feature set during the training.

7.4 VARYING THE AMOUNT OF LABELED AND UNLABELED DATA

In Table. 2, we evaluated ROT for the case where we only use 4,000 and 1,000 initial labeled data for
the CIFAR-10 and SVHN, respectively. However, here, we explore that how varying the amount of
initial labeled data decreases the performance of ROT in the very limited label regime, and also at
which point our SSL method can recover the performance of training when using all of the labeled
data in the dataset. To do this evaluation, we gradually increase the number of labeled data during the
training and report the performance of our SSL method on the testing set. In this experiment, we ran
our SSL method over five times with different random splits of labeled and unlabeled sets for each
dataset, and reported the mean and standard deviation of the error rate in Fig. 2(a) and Fig. 2(b). The
results show that the performance of ROT tends to converge as the number of labels increases.

Another possibility for evaluating the performance of our SSL method is to change the number of
unlabeled data during the training. However, using the CIFAR-10 and SVHN datasets in isolation
puts an upper limit on the amount of available unlabeled data. Fortunately, in contrast to CIFAR-10,
SVHN has been distributed with the SVHN-extra dataset, which includes 531,131 additional digit
images and has also been previously used as unlabeled data for evaluation of different SSL methods
in Oliver et al. (2018). These additional data come from the same distribution as SVHN does, which
allows us to use them in our SSL framework. Fig. 2(c) shows the trend of test error for our SSL
algorithm on SVHN with 1,000 labels and changing amounts of unlabeled images from SVHN-extra
dataset. The results shows that, increasing the amount of unlabeled data improves the performance of
our SSL method, but this improvement is not significant when we provide 40k unlabeled data.

8 CONCLUSION

We proposed a new SSL method based on the optimal transportation technique in which unlabeled
data masses are transported to a set of labeled data masses, each of which is constructed by data
belonging to the same class. In this method, we found a mapping between the labeled and unlabeled
masses which was used to infer pseudo-labels for the unlabeled data so that we could use them to
train our CNN model. Finally, we experimentally evaluated our SSL method to indicate its potential
and effectiveness for leveraging the unlabeled data when labels are limited during the training.
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A BACKGROUND AND DEFINITIONS

Discrete Optimal Transport: For any r ≥ 1, let the probability simplex be denoted by ∆r =
{v ∈ Rr : vi ≥ 0,

∑r
i=1 vi = 1}, and also assume that U = {u1, ..., un} and V = {v1, ..., vm}

are two sets of data points in Rd such that U =
∑n
i=1 aiδui

and V =
∑m
i=1 biδvi ; the Wasserstein

distance Wk(U ,V) between two discrete measures U and V is the k-th root of the optimum of a
network flow problem known as the transportation problem Bertsimas & Tsitsiklis (1997). Note
that δui is the Dirac unit mass located on point ui, a and b are the weighting vectors which belong
to the probability simplex ∆n and ∆m, respectively. The transportation problem depends on the
two following components: 1) matrix M ∈ Rn×m+ which encodes the geometry of the data points
by measuring the pairwise distance between elements in U and V increased to the power k, 2)
the transportation polytope P (a, b) ∈ Rn×m+ which acts as a feasible set, characterized as a set of
n ×m non-negative matrices such that their row and column marginals are a and b, respectively.
This means that the transportation plan should satisfy the marginal constraints. In other words, let
1m be an m-dimensional vector with all elements equal to one, then the transportation polytope is
represented as follows: P (a, b) = {T ∈ Rn×m+ |T>1n = b, T1m = a}. Essentially, each element
T (i, j) indicates the amount of mass which is transported from i to j. Note that in the transportation
problem, the matrix M is also considered as a cost parameter such that M(i, j) = Dk(ui, vj) where
D(.) is the Euclidean distance.

Let
〈
T,M

〉
denote the Frobenius dot-product between T and M matrices. Then the discrete

Wasserstein distance Wk(U ,V) is formulated by an optimum of a parametric linear program g(.) on
a cost matrix M , and n×m number of variables parameterized by the marginals a and b as follows:

Wk(U ,V) = g(a, b,M) = min
T∈P (a,b)

〈
T,M

〉
. (6)

The Wasserstein distance in (6) is a Linear Program (LP) and a subgradient of its solution can be
calculated using Lagrange duality. The dual LP of (6) is formulated as follows:

d(a, b,M) = max
(α,β)∈CM

α>a+ β>b, (7)

where the polyhedron CM of dual variables is as follows:

CM = {(α, β) ∈ Rm+n
+ |αi + βj ≤M(i, j)}. (8)

Considering LP duality, the following equality is established d(a, b,M) = p(a, b,M) Bertsimas &
Tsitsiklis (1997). Computing the exact Wasserstein distance in (6) is time consuming. To alleviate this
problem, Cuturi (2013) has introduced an interesting method that regularizes (6) using the entropy of
the solution matrix H(T ), (i.e., min

〈
T,M

〉
+ γH(T )). It has been shown that if T ′γ is the solution

of the regularized version of (6) and α′γ is its dual solution in (7), then ∃!u ∈ Rn+, v ∈ Rm+ such
that the solution matrix is T ′γ = diag(u)Kdiag(v) and α′γ = − log(u)/γ + (log(u)

>1n)/(γn))1n
where, K = exp(−M/γ). The vectors u and v are updated iteratively between step 1 and 2 by using
the well-known Sinkhorn algorithm as follows: step 1)u = a/Kv and step 2)v = b/K>u, where/
denotes element-wise division operator Cuturi (2013).

B WASSERSTEIN BARYCENTER OF THE UNLABELED DATA

Given an image xn ∈ Rm×n from the either labeled or the unlabeled set, the CNN acts as a function
fn : Rm×n → Rc with the parameters θn that maps xn to a c-dimensional representation, where c is
the number of classes. Assume that Xu = {x′1, ..., x′n} is the set of CNN outputs extracted from the
unlabeled data. As noted in Cuturi & Doucet (2014), the Wasserstein barycenter of the unlabeled
set Xu is equivalent to Lloyd’s algorithm, where the maximization step (i.e., the assignment of the
weight of each data point to its closest centroid) is equivalent to the computation of α′ in dual form,
while the expectation step (i.e., the re-centering step) is equivalent to the update for centers Y using
the optimal transport, which in this case is equivalent to the trivial transportation plan that assigns the
weight (divided by n) of each unlabeled data in Xu to its closest neighbor in centers Y . Algorithm 1
shows the Wasserstein barycenter of the unlabeled data for clustering.
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Algorithm 1 : Wasserstein barycenter of the unlabeled Data
input: Xu ∈ Rc×n, b ∈ ∆n

1: initialize: Y ∈ Rc×k and a ∈ θ
2: while Y and a have not converged do
3: Maximization Step:
4: set â = ã = 1n/n
5: while not converged do
6: β = (t+ 1)/2, a← (1− β−1)â+ β−1ã
7: α← α′ dual optimal form d(a, b,MXuY )
8: ã← ã ◦ e−t0βα; ã← ã/ã>1n
9: â← (1− β−1)â+ β−1ã, t← t+ 1

10: end while
11: a← â
12: Expectation Step:
13: T ′ ← optimal coupling of p(a, b,MXuY )

14: Y ← (1− θ)Y + θ(XT
′>)diag(a−1), θ ∈ [0, 1]

15: end while

C MATCHING DISTRIBUTIONS VIA OT FOR SEMI-SUPERVISED LEARNING

Algorithm 2 : Matching Distributions via OT for SSL
input: labeled data: Zl = {zl, yl}nl=1, unlabeled data: Zu = {z′u}mu=1, balancing coefficients: α, λ,
learning rate: β, batch size: b, distance matrix: X ,

1: train CNN parameters initially using the labeled data,
2: repeat
3: Xl = {xl}nl=1, Xu = {x′u}nu=1: Softmax layer outputs on Zl and Zu,
4: {Q1, ...,Qc} ← cluster on Xu using Algorithm. 1,
5: {P1, ...,Pc} ← labeled data grouped to c classes,
6: compute α, β based on amount of the mass in measures Q and P ,
7: for each Qi and Pj do
8: X(i, j)←W2(Qi,Pj),
9: end for

10: T ← optimal coupling of p(α, β,X),
11: {y′u}nu=1 ← pseudo-label data in each cluster Qi with the highest amount of mass transport

toward the labeled measure (i.e., argmaxT (i, :)),
12: repeat
13: choose a mini-batch:{xi}bi=1 ⊂ Xu ∪Xl,
14: w ← w − β∇w[L(w, x, x′, y, y′)], using Eq. (5),
15: until for an epoch
16: until a fixed number of epochs

D RELAXING OPTIMIZATION VIA ENTROPIC REGULARIZATION

The regular OT problem defined in (6) can be solved by an effective linear programming method
in the order of O(n3log(n)) time complexity, where n is number of the points in each probability
measures. Cuturi Cuturi (2013) has introduced an interesting approach which relaxes the OT problem
by adding a strong convex regularizer to the OT cost function to reduce the time complexity to
O(n2). Specifically, this approach asks for a solution T ′ with more entropy, instead of computing
the exact Wasserstein distance. In other words, the regularized OT distances can interpolate the
solution, depending on the regularization strength γ, between exact OT (γ = 0 ), and Maximum
Mean Discrepancy, MMD, (γ =∞). In this work, we use the regularized OT not only for the matter
of time complexity, but also it has been shown that the sample complexity of exact Wasserstein
distance is O(1/n1/d), while the regularized Wasserstein distance depending on γ value, is between
O(1/

√
n) and O(1/n1/d), where d is dimension of the samples Genevay et al. (2019); Peyré et al.
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(2019). This means that the entropic regularization reduces the chance of over-fitting for our SSL
model when it computes the Wasserstein distance between output of the CNN obtained from the
labeled and unlabeled data. Hence, our OT problem in the regularized form is recast as follows:

W̃γ(M′,M) = min
T ′∈P ′(a,α)

〈
T ′, X

〉
− γE(T ′), (9)

where γ is a hyperparameter that balances two terms in (9), and E(T ′) = −
∑mn
ij T ′ij(log(T ′ij−1) is

the entropy of the solution matrix T ′. It has been shown that if T ′γ is the solution of the optimization
(9), then ∃!u ∈ Rn+, v ∈ Rm+ such that the solution matrix for (9) is T ′γ = diag(u)Kdiag(v) where,
K = exp(−X/γ) Cuturi (2013). The vectors u and v are updated iteratively between step 1 and 2
by using the well-known Sinkhorn algorithm as follows: step 1)u = a/Kv and step 2)v = b/K>u,
where/ denotes element-wise division operator Cuturi (2013).

E EXISTENCE OF OPTIMAL COUPLING FOR MEASURE OF MEASURES

It can be simply shown that there always exists an optimal coupling, π ∈ Π(M,M′), that achieves
infimum of Eq. (2) in the paper. This is because the cost function ||x− y|| in Eq. (1) is continuous,
and based on Theorem 4.1, the existence of an optimal coupling π ∈ Π(R,S) which obtains the
infimum is guaranteed due to the tightness of Π(R,S). Furthermore, based on Corollary 6.11,
the term Wk(x, x′) used in Eq. (2) is a continuous function and Π(M,M′) is tight again, so the
existence of an optimal coupling in Π(M,M′) is also guaranteed.

Theorem 4.1 in Villanis book Villani (2008):

Let L1 be the Lebesgue space of exponent 1, and (X , µ) and (Y, ν) be two Polish probability spaces;
let a : X → R ∪ {−∞} and b : Y → R ∪ {−∞} be two upper semi-continuous functions such that
a ∈ L1(µ), b ∈ L1(ν). Let c : X ×Y → R∪ {+∞} be a lower semi-continuous cost function, such
that c(x, y) ≥ a(x) + b(y) for all x, y. Then there is a coupling of (µ, ν) which minimizes the total
cost Ec(X,Y ) among all possible couplings (X,Y ).

Lemma 1: Let X and Y be two Polish spaces. Let R ⊂ P(X ) and S ⊂ P(Y) be tight subsets of
P(X ) and P(Y) respectively. Then, the set Π(R,S) of all transference plans whose marginals lie in
R and S respectively, is itself tight in P(X × Y).

Proof of Lemma: Let µ ∈ R, ν ∈ S, and π ∈ Π(µ, ν). By assuming that, for any ε > 0 there is a
compact set Kε ⊂ X , independent of the choice of µ inR, such that µ[XnKε] ≤ ε; and similarly
there is a compact set Lε ⊂ Y , independent of the choice of ν in S, such that ν[YnLε] ≤ ε. Then,
for any coupling (X,Y ) of (µ, ν),

P[(X,Y ) /∈ Kε × Lε] ≤ P[X /∈ Kε] + P[Y /∈ Lε] ≤ 2ε.

The desired result follows because this bound is independent of the coupling, and Kε×Lε is compact
in X × Y .

Lemma 2: Let X and Y be two Polish spaces, and c : X ×Y → R∪{+∞} a lower semi-continuous
cost function. Let h : X × Y → R ∪ {−∞} be an upper semi-continuous function such that c ≥ h.
Let (πk)k ∈ N be a sequence of probability measures on X × Y , converging weakly to some
π ∈ P(X × Y), in such a way that h ∈ L1(πk), h ∈ L1(π), and∫

X×Y
hdπk

k→∞−−−−→
∫
X×Y

hdπ.

Therefore, ∫
X×Y

hdπ ≤ lim
k→∞

inf

∫
X×Y

cdπk

In particular, if c is non-negative, then F : π →
∫
cdπ is lower semi-continuous on P(X × Y),

equipped with the topology of weak convergence.

Proof of Lemma: Replacing c by c−h, we may assume that c is a non-negative lower semi-continuous
function. Then c can be written as the point-wise limit of a non-decreasing family (c`)` ∈ N of
continuous real-valued functions. By monotone convergence,∫

cdπ = lim
`→∞

∫
c`dπ = lim

`→∞
lim
k→∞

∫
c`dπk ≤ lim inf

k→∞

∫
cdπk.
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Figure 3: The error of the ROT algorithm on SVHN validation set over five runs.

Prokhorovs Theorem Billingsley (2013): If X is a Polish space, then a set R ⊂ P(X ) is pre-
compact for the weak topology if and only if it is tight, i.e. for any ε > 0 there is a compact set Kε

such that µ[XnKε] ≤ ε for all µ ∈ R.

Proof of Theorem 4.1: Since X is Polish, {µ} is tight in P(X ); similarly, {ν} is tight in P(Y). By
using the Lemma 1, Π(µ, ν) is tight in P(X × Y), and by using Prokhorovs theorem, this set has a
compact closure. By passing to the limit in the equation for marginals, we see that Π(µ, ν) is closed,
so it is in fact compact. Then let (πk)k ∈ N be a sequence of probability measures on X × Y , such
that

∫
cdπk converges to the infimum transport cost. Extracting a sub-sequence if necessary, we

may assume that πk converges to some π ∈ Π(µ, ν). The function h : (x, y)→ a(x) + b(y) lies in
L1(πk) and in L1(π), and c ≥ h by assumption; moreover,

∫
hdπk =

∫
hdπ =

∫
adµ+

∫
bdν; so

Lemma 2 implies: ∫
cdπ ≤ lim inf

k→∞

∫
cdπk.

Therefore, π is minimizing.

Note that further details of the proof of Theorem 4.1 are also available in Villani’s book Villani
(2008).

Corollary 6.11 in Villanis book Villani (2008):

If (X , d) is a Polish space, and p ∈ [1,∞), then Wp is continuous on Pp(X ). More explicitly, if µk
(resp. νk) converges to µ (resp. ν) weakly in Pp(X ) as k →∞, then

Wp(µk, νk)→Wp(µ, ν).

F HYPERPARAMETER TUNING ON REALISTICALLY SMALL VALIDATION SETS

One of the interesting arguments presented in Oliver et al. (2018) for a standard evaluation of different
SSL models is that it may not be feasible to perform model selection for an SSL challenge if the
hyperparameters of the model are tuned on the realistically small validation sets. On the other hand,
most of the SSL datasets in the literature are designed in such a way that the validation set, which
is used for tuning the hyperparameters but not for parameters of the model, is much larger than
the training set. For example, the standard SVHN dataset used in our work has about 7000 labeled
data in the validation set. Hence, the validation set is seven times larger than the training set of
the SSL methods which evaluate their performance by using only 1,000 labeled data during the
training. However, this is not a practical choice for a real-world application. This is because, this large
validation set will be used as the training set instead of validation set for tuning the hyperparameters.
Using small validation sets, however, causes an issue in that the evaluation metric, such as the accuracy
for tuning the hyperparameters will be unstable and noisy across the different runs. Although the
fact that small validation sets limit the ability for model selection has been discussed in Chapelle et al.
(2009), the work presented in Oliver et al. (2018) has used the Hoeffding inequality Hoeffding (1994)
to directly analyze the relationship between the size of validation set and the variance in estimation
of a models accuracy:

P(|V − E(V )| < p) > 1− 2 exp(−2np2).
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Figure 4: The error of the ROT algorithm on CIFAR validation set over five runs.

In this inequality, V denotes the empirical estimate of the validation error, E[V ] is its hypothetical
true value, p is the desired maximum deviation between the estimation and the true value, and n
represents the number of samples in the validation set. Based on this inequality, the number of
samples in the validation set should be very large. For example, we will require about 20,000
samples in the validation set if we want to be 95% confident in estimation of validation error that
differes less than 1% from the absolute true value. Note that in this analysis, validation error is
computed as the average of independent binary indicator variables representing if a given sample
in the validation set is classified correctly or not. This analysis may be unrealistic because of the
assumption that the validation accuracy is the average of independent variables. To address this
problem, Oliver et al. Oliver et al. (2018) measure this phenomenon empirically, and train the SSL
methods using 1,000 labels in the training set from SVHN dataset and then evaluate them on the
validation sets with different sizes. Note that these small synthetic validation sets are generated by
different randomly sampled sets without overlapping from the full SVHN validation set. Following
the same setting for evaluation of our SSL algorithm (ROT) in a real world scenario, in Fig. 3(a) and
Fig. 4(a), we reported the mean and standard deviation of validation errors over five times randomly
non-overlapping splitting the SVHN and CIFAR validation sets with varying sizes. The results in
Fig. 3(a) and Fig. 4(a) indicate that as we increase the size of validation set, the ROT algorithm will
be more confident and stable to select its hyperparameters than the case where we use small-size
validation set. For a fair comparison between our method and the other SSL methods in Table. 1 of
the paper, we have been consistent with other methods in the size of the training and validation sets
as it is designed in standard SVHN and CIFAR-10 datasets. Specifically, for SVHN, we used 65,932
images for the training set and 7,325 for the validation set, and for CIFAR-10 dataset, we used 45,000
images for the training set and 5,000 images for the validation set. Fig. 3(b) and Fig. 4(b) indicate
the error rate of the ROT algorithm on the SVHN and CIFAR validation sets for different values of λ
in our transportation plan. Note that during the tuning of λ, we fixed α in Eq. (5) to one and changed
λ to different values including 0.1, 0.25, 0.5 , 0.75 and 1. Moreover, during the tuning of α, we fixed
λ in Eq. (3) to 0.25 and changed α to different values including 0.1, 0.25, 0.5 , 0.75 and 1. Fig. 3(c)
and Fig. 4(c) show the error rate of the ROT algorithm on the SVHN and CIFAR validation sets for
different values of α for training the parameters of the CNN.
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