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ABSTRACT

In many settings, it is desirable to learn decision-making and control policies
through learning or bootstrapping from expert demonstrations. The most com-
mon approaches under this framework are Behaviour Cloning (BC), and Inverse
Reinforcement Learning (IRL). Recent methods for IRL have demonstrated the
capacity to learn effective policies with access to a very limited set of demonstra-
tions, a scenario in which BC methods often fail. Unfortunately, directly com-
paring the algorithms for these methods does not provide adequate intuition for
understanding this difference in performance. This is the motivating factor for our
work. We begin by presenting f -MAX, a generalization of AIRL (Fu et al., 2018),
a state-of-the-art IRL method. f -MAX provides grounds for more directly com-
paring the objectives for LfD. We demonstrate that f -MAX, and by inhertance
AIRL, is a subset of the cost-regularized IRL framework laid out by Ho & Ermon
(2016). We conclude by empirically evaluating the factors of difference between
various LfD objectives in the continuous control domain.

1 INTRODUCTION

Modern advances in reinforcement learning aim to alleviate the need for hand-engineered decision-
making and control algorithms by designing general purpose methods that learn to optimize provided
reward functions. In many cases however, it is either too challenging to optimize a given reward
(e.g. due to sparsity of signal), or it is simply impossible to design a reward function that captures
the intricate details of desired outcomes. One approach to overcoming such hurdles is Learning
from Demonstrations (LfD), where algorithms are provided with expert demonstrations of how to
accomplish desired tasks.

The most common approaches in the LfD framework are Behaviour Cloning (BC) and Inverse Re-
inforcement Learning (IRL) (Russell, 1998; Ng et al., 2000). In standard BC, learning from demon-
strations is treated as a supervised learning problem and policies are trained to regress expert actions
from a dataset of expert demonstrations. Other forms of Behaviour Cloning, such as DAgger (Ross
et al., 2011), consider how to make use of an expert in a more optimal fashion. On the other hand, in
IRL the aim is to infer the reward function of the expert, and subsequently train a policy to optimize
this reward. The motivation for IRL stems from the intuition that the reward function is the most
concise and portable representation of a task (Ng et al., 2000; Abbeel & Ng, 2004).

Unfortunately, the standard IRL formulation (Ng et al., 2000) faces degeneracy issues 1. A success-
ful framework for overcoming such challenges is the Maximum-Entropy (Max-Ent) IRL method
(Ziebart et al., 2008; Ziebart, 2010). A line of research stemming from the Max-Ent IRL frame-
work has lead to recent “adversarial” methods (Ho & Ermon, 2016; Finn et al., 2016a; Fu et al.,

1for example, any policy is optimal for the constant reward function r(s, a) = 0
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2018). These approaches aim to directly recover the expert policy ensuing from the Max-Ent IRL
process without explicitly modelling the reward function, and have shown tremendous success. In
benchmarks for continuous control (Brockman et al., 2016), these methods outperform Behaviour
Cloning by a wide margin, particularly in the low data regime where a very limited number of expert
trajectories are available.

However, it is not immediately clear why adversarial Max-Ent IRL methods would outperform BC,
since at optimality both methods exactly recover the expert policy. This questions motivates the
work presented here. Drawing upon the literature on f -divergences (Lin, 1991; Nowozin et al.,
2016), we begin by presenting f -MAX, an algorithm for Max-Ent IRL. We demonstrate how f -
MAX generalizes AIRL (Fu et al., 2018), and provides new intuition for what this algorithm ac-
complishes. Specifically we demonstrate that the objective in AIRL is equivalent to minimizing the
reverse KL divergence between the joint state-action marginal distribution of the policy and that
of the expert. Additionally, we demonstrate that f -MAX, and by inhertance AIRL, is a subset of
the cost-regularized Max-Ent IRL framework laid out by Ho & Ermon (2016). From these find-
ings, we generate hypotheses for why direct Max-Ent IRL methods outperform BC, and empirically
evaluate them in continuous control benchmarks. To tease apart the differences between standard
BC and AIRL, we also address the degeneracy of f -MAX in a special case, and provide a one-line
modification of AIRL, named FAIRL, which minimizes the forward KL divergence between the
joint state-action marginal of the expert and the policy. We discuss how our findings may relate to
common observations (Bishop, 2006) regarding the mode-covering/mode-seeking behaviour of the
different KL divergence directions.

2 BACKGROUND

2.1 MAXIMUM ENTROPY INVERSE REINFORCEMENT LEARNING

Consider a Markov Decision Process (MDP) represented as a tuple (S,A,P, r, ρ0, γ) with state-
space S, action-space A, dynamics P : S × A × S → [0, 1], reward function r(s, a), initial state
distribution ρ0, and discount factor γ ∈ (0, 1). In Maximum Entropy (Max-Ent) reinforcement
learning (Todorov, 2008; Toussaint, 2009; Rawlik et al., 2013; Fox et al., 2015; Haarnoja et al.,
2017; 2018), the goal is to find a policy π such that trajectories sampled using this policy follow the
distribution

p(τ) =
1

Z
exp(R(τ)) (1)

where τ = (s0, a0, s1, a1, ...) denotes a trajectory, and R(τ) =
∑
t r(st, at) and Z is the parti-

tion function. Hence, trajectories that accumulate more reward are exponentially more likely to be
sampled.

Converse to the standard RL setting, in Max-Ent IRL (Ziebart et al., 2008; Ziebart, 2010) we are
instead presented with an optimal policy πexp, or more realistically, sample trajectories from such
a policy, and we seek to find a reward function r that maximizes the likelihood of the trajectories
sampled from πexp. Formally, our objective is:

max
r
Eτ∼πexp [R(τ)− log Z] (2)

Being an energy-based modelling objective, the difficulty in performing this optimization arises
from estimating the partition function Z. Initial methods addressed this problem using dynamic
programming (Ziebart et al., 2008; Ziebart, 2010), and recent approaches present methods aimed at
intractable domains with unknown dynamics (Finn et al., 2016b; Ho & Ermon, 2016; Finn et al.,
2016a; Fu et al., 2018; Kostrikov et al., 2018).

Instead of recovering the expert’s reward function and policy, recent successful methods in Max-Ent
IRL aim to directly recover the policy that would result from the full process. Since such methods
only recover the policy, it would be more accurate to refer to them as Imitation Learning algorithms.
However, to avoid confusion with Behaviour Cloning methods, in this work we will refer to them as
direct methods for Max-Ent IRL.
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GAIL: Generative Adversarial Imitation Learning Before describing the work of Ho & Ermon
(2016), we establish the definition of causal entropy Hcausal(π) := Eρπ(s) [log π(a|s)] (Ziebart,
2010; Bloem & Bambos, 2014). Intuitively, causal entropy can be thought of as the “amount of
options” the policy has in each state, in expectation.

Let C denote a class of cost functions (negative reward functions). Furthermore, let
ρexp(s, a), ρπ(s, a) denote the state-action marginal distributions of the expert and student policy
respectively. Ho & Ermon (2016) begin with a regularized Max-Ent IRL objective,

IRLψ(πexp) := arg max
c∈C

−ψ(c) +
(

min
π
−Hcausal(π) + Eρπ(s,a) [c(s, a)]

)
− Eρexp(s,a) [c(s, a)]

(3)

where ψ : C → R is a convex regularization function on the space of cost functions, and IRLψ(πexp)
returns the optimal cost function given the expert and choice of regularization. Also, while not
immediately clear, note that minπ −Hcausal(π) + Eπ [c(s, a)] is the Max-Ent RL objective given
cost function c(s, a). Let RL(c) := arg minπ −Hcausal(π) + Eπ [c(s, a)], be a function that returns
the optimal Max-Ent policy given cost c(s, a). Ho & Ermon (2016) show that

RL ◦ IRLψ(πexp) = arg min
π

−Hcausal(π) + ψ∗ (ρπ(s, a)− ρexp(s, a)) (4)

where ψ∗ denotes the convex conjugate of ψ. This tells us that if we were to find the cost function
c(s, a) using the regularized Max-Ent IRL objective 3, and subsequently find the optimal Max-Ent
policy for this cost, we would arrive at the same policy had we directly optimized objective 4 by
searching for the policy.

Directly optimizing 4 is challenging for many choices of ψ. Interestingly however, Ho & Ermon
(2016) show that for any symmetric f -divergences (Lin, 1991), there exists a choice of ψ such that
equation 4 is equivalent to RL ◦ IRLψ(πexp) = arg minπHcausal(π) + Df (ρπ(s, a)||ρexp(s, a)). In
such settings, due to a close connection between binary classifiers and symmetric f -divergences
(Nguyen et al., 2009), efficient algorithms can be formed.

The special case for Jensen-Shannon divergence leads to the successful method dubbed Generative
Adversarial Imitation Learning (GAIL). As before, let ρexp(s, a), ρπ(s, a) denote the state-action
marginal distributions of the expert and student policy respectively. Let D(s, a) : S ×A → [0, 1] be
a binary classifier - often referred to as the discriminator - for identifying positive samples (sampled
from ρexp(s, a)) from negative samples (sampled from ρπ(s, a)). Using RL, the student policy is
trained to maximize Eτ∼π [

∑
t log D(st, at)] − λHcausal(π), where λ is a hyperparameter. The

training procedure alternates between optimizing the discriminator and updating the policy. As
noted, it is shown that this training procedure minimizes the Jensen-Shannon divergence between
ρexp(s, a) and ρπ(s, a) (Ho & Ermon, 2016).

AIRL: Adversarial Inverse Reinforcement Learning Subsequent to the advent of GAIL (Ho
& Ermon, 2016), Finn et al. (2016a) present a theoretical discussion relating Generative Adversar-
ial Networks (GANs) (Goodfellow et al., 2014), IRL, and energy-based models. They demonstrate
how an adversarial training approach could recover the Max-Ent reward function and simultane-
ously train the Max-Ent policy corresponding to that reward. Building on this discussion, Fu et al.
(2018) present a practical implementation of this method, named Adversarial Inverse Reinforcement
Learning (AIRL).

As before, let ρexp(s, a), ρπ(s, a) denote the state-action marginal distributions of the expert and
student policy respectively and let D(s, a) : S × A → [0, 1] be the discriminator. In AIRL, the
discriminator is parameterized as,

D(s, a) :=
exp(f(s, a))

exp(f(s, a)) + π(a|s)
(5)

where f(s, a) : S ×A → R, and π(a|s) denotes the likelihood of the action under the policy. AIRL
defines the reward function, r(s, a) := log D(s, a) − log (1 − D(s, a)), and sets the objective for
the student policy to be the RL objective, maxπ Eτ∼π [

∑
t r(st, at)]. As in GAIL, this leads to an

iterative optimization process alternating between optimizing the discriminator and the policy.

At convergence, the advantage function of the expert is recovered. Given this observation, important
considerations are made regarding how to extract the true reward function from f(s, a). When the
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objective is only to perform Imitation Learning, and we do not care to recover the reward function,
the discriminator does not use the special parameterization discussed above and is instead direclty
represented as a function D(s, a) : S ×A → [0, 1], as done in GAIL (Ho & Ermon, 2016).

Performance With Respect to BC Methods such as GAIL and AIRL have demonstrated signif-
icant performance gains compared to Behaviour Cloning. In particular, in standard Mujoco bench-
marks (Todorov et al., 2012; Brockman et al., 2016), adversarial methods for Max-Ent IRL achieve
strong performance using a very limited amount of demonstrations from an expert policy, an impor-
tant failure scenario for standard Behaviour Cloning.

2.2 f -DIVERGENCES

Ho & Ermon (2016) demonstrate that Max-Ent IRL is the dual problem of matching ρπ(s, a) to
ρexp(s, a); indeed as noted above, GAIL (Ho & Ermon, 2016) optimizes the Jensen-Shannon di-
vergence between the two distributions. In section 3 we present f -MAX, a method for matching
ρπ(s, a) to ρexp(s, a) using arbitrary f -divergences (Lin, 1991). Hence, in this section we recall this
class of statistical divergences as well as methods for using them for training generative models.

Let P,Q be two distributions with density functions p, q. For any convex, lower-semicontinuous
function f : R+ → R a statistical divergence can be defined as: Df (P ||Q) =

∫
χ
q(x)f

(
p(x)
q(x)

)
. Di-

vergences derived in this manner are called f-divergences and amongst many interesting divergences,
include the forward and reverse KL.

Nguyen et al. (2010) present a variational estimation method for f -divergences between arbitrary
distributions P, Q. Using the notation of Nowozin et al. (2016) we can write,

Df (P ||Q) ≥ sup
Tω∈T

(Ex∼P [Tω(x)]− Ex∼Q [f∗(Tω(x))]) (6)

where T is an arbitrary class of functions Tω : X → R, and f∗ is the convex conjugate of f . Under
mild conditions (Nguyen et al., 2010) equality holds between the two sides. Motivated by this
variational approximation as well as Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014), Nowozin et al. (2016) present an iterative optimization scheme for matching an implicit
distribution2 Q to a fixed distribution P using any f -divergence. For a given f -divergence, the
corresponding minimax optimization is,

min
Q

max
Tω

F (θ, ω) = Ex∼P [Tω(x)]− Ex∼Q [f∗(Tω(x))] (7)

Nowozin et al. (2016) discuss practical parameterizations of Tω , but to avoid notational clutter we
will use the form above.

3 f -MAX: f -DIVERGENCE MAX-ENT IRL

We begin by presenting f -MAX, a generalization of AIRL (Fu et al., 2018) which provides a more
intuitive interpretation of what similar algorithms accomplish.

Imagine, for some f , we aim to train a policy by optimizing the f -divergence
Df (ρexp(s, a)||ρπ(s, a)). To do so, we propose the following iterative optimization procedure,

max
Tω

E(s,a)∼ρexp(s,a) [Tω(s, a)]− E(s,a)∼ρπ(s,a) [f∗(Tω(s, a))] (8)

max
π
Eτ∼π

[∑
t

f∗(Tω(st, at))

]
(9)

2We use the term “implicit distributions” to refer to distributions we can efficiently sample from, e.g. GAN
(Goodfellow et al., 2016) generators
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where f∗ and Tω are as defined in section 2.2. Equation 8 is the same as the inner maximization of
the f -GAN objective in equation 7; this objective optimizes Tω so that equation 8 best approximates
Df (ρexp(s, a)||ρπ(s, a)).

On the other hand, for the policy objective, using the identities in appendix A we have,

1

T
Eτ∼π

[∑
t

f∗(Tπω (st, at))

]
∝ E(s,a)∼ρπ(s,a) [f∗(Tπω (s, a))] (10)

which implies that the policy objective is equivalent to minimizing equation 8 with respect to π.
With an identical proof as in Goodfellow et al. (2014, Proposition 2), if in each iteration the optimal
Tω is found, the described optimization procedure converges to the global optimum where the pol-
icy’s state-action marginal distribution matches that of the expert’s. This is equivalent to iteratively
computing Df (ρexp(s, a)||ρπ(s, a)) and optimiizing the policy to minimize it.

3.1 COROLLARY: A SIMPLE DERIVATION AND INTUITION FOR AIRL

Choosing f(u) := −log u leads to Df (ρexp(s, a)||ρπ(s, a)) = KL (ρπ(s, a)||ρexp(s, a)). This
divergence is commonly referred to as the “reverse” KL divergence. In this setting we have,
f∗(t) = −1 − log (−t), and Tπω (s, a) = − ρπ(s,a)

ρexp(s,a) (Nowozin et al., 2016). Hence, given Tπω ,
the policy objective in equation 9 takes the form,

max
π
Eτ∼π

[∑
t

f∗(Tπω (st, at))

]
= max

π
Eτ∼π

[∑
t

log ρexp(st, at)− log ρπ(st, at)− 1

]
(11)

On the other hand, plugging the optimal discriminator Dπ(s, a) = ρexp(s,a)
ρexp(s,a)+ρπ(s,a) (Goodfellow

et al., 2014) into the AIRL (Fu et al., 2018) policy objective, we get,

max
π
Eτ∼π

[∑
t

log Dπ(st, at)− log (1−Dπ(st, at))

]
= Eτ∼π

[∑
t

log ρexp(st, at)− log ρπ(st, at)

]
(12)

As can be seen, the right hand side of equation 12 matches that of equation 11 up to a constant 3,
meaning that AIRL is solving the Max-Ent IRL problem by minimizing the reverse KL divergence,
KL (ρπ(s, a)||ρexp(s, a))!

3.2 RELATION TO GAIL

As discussed above, Ho & Ermon (2016) present a class of methods for Max-Ent IRL that directly
retrieve the expert policy without explicitly finding the reward function of the expert (sec. 2.1).
Using an interesting connection between surrogate cost functions for binary classification and f -
divergences (Nguyen et al., 2009), Ho & Ermon (2016) derive a special case of their method for
minimizing any symmetric4 f -divergence between ρexp(s, a) and ρπ(s, a). Choosing the symmetric
f -divergence to be the Jensen-Shannon divergence leads to the successful special case, GAIL (sec
2.1).

Surprisingly, we now show that f -MAX is a subset of the cost-regularized Max-Ent IRL framework
laid out in Ho & Ermon (2016)! Recall the following equations from this framework,

IRLψ(πexp) := arg max
c∈C

−ψ(c) +
(

min
π
−Hcausal(π) + Eρπ(s,a) [c(s, a)]

)
− Eρexp(s,a) [c(s, a)]

(13)

RL ◦ IRLψ(πexp) = arg min
π

−Hcausal(π) + ψ∗ (ρπ(s, a)− ρexp(s, a)) (14)

3In both settings of fixed finite horizon, and infinite horizon with constant probability of termination, the
additional term resulting from the −1 is a constant.

4We call an f -divergence symmetric if for any P,Q we have Df (P ||Q) = Df (Q,P )
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Method Optimized Objective (Minimization)

Standard Behaviour Cloning Eρexp(s) [KL (ρexp(a|s)||ρπ(a|s))] = −Eρexp(s,a) [log ρπ(a|s)] + C

DAgger (Ross et al., 2011) Eρagg1:n (s) [KL (ρexp(a|s)||ρπ(a|s))] at iteration n+ 1

FAIRL (this work, section 5) KL(ρexp(s, a)||ρπ(s, a)) = −Eρexp(s,a) [log ρπ(s, a)]−H(ρexp(s, a))

AIRL (Fu et al., 2018) KL(ρπ(s, a)||ρexp(s, a)) = −Eρπ(s,a) [log ρexp(s, a)]−H(ρπ(s, a))

GAIL (Ho & Ermon, 2016) DJS(ρexp(s, a)||ρπ(s, a))− λHcausal(π)

Ho & Ermon (2016) symm. f -div Df -symm(ρπ(s, a)||ρexp(s, a))− λHcausal(π)

f -MAX (this work, section 3) Df (ρπ(s, a)||ρexp(s, a))

Table 1: The objective function for various imitation learning algorithms, written in a common form
as the minimization of statistical divergences. H(·) denotes entropy, Hcausal(π) denotes the causal
entropy of the policy (Ziebart, 2010; Ho & Ermon, 2016), and λ is a hyperparameter. JS denotes the
Jensen-Shannon divergence and Df indicates any f -divergence. For DAgger, we are showing the
objective for the simplest form of the algorithm, where π(i) is the policy obtained at iteration i, π(1)

is the expert, and ρagg1:n(s) = 1
n

∑n
i=1 ρ

π(i)

(s).

where ψ(c) : C → R was a closed, proper, and convex regularization function on the space of cost
function, and ψ∗ its convex conjugate.

For our proof we will operate in the finite state-action space, as in the original work (Ho & Ermon,
2016). In this setting, cost functions can be represented as vectors in RS×A, and joint state-action
distributions can be represented as vectors in [0, 1]S×A. Let f be the function defining some f -
divergence. Given the expert for the task, we can define the following cost function regularizer,

ψf (c) := Eρexp(s,a) [f∗(c(s, a))− c(s, a)] (15)

where f∗ is the convex conjugate of f . Given this choice, with simple algebraic manipulation done
in appendix B we have,

ψ∗f (ρπ(s, a)− ρexp(s, a)) = Df (ρπ(s, a)||ρexp(s, a)) (16)

RL ◦ IRLψ(πexp) = arg min
π

−Hcausal(π) +Df (ρπ(s, a)||ρexp(s, a)) (17)

Typically, the causal entropy term is considered a policy regularizer, and is weighted by 0 ≤ λ ≤ 1.
Therefore, modulo the termHcausal(π), our derivations show that f -MAX, and by inheritance AIRL
(Fu et al., 2018), all fall under the cost-regularized Max-Ent IRL framework of Ho & Ermon (2016)!

4 UNDERSTANDING THE RELATIONS AMONG
LEARNING-FROM-DEMONSTRATION ALGORITHMS

Given results derived in the prior section, we can now begin to populate table 1, writ-
ing various Imitation Learning algorithms in a common form, as the minimization of some
statistical divergence between ρexp(s, a) and ρπ(s, a). In Behaviour Cloning we minimize
Eρexp(s) [KL (ρexp(a|s)||ρπ(a|s))]5. On the other hand, the corollary in section 3.1 demonstrates
that AIRL (Fu et al., 2018) minimizes KL (ρπ(s, a)||ρexp(s, a)), while GAIL (Ho & Ermon, 2016)
optimizes DJS(ρexp(s, a)||ρπ(s, a)) − λHcausal(π). Hence, there are two ways in which the direct
IRL methods differ from BC. First, in standard BC the policy is optimized to match the conditional
distribution ρexp(a|s), whereas in the other two the policy is explicitly encouraged to match the
marginal state distributions as well. Second, in BC we make use of the forward KL divergence,
whereas AIRL and GAIL use divergences that exhibit more mode-seeking behaviour. These obser-
vations allow us to generate the following two hypotheses about why direct IRL methods outperform
BC, particularly in the low-data regime,

5Since it is equal to minimizing −Eρexp(s,a) [log ρπ(a|s)]−Hexp(s, a) andHexp(s, a) is constant w.r.t. the
policy (Hexp(s, a) is the entropy of ρexp(s, a))
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Hypothesis 1 In common MDPs of interest, the reward function depends more on the state
than the action. Hence it is plausible that matching state marginals is more useful than match-
ing action conditional marginals.

Hypothesis 2 It is known that optimization using the forward KL divergence results in dis-
tributions with a mode-covering behaviour, whereas using the reverse KL results in mode-
seeking behaviour (Bishop, 2006). Therefore, since in Reinforcement Learning we care about
the “quality of trajectories”, being mode-seeking is more beneficial than mode-covering, par-
ticularly in the low-data regime.

In what follows, we seek to experimentally evaluate our hypotheses. To tease apart the differ-
ences between the direct Max-Ent IRL methods and BC, we present an algorithm that optimizes
KL (ρexp(s, a)||ρπ(s, a)). We then compare its performance to Behaviour Cloning and the standard
AIRL algorithm using varying amounts of expert demonstrations.

5 DERIVING FORWARD KL

While f -MAX is a general algorithm, useful for most choices of f , it unfortunately cannot be
used for the special case of forward KL, i.e. KL (ρexp(s, a)||ρπ(s, a)). In the following sections
we identify the problem and present a separate direct Max-Ent IRL method that optimizes this
divergence.

5.1 DERIVING FORWARD KL FROM f -MAX

Let Tπω denote the maximizer of equation 8 for a given policy π. For the case of forward KL, drawing
upon equations from Nowozin et al. (2016) we have,

u :=
ρexp(s, a)

ρπ(s, a)
f(u) := ulog u f∗(t) = exp(t− 1) Tπω = 1 + log

ρexp(s, a)

ρπ(s, a)
(18)

Given this, the objective for the policy (equation 9) under the optimal Tπω becomes,

max
π
Eτ∼π

[∑
t

f∗(Tπω (st, at))

]
∝ E(s,a)∼ρπ(s,a) [f∗(Tπω (s, a))] (19)

= E(s,a)∼ρπ(s,a)

[
exp

((
1 + log

ρexp(s, a)

ρπ(s, a)

)
− 1

)]
(20)

= E(s,a)∼ρπ(s,a)

[
ρexp(s, a)

ρπ(s, a)

]
(21)

= 1 (22)

Hence, there is no signal to train the policy! 6

5.2 AN ALTERNATIVE METHOD FOR FORWARD KL

In this section we derive an algorithm for optimizing KL (ρexp(s, a)||ρπ(s, a)). Similar to AIRL (Fu
et al., 2018), let us have a discriminator, D(s, a) whose objective is to discriminate between expert
and policy state-action pairs,

max
D
E(s,a)∼ρexp(s,a) [log D(s, a)] + E(s,a)∼ρπ(s,a) [log (1−D(s, a))] (23)

6A similar results holds for the standard f -GAN formulation (Nowozin et al., 2016).
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(a) Reverse: KL (ρπ(s, a)||ρexp(s, a)) (b) Forward: KL (ρexp(s, a)||ρπ(s, a))

Figure 1: r(s, a) as the function of the logits of the optimal discriminator, `π(s, a) = log ρexp(s,a)
ρπ(s,a) .

We now define the objective for the policy to be,

h(s, a) := log D(s, a)− log (1−D(s, a)) (24)
r(s, a) := exp(h(s, a)) · (−h(s, a)) (25)

max
π
Eτ∼πθ

[∑
t

r(st, at)

]
(26)

In appendix C we show,

Eτ∼π

[∑
t

r(st, at)

]
∝ −KL(ρexp(s, a)||ρπ(s, a)) (27)

This is a refreshing result since it demonstrates that we can convert the AIRL algorithm (Fu et al.,
2018) into its forward KL counterpart by simply modifying the reward function used; in AIRL
(reverse KL) the reward is defined as r(s, a) := log D(s, a) − log (1 − D(s, a)), whereas for
forward KL it is defined as r(s, a) := D(s,a)

1−D(s,a) · log 1−D(s,a)
D(s,a) . We refer to this forward KL version

of AIRL as FAIRL.

If we parameterize the discriminator as D(s, a) := σ(`(s, a)), where σ represents the sigmoid
activation function, the logit of the discriminator, `(s, a), is equal to log D(s, a)− log (1−D(s, a)).
Hence, for an optimal discriminator, Dπ , we have `π(s, a) = log ρexp(s,a)

ρπ(s,a) . It is instructive to plot
the reward functions under the two different settings as a function of `π(s, a); figure 1 presents these
plots. As can be seen, in the forward KL version of AIRL, if for a state-action pair the expert puts
more probability mass than the policy, the policy is severely punished. However, if for some state-
action pairs the policy places a lot more mass than the expert, it almost does not matter. As a result,
the policy spreads its mass. On the other hand, in the original AIRL formulation (reverse KL), the
policy is always encouraged to put less mass than the expert. These observations are in line with
standard intuitions about the mode-covering/mode-seeking behaviours of the two KL divergences
(Bishop, 2006).

6 EXPERIMENTS

In this section we provide empirical comparisons between AIRL, FAIRL, and standard BC in the
Ant and Halfcheetah environments found in Open-AI Gym (Brockman et al., 2016).
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(a) Ant (b) HalfCheetah

Figure 2: Average return on 50 evaluation trajectories as a function of number of expert demonstra-
tions (higher is better). Models evaluated deterministically. As we ran two seeds per experiment, we
do not present standard deviations. While FAIRL performs comparably to AIRL, Behaviour cloning
lags behind quite significantly. Considering the form of their objectives (table 1), this demonstrates
that the advantage of direct Max-Ent IRL methods over BC is a result of the additional aspect of
their objectives explicitly matching marginal state distributions.

6.1 SETUP

Expert Policy To simulate access to expert demonstrations we train an expert policy using Soft-
Actor-Critic (SAC) (Haarnoja et al., 2018), a state-of-the-art reinforcement learning algorithm for
continuous control. The expert policy consists of a 2-layer MLP with 256-dim layers, ReLU activa-
tions, and two output streams for the mean and the diagonal covariance of a Tanh(Normal(µ, σ))
distribution 7. We use the default hyperparameter settings for training the expert.

Evaluation Setup Using a trained expert policy, we generated 4 sets of expert demonstrations of
that contain {4, 8, 16, 32} trajectories. Starting from a random offset, each trajectory is subsampled
by a factor of 20. This is standard protocol employed in prior direct methods for Max-Ent IRL
(Ho & Ermon, 2016; Fu et al., 2018). Also note that when generating demonstrations we sample
from the expert’s action distribution rather than taking the mode. This way, since the expert was
trained using Soft-Actor-Critic, the expert should correspond to the Max-Ent optimal policy for
the reward function 1

τ rg(s, a), where τ is the SAC temperature used and rg(s, a) is the ground-
truth reward function. To compare the various learning-from-demonstration algorithms we train
each method at each amount of expert demonstrations using 2 random seeds. For each seed, we
checkpoint the model at its best validation loss8 throughout training. At the end of training, the
resulting checkpoints are evaluated on 50 test episodes.

Details for AIRL & FAIRL For AIRL and FAIRL, the student policy has an identical architecture
to that of the expert, and the discriminator is a 2-layer MLP with 256-dim layers and Tanh activa-
tions. We normalize the observations from the environment by computing the mean and standard
deviations of the expert demonstrations. The RL algorithm used for the student policies is SAC
(Haarnoja et al., 2018), and the temperature parameter is tuned separately for AIRL & FAIRL.

Details for BC For BC, we use an identical architecture as the expert. The model was fit using
Maximum Likelihood Estimation9. As before, the observations from the environment are normal-
ized using the mean and standard deviation of the expert demonstrations.

6.2 RESULTS & INTERPRETATIONS

To match state-action marginals, the optimal student policy must sample actions from the state-
conditional distribution, π(a|s). On the other hand, when we deploy a trained policy it is reasonable
to instead choose the mode of this distribution, which we call the deterministic setting. Here, we
present evaluation results under the former setting, and defer the results for the deterministic setting
to the appendix.

7This is the architecture presented in SAC (Haarnoja et al., 2018)
8Average return on 10 test episodes
9Recall that given a state, the output of the policy is a Tanh(Normal(µ, σ)) distribution
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(a) n = 4 (b) n = 8 (c) n = 16 (d) n = 32

(e) n = 4 (f) n = 8 (g) n = 16 (h) n = 32

Figure 3: Validation curves throughout training using stochastic evaluation (refer to appendix D for
deterministic evaluation results). Top row Ant, Bottom row Halfcheetah. n represents the number
of expert demonstrations provided. Due to its mode-covering behaviour, FAIRL does not perform
as well as AIRL when evaluated stochastically. However, with determinisitc evaluation FAIRL
outperforms AIRL in the Ant environment.

Figure 4 demonstrates that both AIRL and FAIRL outperform BC by a large margin, especially in
the low data regime. Specifically, the fact that FAIRL outperforms BC supports hypothesis 1 that
the performance gain of Max-Ent IRL is not necessarily due to the direction of KL divergence used,
but is the result of explicitly encouraging the policy to match the marginal state distribution of the
expert in addition to the matching of conditional action distribution.

To compare AIRL and FAIRL, in figure 3 we plot the validation curves throughout training using
stochastic evaluation. Across the two tasks and various number of expert demonstrations, AIRL
consistently outperforms FAIRL. When using deterministic evaluation (figure 5), FAIRL achieves a
significant performance gain to the point that it outperforms AIRL on the Ant environment across
all demonstrations set sizes. Such observations provide initial positive support for hypothesis 2; as
more expert demonstrations are provided, the policy trained with FAIRL broadens its distribution to
cover the data-distribution, resulting in trajectories accumulating less reward in expectation. We note
however that more detailed experiments are necessary for adequately comparing the two methods.

7 CONCLUSION & FUTURE WORK

The motivation for this work stemmed from the superior performance of recent direct Max-Ent IRL
methods (Ho & Ermon, 2016; Fu et al., 2018) compared to BC in the low-data regime, and the desire
to understand the relation between various approaches for Learning from Demonstrations. We first
presented f -MAX, a generalization of AIRL (Fu et al., 2018), which allowed us to interpret AIRL as
optimizing for KL (ρπ(s, a)||ρexp(s, a)). We demonstrated that f -MAX, and by inhertance AIRL,
is a subset of the cost-regularized IRL framework laid out by Ho & Ermon (2016). Comparing to
the standard BC objective, Eρexp(s) [KL (ρexp(a|s)||ρπ(a|s))], we hypothesized two reasons for the
superior performance of AIRL: 1) the additional terms in the objective encouraging the matching
of marginal state distributions, and 2) the direction of the KL divergence being optimized. Setting
out to empirically evaluate these claims we presented FAIRL, a one-line modification of the AIRL
algorithm that optimizes KL (ρexp(s, a)||ρπ(s, a)). FAIRL outperformed BC in a similar fashion to
AIRL, which allowed us to conclude the key factor being the matching of state marginals. Additional
comparisons between FAIRL and AIRL provided initial understanding about the role of the direction
of the KL being optimized. In future work we aim to produce results on a more diverse set of more
challenging environments. Additionally, evaluating other choices of f -divergence beyond forward
and reverse KL may present interesting avenues for improvement (Wang et al., 2018). Lastly, but
importantly, we would like to understand whether the mode-covering behaviour of FAIRL could
result in more robust policies (Rajeswaran et al., 2017).
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A SOME USEFUL IDENTITIES

Let h : S ×A → R be an arbitrary function. If all episodes have the same length T , we have,

Eτ∼π

[∑
t

h(st, at)

]
=
∑
t

E(st,at)∼ρπ(st,at) [h(st, at)] (28)

=
∑
t

∫
S,A

ρπ(st, at)h(st, at) (29)

=

∫
S,A

[∑
t

ρπ(st, at)

]
h(s, a) (30)

= T ·
∫
S,A

ρπ(s, a)h(s, a) (31)

= T · E(s,a)∼ρπ(s,a) [h(s, a)] (32)

In a somewhat similar fashion, in the infinite horizon case with fixed probability γ ∈ (0, 1) of
transitioning to a terminal state, for the discounted sum below we have,

Eτ∼π

[∑
t

γth(st, at)

]
=
∑
t

E(st,at)∼ρπ(st,at)
[
γth(st, at)

]
(33)

=
∑
t

∫
S,A

γtρπ(st, at)h(st, at) (34)

=

∫
S,A

[∑
t

γtρπ(st, at)

]
h(s, a) (35)

= Γ ·
∫
S,A

ρπ(s, a)h(s, a) (36)

= Γ · E(s,a)∼ρπ(s,a) [h(s, a)] (37)

where Γ := 1
1−γ is the normalizer of the sum

∑
t γ

t. Since the integral of an infinite series is not
always equal to the infinite series of integrals, some analytic considerations must be made to go from
equation 34 to 35. But, one simple case in which it holds is when the ranges of h and all ρπ(st, at)
are bounded.

B SIMPLE ALGEBRAIC MANIPULATION

ψ∗f (ρπ(s, a)− ρexp(s, a)) = sup
c∈RS×A

[
(ρπ(s, a)− ρexp(s, a))

T
c − ψf (c)

]
(38)

= sup
c∈RS×A

[∑
S×A

(ρπ(s, a)− ρexp(s, a)) · c(s, a) −
∑
S×A

ρexp(s, a) · (f∗(c(s, a))− c(s, a))

]
(39)

= sup
c∈RS×A

[∑
S×A

[ρπ(s, a) · c(s, a)− ρexp(s, a) · f∗(c(s, a))]

]
(40)

= sup
c∈RS×A

[
Eρπ(s,a) [c(s, a)]− Eρexp(s,a) [f∗(c(s, a))]

]
(41)

= sup
Tω∈RS×A

[
Eρπ(s,a) [Tω(s, a)]− Eρexp(s,a) [f∗(Tω(s, a))]

]
(42)

= Df (ρπ(s, a)||ρexp(s, a)) (43)
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To go from 41 to 42 we simply changed notation Tω(s, a) := c(s, a), and we can go from 42 to
43 because it is the exact same form as the variational characterization of f -divergences shown in
equation ??. Note that equation 42 suggests the same training procedure as described for f -MAX.

C DERIVATION FOR FAIRL

Below we present the derivation for equation 27. Recalling definitions,

h(s, a) := log D(s, a)− log (1−D(s, a)) (44)
r(s, a) := exp(h(s, a)) · (−h(s, a)) (45)

and assuming the discriminator is optimal10, we have,

Eτ∼π

[∑
t

r(st, at)

]
= Eτ∼π

[∑
t

exp(h(st, at)) · (−h(st, at))

]
(46)

= Eτ∼π

[∑
t

ρexp(st, at)

ρπ(st, at)
· log

ρπ(st, at)

ρexp(st, at)

]
(47)

∝ E(s,a)∼ρπ(s,a)

[
ρexp(st, at)

ρπ(st, at)
· log

ρπ(st, at)

ρexp(st, at)

]
(48)

= E(s,a)∼ρexp(s,a)

[
log

ρπ(st, at)

ρexp(st, at)

]
(49)

= −KL(ρexp(s, a)||ρπ(s, a)) (50)

D DETERMINISTIC EVALUATION

(a) Ant (b) HalfCheetah

Figure 4: Average return on 50 evaluation trajectories as a function of number of expert demonstra-
tions (higher is better). Models evaluated stochastically. As we ran two seeds per experiment, we
do not present standard deviations. While FAIRL performs comparably to AIRL, Behaviour cloning
lags behind quite significantly. Considering the form of their objectives (table 1), this demonstrates
that the advantage of direct Max-Ent IRL methods over BC is a result of the additional aspect of
their objectives explicitly matching marginal state distributions.

10As a reminder, the optimal discriminator has the form, D(s, a) = ρexp(s,a)
ρexp(s,a)+ρπ(s,a)

. A simple proof of
which can be found in Goodfellow et al. (2014).
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(a) n = 4 (b) n = 8 (c) n = 16 (d) n = 32

(e) n = 4 (f) n = 8 (g) n = 16 (h) n = 32

Figure 5: Training curves averaged across random seeds. Top row Ant, Bottom row Halfcheetah. n
represents the number of expert demonstrations provided. While in the Ant environment FAIRL has
slight performance gains, in Halfcheetah AIRL performs noticebaly better. Further experiments are
necessary to compare these two methods.
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