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ABSTRACT

This paper is concerned with the robustness of VAEs to adversarial attacks. We
highlight that conventional VAEs are brittle under attack but that methods recently
introduced for disentanglement such as β-TCVAE (Chen et al., 2018) improve
robustness, as demonstrated through a variety of previously proposed adversarial
attacks (Tabacof et al. (2016); Gondim-Ribeiro et al. (2018); Kos et al.(2018)).
This motivated us to develop Seatbelt-VAE, a new hierarchical disentangled VAE
that is designed to be significantly more robust to adversarial attacks than existing
approaches, while retaining high quality reconstructions.

1 INTRODUCTION

Unsupervised learning of disentangled latent variables in generative models remains an open research
problem, as is an exact mathematical definition of disentangling (Higgins et al., 2018). Intuitively, a
disentangled generative model has a one-to-one correspondence between each input dimension of the
generator and some interpretable aspect of the data generated.

For VAE-derived models (Kingma & Welling, 2013; Rezende et al., 2014) this is often based around
rewarding independence between latent variables. Factor VAE (Kim & Mnih, 2018), β-TCVAE
(Chen et al., 2018) and HFVAE (Esmaeili et al., 2019) have shown that the evidence lower bound
can be decomposed to obtain a term capturing the degree of independence between latent variables
of the model, the total correlation. By up-weighting this term, we can obtain better disentangled
representations under various metrics compared to β-VAEs (Higgins et al., 2017a).

Disentangled representations, much like PCA or factor analysis, are not only human-interpretable but
also offer more informative and robust latent space representations. In addition, information theoretic
interpretations of deep learning show that having a disentangled hidden layer within a discriminative
deep learning model increases robustness to adversarial attack (Alemi et al., 2017).

Adversarial attacks on deep generative models, more difficult than those on discriminative models
(Tabacof et al., 2016; Gondim-Ribeiro et al., 2018; Kos et al., 2018), attempt to fool a model into
reconstructing a chosen target image by adding distortions to the original input image. Generally,
the most effective attack mode involves making the latent-space representation of the distorted input
match that of the target image (Gondim-Ribeiro et al., 2018; Kos et al., 2018). This kind of attack is
particularly relevant to applications where the encoder’s output is used downstream.

Projections of data from VAEs, disentangled or not, are used for tasks such as: text classification
(Xu et al., 2017); discrete optimisation (Kusner et al., 2017); image compression (Theis et al., 2017;
Townsend et al., 2019); and as the perceptual part of a reinforcement learning algorithm (Ha &
Schmidhuber, 2018; Higgins et al., 2017b), the latter of which uses a disentangled VAE’s encoder to
improve the robustness of the agent to domain shift.

Here we demonstrate that β-TCVAEs are significantly more robust to ‘latent-space’ attack than
standard VAEs, and are generally more robust to attacks that act to maximise the evidence lower
bound for the adversarial input. The robustness of these disentangled models is highly relevant
because of the use-cases for VAEs highlighted above.

However, imposing additional disentangling constraints on a VAE training objective degrades the
quality of resulting drawn or reconstructed images (Higgins et al., 2017a; Chen et al., 2018). We
sought whether more powerful, expressive models, can help ameliorate this and in doing so built
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Figure 1: Latent-space adversarial attacks on Chairs, 3D Faces and CelebA for different models,
including our proposed Seatbelt-VAE. β = 10 for β-TCVAE, β-TCDLGM and Seatbelt-VAE. L is the
number of stochastic layers. Clockwise within each plot we show the initial input, its reconstruction,
the adversarial input, the adversarial distortion added to make it (shown normalised), the adversarial
input’s reconstruction, and the target image. Following Tabacof et al. (2016); Gondim-Ribeiro et al.
(2018) we attack with different degrees of penalisation on the magnitude of the adversarial distortion;
in choosing the distortion to show, we pick the one with the penalisation that resulted in the value of
the attack objective just better than the mean. See Section 5 for more details.

a hierarchical disentangled VAE, Seatbelt-VAE, drawing on works like Ladder VAEs (Sønderby
et al., 2016) and BIVA (Maaløe et al., 2019). We demonstrate that Seatbelt-VAEs are more robust to
adversarial attacks than β-TCVAEs and β-TCDLGMs (the latter a simple generalisation we make of
β-TC penalisation to hierarchical VAEs). See Figure 1 for a demonstration.

Rather than being concerned with human-interpretable controlled generation by our models, which
has been the focus of much research into disentangling, instead we are interested in the robustness
afforded by disentangled representations.

Thus our key contributions are:

• A demonstration that β-TCVAEs are significantly more robust to adversarial attacks via
their latents than vanilla VAEs.
• The introduction of Seatbelt-VAE, a hierarchical version of the β-TCVAE, designed to

further increase robustness to various types of adversarial attack, while also giving better
perceptual quality of reconstructions even when regularised.

2 VARIATIONAL AUTOENCODERS

Variational autoencoders (VAEs) are a deep extension of factor analysis suitable for high-dimensional
data like images (Kingma & Welling, 2013; Rezende et al., 2014). They have a joint distribution
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over data x and latent variables z: pθ(x, z) = pθ(x|z)p(z) where p(z) = N (0, I) and pθ(x|z) is
an appropriate distribution given the form of the data, the parameters of which are represented by
deep nets with parameters θ. As exact inference is intractable for this model, in a VAE we perform
amortised stochastic variational inference. By introducing an approximate posterior distribution
qφ(z|x) = N (µφ(x),Σφ(x)), we can perform gradient ascent on the evidence lower bound (ELBO)
L(x) = −DKL(qφ(z|x)||pθ(x, z)) = Eqφ(z|x) log pθ(x|z) − DKL(qφ(z|x)||p(z)) ≥ log p(x)
w.r.t.both θ and φ jointly, using the reparameterisation trick to take gradients through Monte Carlo
samples from qφ(z|x).

2.1 DISENTANGLING VAES

In a β-VAE (Higgins et al., 2017a), a free parameter β multiplies the DKL term in L(x) above. This
objective Lβ(x) remains a lower bound on the evidence.

Decompositions of L(x) shed light on its meaning. As shown in Hoffman & Johnson (2016);
Makhzani et al. (2016); Kim & Mnih (2018); Chen et al. (2018); Esmaeili et al. (2019), one can
define the evidence lower bound not per data-point, but instead write it over a dataset D of size N ,
D = {xn}, so we have L(θ, φ,D).

Esmaeili et al. (2019) gives a decomposition of this dataset-level evidence lower bound:

L(θ, φ,D) =−DKL(qφ(z, x)||pθ(x, z)) (1)

=Eqφ(z,x)
[

log
pθ(x|z)
pθ(x)︸ ︷︷ ︸
1

− log
qφ(z|x)

qφ(z)︸ ︷︷ ︸
2

]
−DKL(q(x)||pθ(x))︸ ︷︷ ︸

3

−DKL(qφ(z)||p(z))︸ ︷︷ ︸
4

(2)

where under the assumption that p(z) factorises we can further decompose 4 :

DKL(qφ(z)||p(z)) = Eqφ(z)
[

log
qφ(z)∏
j qφ(zj)

]
︸ ︷︷ ︸

A

+
∑
j

DKL(qφ(zj)||p(zj))︸ ︷︷ ︸
B

(3)

where j indexes over coordinates in z. qφ(z, x) = qφ(z|x)q(x) and q(x) := 1
N

∑N
n=1 δ(x − xn)

is the empirical data distribution. qφ(z) := 1
N

∑N
n=1 qφ(z|xn) is called the average encoding

distribution following Hoffman & Johnson (2016).

A is the total correlation (TC) for qφ(z), a generalisation of mutual information to multiple variables
(Watanabe, 1960). With this mean-field p(z), Factor and β-TCVAEs upweight this term, so we have
an objective:

LβTC(θ, φ,D) = 1 + 2 + 3 + B + β A (4)
Chen et al. (2018) gives a differentiable, stochastic approximation to Eqφ(z) log qφ(z), rendering
this decomposition simple to use as a training objective using stochastic gradient descent. We also
note that A , the total correlation, is also the objective in Independent Component Analysis (Bell &
Sejnowski, 1995; Roberts & Everson, 2001).

2.2 HIERARCHICAL VAES

We now have a set of L layers of z variables: z = [z1, z2, ..., zL]. The evidence lower bound for
models of this form is:

LDLGM(θ, φ,D) = Eqφ(z,x) log
pθ(x, z)

qφ(z, x)
= Eqφ(z,x)[log pθ(x|z)]− Eq(x)[DKL(qφ(z, x)||pθ(z))]

(5)
The simplest VAE with a hierarchy of conditional stochastic variables in the generative model is the
Deep Latent Gaussian Model (DLGM) of Rezende et al. (2014). The forward model factorises as a
chain:

pθ(x, z) = pθ(x|z1)

L−1∏
i=1

pθ(z
i|zi+1)p(zL) (6)
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Each pθ(zi|zi+1) is a Gaussian distribution with mean and variance parameterised by deep nets.
p(zL) is a unit isotropic Gaussian.

We can understand this additional expressive power as coming from having a richer family of
distributions for the likelihood over data x marginalising out all intermediate layers: pθ(x|zL) =∫ ∏L−1

i=1 dzi pθ(x, z) is a non-Gaussian, highly flexible, distribution.

To perform amortised variational inference one introduces a recognition network, which can be any
directed acyclic graph where each node, each distribution over each zi, is Gaussian conditioned on
its parents. This could be a chain, as in Rezende et al. (2014):

qφ(z|x) =

L−1∏
i=1

qφ(zi+1|zi)qφ(z1|x) (7)

Again, marginalising out intermediate zi layers, we see qφ(zL|x) =
∫ ∏L−1

i=1 dzi qφ(z|x) is a
non-Gaussian, highly flexible, distribution.

However, training DLGMs is challenging: the latent variables furthest from the data can fail to learn
anything informative (Sønderby et al., 2016; Zhao et al., 2017). Due to the factorisation of qφ(z|x)
and pθ(x, z) in a DLGM, it is possible for a single-layer VAE to train in isolation within a hierarchical
model: each pθ(zi|zi+1) distribution can become a fixed distribution not depending on zi+1 such
that each DKL divergence present in the objective between corresponding zi layers can still be driven
to a local minima. Zhao et al. (2017) gives a proof of this separation for the case where the model is
perfectly trained, i.e. DKL(qφ(z, x)||pθ(x, z)) = 0.

This is the hierarchical version of the collapse of z units in a single-layer VAE (Burda et al., 2016),
but now the collapse is over entire layers zi. It is part of the motivation for the Ladder VAE (Sønderby
et al., 2016) and BIVA (Maaløe et al., 2019).

3 SEATBELT-VAE: HIERARCHICAL β-TCVAE WITH SKIP CONNECTIONS

x
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z2

(a) Generative
Model

x

z1

z2

(b) Approx.
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Figure 2: L = 2 Seatbelt-VAE.
Shaded lines indicate β-TC fac-
torisation in a given node.

We propose novel hierarchical disentangled VAEs where we aim
to disentangle only in the top-most latent variables zL. Following
the Factor and β-TCVAEs we upweight the term of the form of
A for zL. Empirically we find models of this type are unable
to converge when disentangling at the bottom most layer, or
when disentangling at each layer. Intuitively, we want to capture
high-level disentangled information at the top, but leave lower
layers free to learn rich entangled representations. If pθ(x|z) =
pθ(x|z1), we obtain the generalisation of β-TC penalisation to a
DLGM and call it β-TCDLGM. It suffers from the problems of
collapse described above.

Inspired by BIVA (Maaløe et al., 2019), we choose instead to
condition our likelihood on all zi layers:

pθ(x, z) = pθ(x|z)

L−1∏
i=1

pθ(z
i|zi+1)p(zL) (8)

Combining Eqs (7, 5, 8) and applying β-TC penalisation to the DKL term over zL:
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LSB(θ, φ,D, β) =Eqφ(z,x) log pθ(x|z)− Eq(x) log q(x)− Eq(x,z2)[DKL(qφ(z1|x)||pθ(z1|z2))]

−
L−1∑
m=2

Eqφ(zm−1,zm+1)[DKL(qφ(zm|zm−1)||pθ(zm|zm+1))]

−DKL(qφ(zL, zL−1)||qφ(zL)qφ(zL−1))− βDKL(qφ(zL)||
∏
j=1

qφ(zLj ))

−
∑
j

DKL(qφ(zLj )||p(zLj )) (9)

=Eqφ(z,x) log pθ(x|z)− C (10)

where j is indexing over the coordinates in zL. See Appendix for the derivation. We call this model
Seatbelt-VAE, as with the extra conditional dependencies and nodes we increase the safety of our
model to adversarial attacks, to noise, and to decreases in perceptual quality as β increases. We
find that using free-bits regularisation (Kingma et al., 2016) greatly ameliorates the optimisation
challenges associated with DLGMs. For L = 1 this reduces to a β-TCVAE, and for L > 1, β = 1 it
produces a DLGM with our augmented likelihood function.

For completeness, note that for β-TCDLGM:

LβTCDLGM(θ, φ,D, β) = Eqφ(z,x) log pθ(x|z1)− C (11)

3.1 MINIBATCH TRAINING

VAEs and derived models are commonly trained using stochastic gradient ascent on the ELBO, on
minibatches of the training data. With the ELBO in Eq (9), this would be challenging because of the
presence of average encoding distributions, which depend on the entire dataset.

To avoid having to handle large mixture distributions in our objective functions, we derive minibatch
estimators that are a simple generalisation to disentangled hierarchical VAEs of the Minibatch
Weighted Sampling estimator proposed in Chen et al. (2018) in the context of β-TCVAEs. See
Appendix for further details.

4 ROBUSTNESS OF VAES TO ADVERSARIAL ATTACKS

Most adversarial attack research has focused on discriminative models (Akhtar & Mian, 2018; Gilmer
et al., 2018) and recently VAEs have found use in protecting discriminative models against attack
(Schott et al., 2019; Ghosh et al., 2019). Currently, two adversarial modes have been proposed for
attacking VAEs (Tabacof et al., 2016; Gondim-Ribeiro et al., 2018; Kos et al., 2018). In both attack
modes the adversary wants draws from the model to be close to a target image xt, when given a
distorted image x∗ = x+ d as input. When attacking a discriminative model the aim is to manipulate
the comparatively low-dimensional output layer of the network, commonly aiming with the attack
to diminish or increase only a handful of the output units. However, for a generative model, the
attacker is aiming to change a large number of pixel values in the output, changing the content of the
reconstruction. Intuitively this is a harder task, and the attacks proposed in the above papers do not
always result in adversarial examples that are very close to the initial image in appearance.

The first mode of attack, which we call the output attack, aims to reward draws from the decoder
conditioned on z ∼ qφ(z|x∗) that are close to xt via the ELBO.

For a vanilla VAE, this attack’s adversarial objective is:

∆output(x, d, x
t;λ) =Eqφ(z|x+d)[log p(xt|z)]−DKL(qφ(z|x+ d)||p(z)) + λ||d|| (12)

The second mode of attack, the latent attack, aims to find x∗ = x+ d such that qφ(z|x∗) ≈ qφ(z|xt)
under some similarity measure r(·, ·), which implicitly means that the likelihood pθ(xt|z) is high
when conditioned on draws from the posterior of the adversarial example. This attack is important if
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one is concerned with using the encoder network of a VAE as part of downstream task. For a single
stochastic layer VAE, the latent-space adversarial objective is:

∆latent(x, d, x
t;λ) = r(qφ(z|x+ d), qφ(z|xt)) + λ||d|| (13)

Note that both modes of attack penalise the L2 norm of d, prioritising smaller distortions. We denote
samples from qφ(z|x+ d) as z̃.

For Tabacof et al. (2016); Gondim-Ribeiro et al. (2018) r(·, ·) is DKL(qφ(z|x + d)||qφ(z|x)) and
for Kos et al. (2018) it is the L2 distance ||z̃ − z∗||2, z̃ ∼ qφ(z|x+ d), z∗ ∼ qφ(z|x) between draws
from the corresponding posteriors or ||µφ(x)− µφ(x+ d)||2 between their means. We follow the
former papers and use the DKL formulation. All three papers find that the latent attack mode is as
or more effective than the output attack for single layer VAEs both under perceptual evaluation and
various proposed metrics (Tabacof et al., 2016; Gondim-Ribeiro et al., 2018; Kos et al., 2018).

For latent attacks, the choice of which layers to attack depends on model architecture. For DLGMs
and β-TCDLGMs the attacker only needs to match at the bottom latent layer as pθ(x|z) = pθ(x|z1),
see Eq (7). See Appendix for plots showing how effective this attack is regardless of β and L.

Even though the decoder is conditioned on all latent layers, one could choose to attack individual
layers for Seatbelt-VAE. For example, one could attack just the first layer z1. If one were able to
find a perfect latent-space attack in z1, DKL(qφ(z1|x + d)||qφ(z1|xt)) = 0, then the variational
posteriors in higher layers would also be well matched. Attacks that do not perfectly match the target
z1 may have their mismatch with the target posterior amplified in higher layers. In Seatbelt-VAE the
likelihood over data is conditioned on all z layers, being off-target in these higher layers matters. In
the Appendix we show that targeting the top or base layers individually is not as effective as attacking
all layers. Hence:

∆DLGM
latent (x, d, xt;λ) =DKL(qφ(z1|x+ d), qφ(z1|xt)) + λ||d|| (14)

∆SB
latent(x, d, x

t;λ) =

L∑
i=1

DKL(qφ(zi|x+ d), qφ(zi|xt)) + λ||d|| (15)

5 EXPERIMENTS

Here we perform four tranches of experiments. Firstly, we demonstrate that the reconstructions
given by Seatbelt-VAEs (and β-TCDLGMs) degrade much less strongly as β is increased than in
β-TCVAEs. Secondly, we perform a variety of adversarial attacks on all models. We demonstrate
that increasing β makes β-TCVAEs more robust to adversarial attacks than vanilla VAEs, and that
Seatbelt-VAEs are more robust still. Thirdly, we show that these disentangled models are most robust
than vanilla VAEs to unstructured noise distorting their inputs, with Seatbelt-VAEs again the most
robust. Finally, we study the effect of disentangling on the sparsity of model weights.

We perform these experiments on Chairs (Aubry et al., 2014), 3D faces (Paysan et al., 2009), and
CelebA (Liu et al., 2015). Additional results for dSprites (Higgins et al., 2017a) can be found in the
Appendix. We used the same encoder and decoder architectures as Chen et al. (2018) for each dataset.
For the details of neural network architectures and training, see Appendix and accompanying code.
To show the degree to which our models are disentangling, the Appendix also contains the Mutual
Information Gap (MIG) (Chen et al., 2018) at the top layer of each model. Though our models obtain
high MIG at zL, this does not imply that decoding from latent traversals in zL will result in the
generation of images with human-interpretable factors of variation. This is made abundantly clear
in the latent space traversal plots, also shown in the Appendix. As such, we do not believe existing
disentangling metrics directly apply to hierarchical models.

5.1 ELBO AND RECONSTRUCTION QUALITY: β-TCVAES TO SEATBELT-VAES

We trained β-TCVAEs, β-TCDLGMs, and Seatbelt-VAEs for a range of β penalisations. In Figure 3
we plot the final ELBO of our trained models, but calculated without the additional β penalisation
that was applied during training. The ELBO for β-TCVAE [Eq (4)] declines with β much more
quickly than Seatbelt VAEs [Eq (10)] or β-TCDLGMs [Eq (11)]. In the Appendix we also show
that increasing β reduces DKL collapse. This is interesting, as it shows that we can increase the β
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penalisation for Seatbelt-VAEs, without a large degradation in the quality of the model as measured
by the ELBO.

In Figure 4 we see the effect of depth and disentangling on reconstructions of CelebA. The bottom row,
showing the reconstructions from a Seatbelt-VAE with L = 4 and β = 20 clearly maintains facial
identity better than those from a β-TCVAE in the middle row. The effect is clearest for the 3rd, 4th

and 7th columns, where many of the individuals’ finer facial features are lost by the β-TCVAE but
maintained by the Seatbelt-VAE. This fits with the results in Figure 3, and shows that resistance of the
quality of the reconstructions of Seatbelt to increasing β is visually perceptible as well as measurable.
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Figure 3: Plots showing the effect of varying β under various datasets on the ELBO of β-TCVAEs,
β-TCDLGMs and Seatbelt-VAEs [Eqs (4), (11) and (10) respectively]. Shading corresponds to the
95% CI over variation due to variation of ||z|| and L.

Figure 4: Top row shows CelebA input data. Below are reconstructions from β-TCVAE, β = 20 and
then Seatbelt VAE, L = 4, β = 20.
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Figure 5: ∆latent/output for (a) Chairs (b) 3D Faces, for β-TCVAE for different β values. Shading
corresponds to the 95% CI over variation due to our stable of images and our values of ||z|| and λ.

5.2 ADVERSARIAL ATTACK

We apply attacks minimising each of ∆output and ∆latent on: vanilla VAEs, β-TCVAEs, β-
TCDLGMs and Seatbelt-VAEs; trained on: Chairs (Aubry et al., 2014), 3D faces (Paysan et al.,
2009), and CelebA (Liu et al., 2015); for a range of β, L and λ values.

7



Under review as a conference paper at ICLR 2020

We randomly sampled 10 input-target pairs for each dataset. As in Tabacof et al. (2016); Gondim-
Ribeiro et al. (2018), for each pair of images used λ takes 50 geometrically-distributed values from
2−20 to 220. Thus each model undergoes 500 attacks for each attack mode. Like Tabacof et al. (2016);
Gondim-Ribeiro et al. (2018), we used L-BFGS-B for gradient descent (Byrd et al., 1995),

We prefer to avoid classifier based metrics (Kos et al., 2018) as in general we think that such
analysis can be hard to interpret given the many available choices of classifier. Instead, we evaluate
the effectiveness of adversarial attacks from the values reached by − log pθ(x

t|z̃), by the attack
objectives {∆output,∆latent} and by visually appraising the adversarial input (x + d) and the
adversarial reconstruction. Note that higher values of − log pθ(x

t|z̃),∆output,∆latent indicate less
effective attacks.

Figure 1 shows latent space attacks and demonstrates that they are less effective on disentangled
models. As in Gondim-Ribeiro et al. (2018), we are showing the attack for the λ that gives us an attack
objective just better than the average objective over all attacks tried. Note that for Seatbelt-VAEs, for
high values of β and L latent attacks often result in the outputs from adversarial attack resembling
the original inputs. See Appendix for more examples of the attacks for {∆latent,∆output} for the
models trained on dSprites (a toy dataset for disentangling), Chairs, 3D Faces and CelebA; each over
a range of values for β, L, and λ. Note that we rarely observe perceptually effective output attacks
regardless of model or settings, though vanilla VAEs are the most susceptible.

One might expect that adversarial attacks targeting a single factor of the data would be easier for the
attacker. However, we find that disentangled models protect effectively against these attacks as well.
See the Appendix for plots showing an attacker attempting to rotate a dSprites heart.

Figure 5 quantitatively shows that β-TCVAEs become harder to attack as β increases. The values of
∆latent for β-TCVAEs are ≈ 103 times higher than for a standard VAE on Chairs, and still greater
than a factor of 10 for 3D faces. ∆output attack is also less effective, by a smaller factor ≈ 1.2.

Figure 6 shows− log pθ(x
t|z̃latent/output) and Figure 7 shows ∆latent/output over a range of datasets

for β-TCDLGMs and Seatbelt-VAEs, varying L and β. Larger values of these metrics correspond to
less successful adversarial attacks. Generally, β-TCDLGMs are very sensitive to latent attack, as we
expect. Like β-TCVAEs, Seatbelt-VAEs offer significant protection to latent attacks, and somewhat
increased protection to output attacks compared to vanilla VAEs. For Seatbelt-VAEs, as we go to the
largest values of β and L for both Chairs and 3D Faces, ∆latent grows by a factor of ≈ 107.

The bottom rows of Figures 6 & 7 (c) (d) have L = 1, and thus correspond to β-TCVAEs. They
contain relatively low values of the adversarial objectives compared to L > 1. Similarly the first
column, corresponding to β=1 models, contains relatively low values. These results tell us that depth
and disentangling together offer the most effective protection from the adversarial attacks studied.

In the Appendix we also calculate the L2 distance between target images and adversarial outputs and
show that the loss of effectiveness of adversarial attacks is not due to the degradation of reconstruction
quality from increasing β. By these metrics too Seatbelt-VAEs outperform other models.

5.3 ROBUSTNESS TO NOISE

In addition to studying the robustness of these models to highly structured distortion, we can also
consider robustness to random noise. We add ε ∼ N (0, I) to the datasets, which are scaled to
−1 ≤ x ≤ 1, and then evaluate Eqφ(z|x+ε) pθ(x|z∗), where z∗ corresponds to the encoder embedding
of x+ ε and x is the original (non-noisy) data. See Figure 8 for smoothed histogram plots of this for
different models for different degrees of β. Both β-TC and Seatbelt-VAEs are effectively denoising
autoencoders. They become more robust to noise with increasing β, while β-TCDLGMs get worse.
See Appendix for plots showing the robustness of these models to smaller magnitude noise.

Some of the robustness of disentangled models to adversarial attacks may be conferred by their
robustness to random perturbations of their inputs.

5.4 TOTAL CORRELATION PENALISATION AS REGULARISATION

In the auto-encoder view of these models, the DKL terms in L(θ, φ,D) are associated with a form
of regularisation of the model (Doersch, 2016). Recent work shows that for linear autoencoders,
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Figure 6: − log pθ(x
t|z̃) for (a) (b) β-TCDLGMs and (c) (d) Seatbelt-VAEs for Chairs and 3D Faces;

over β and L (total number of stochastic layers) values and for latent and output attacks. Larger
values of − log pθ(x

t|z̃) correspond to less successful adversarial attacks.
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Figure 8: Robustness of log pθ(x|z) to Gaussian noise ε ∼ N (0, 1) scaled by different magnitudes
and added to x on CelebA; for β-TCVAE, β-TCDLGM, Seatbelt-VAE; β = 0, 10 Best viewed
digitally.

Table 1: Relative change of the L2 of Encoders and Decoders by dataset for β-TCVAE and Seatbelt-
VAE (L = 4) when increasing β from 1 to 10.

Chairs 3D Faces CelebA

β : 1→ 10 β : 1→ 10 β : 1→ 10

Encoder β-TCVAE +5.0% +19.5% +73.7%
Seatbelt-VAE, L = 4 +1.0% +2.7% +40.2%

Decoder β-TCVAE -19.4% -15.0% -6.8%
Seatbelt-VAE, L = 4 -7.6% -6.0% -11.4%

L2 regularisation of the weights corresponds to orthogonality of the latent projections (Kunin et al.,
2019). For deep models we expect that disentangling is associated with regularised decoders and more
complex encoders. The decoder receives a simpler representation, but building this representation
requires more calculation. Here we measure the L2 norm of the weights of our networks as a function
of β, shown in Table 1. See Appendix for results for β-TCDLGM.

As we increase β for β-TCVAEs and Seatbelt-VAEs for Chairs, 3D Faces, and CelebA the L2 norm
increases for the encoder and decreases for the decoder. A more complex encoder is more difficult to
match in the latent space and regularised decoders may be contributing to the denoising properties
seen in Figure 8. That the changes are generally greater for β-TCVAE than Seatbelt-VAE makes
sense, as the encoder and decoder of the former interact directly with the disentangled representation.
For the latter the decoder receives inputs from all zi, of varying degrees of disentanglement.

6 CONCLUSION

We have presented the increases in robustness to adversarial attack afforded by β-TCVAEs. This
increase in robustness is strongest for attacks via the latent space. While disentangled models are
often motivated by their ability to provide interpretable conditional generation, many use cases for
VAEs centre on the learnt latent representation of data. Given the use of these representations as
inputs for other tasks, the latent attack mode is the most important to protect against.

Recent work by Shamir et al. (2019) gives a constructive proof for the existence of adversarial inputs
for deep neural network classifiers with small Hamming distances. The proof holds with deterministic
defence procedures that work as additional deterministic layers of the networks, and in the presence
of adversarial training (Szegedy et al., 2014; Ganin et al., 2016; Tramèr et al., 2018; Shaham et al.,
2018). Shamir et al. (2019) thus give a theoretical grounding for using stochastic methods to defend
against adversarial inputs. As VAEs are already used to defend deep net classifiers (Schott et al.,
2019; Ghosh et al., 2019), more robust VAEs, like β-TCVAEs, could find use in this area.

We introduce Seatbelt-VAE, a particular hierarchical VAE disentangled on the top-most layer with
skip connections down to the decoder. This model further increases robustness to adversarial attacks,
while also increasing the quality of reconstructions. The performance of our model under adversarial
attack to robustness is mirrored in robustness to uncorrelated noise: these models are effective
denoising autoencoders as well. We hope this work stimulates further interest in defending and
attacking VAEs.
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A DERIVATION OF ELBO FOR SEATBELT-VAES

Start with Eq (5) cf. Eq (7) in the main paper. The likelihood is conditioned on all z layers: pθ(x|z).

L(θ, φ,D) =Eqφ(z,x) log
pθ(x, z)

log qφ(z, x)
= Eqφ(z,x)[log pθ(x|z)]− Eq(x)[DKL(qφ(z, x)||pθ(z))]

(A.1)

=Eq(z,x) log pθ(x|z)− Eq(x) log q(x) + Eq(z,x) log
pθ(z)

q(z|x)
(A.2)

=Eq(z,x) log pθ(x|z) +H(q(x)) (A.3)

+

∫
dxdz1

L∏
i=2

(dziqφ(zi|zi−1))qφ(z1|x)q(x) log
p(zL)

∏L−1
k=1 pθ(z

k|zk+1)

qφ(z1|x)
∏L−1
m=1 qφ(zm+1|zm)︸ ︷︷ ︸

W

W =

∫
dx

L∏
i=1

(dzi)qφ(z|x)q(x) log
p(zL)

qφ(zL|zL−1)︸ ︷︷ ︸
T

+

∫
dx

L∏
i=1

(dzi)qφ(z|x)q(x) log

∏L−1
k=1 pθ(z

k|zk+1)

qφ(z1|x)
∏L−2
m=1 qφ(zm+1|zm)︸ ︷︷ ︸

R

(A.4)

T = −Eqφ(zL−1)DKL(qφ(zL|zL−1)||p(zL)) (A.5)

R =

∫
dx

L∏
i=1

(dzi)qφ(z|x)q(x) log
pθ(z

1|z2)

qφ(z1|x)︸ ︷︷ ︸
Ra

+

L−1∑
m=2

∫
dx

L∏
i=1

(dzi)qφ(z|x)q(x) log
pθ(z

m|zm+1)

qφ(zm|zm−1)︸ ︷︷ ︸
Rb

(A.6)

Ra = −Eqφ(z2,x)DKL(qφ(z1|x)||pθ(z1|z2)) (A.7)

Rb =

L−1∑
m=2

∫
dx

L∏
i=1

(dzi)qφ(z1|x)q(x)

L−1∏
k=1,k 6=m

(qφ(zk+1|zk))qφ(zm|zm−1) log
pθ(z

m|zm+1)

qφ(zm|zm−1)

(A.8)

= −
L−1∑
m=2

∫
dx

L∏
i=1

(dzi)qφ(z1|x)q(x)

L−1∏
k=1,k 6=m

(qφ(zk+1|zk))DKL(qφ(zm|zm−1)||pθ(zm|zm+1))

(A.9)

= −
L−1∑
m=2

Eqφ(zm+1,zm−1)DKL(qφ(zm|zm−1)||pθ(zm|zm+1)) (A.10)
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Now we have:

L(θ, φ,D) =Eq(z,x) log pθ(x|z) +H(q(x)) + Ra + Rb + T (A.11)

(A.12)

Apply βTC decomposition to T as in Chen et al. (2018). j indexes over units in zL.

T =− Eqφ(zL−1)

[
Eqφ(zL|zL−1)[log qφ(zL|zL−1)− log p(zL) + log qφ(zL)

− log qφ(zL) + log
∏
j

qφ(zLj )− log
∏
j

qφ(zLj )]
]

(A.13)

=− Eqφ(zL,zL−1)[log
qφ(zL|zL−1)

qφ(zL)
]− Eqφ(zL)[log

qφ(zL)∏
j qφ(zLj )

]− Eqφ(zL)[log

∏
j qφ(zLj )

p(zL)
]

(A.14)

=− Eqφ(zL,zL−1)[log
qφ(zL|zL−1)qφ(zL−1)

qφ(zL)qφ(zL−1)
]− Eqφ(zL)[log

qφ(zL)∏
j qφ(zLj )

]−
∑
j

Eqφ(zL)[log
qφ(zLj )

p(zLj )
]

(A.15)

=−DKL(qφ(zL, zL−1)||qφ(zL)qφ(zL−1))︸ ︷︷ ︸
Ta

−DKL(qφ(zL)||
∏
j

qφ(zLj ))︸ ︷︷ ︸
Tb

−
∑
j

DKL(qφ(zLj )||p(zLj ))︸ ︷︷ ︸
Tc

(A.16)

Where we have used p(zL) =
∏
j p(z

L
j ) for our chosen generative model. As in Chen et al. (2018),

we choose to weight Tb , the total correlation for qφ(zL), by a prefactor β.

LSB(θ, φ,D, β) = Eq(z,x) log pθ(x|z) +H(q(x)) + Ra + Rb + Ta + β Tb + Tc (A.17)

Giving us the ELBO for Seatbelt-VAEs, Eq (10).
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B MINIBATCH WEIGHTED SAMPLING FOR zi

As in Chen et al. (2018), applying β-TC decomposition requires us to calculate terms of the form:

Eqφ(zi) log qφ(zi) (B.1)

The i = 1 case is covered in the appendix of Chen et al. (2018). First we will repeat the argument for
i = 1 as made in Chen et al. (2018), but in our notation, and then we cover the case i > 1 for models
with factorisation of qφ(z|x) as in Eq 7 in the main paper.

B.1 MWS FOR qφ(z1): β-TCVAES

Introduce BM = {x1, x2, ..., xM}, a minibatch of datapoints drawn uniformly iid from q(x) =

1/N
∑N
n=1 δ(x− xn). For for any minibatch we have p(BM ) = 1

N

M . Chen et al. (2018) introduce
r(BM |x), the probability of a sampled minibatch given that one member is x and the remaining
M − 1 points are sampled iid from q(x), so r(BM |x) = 1

N

M−1.

Eqφ(zi) log qφ(zi) =Eqφ(z1,x)[logEq(x)[qφ(z1|x)]] (B.2)

=Eqφ(z1,x)[logEp(BM )[
1

M

M∑
m=1

qφ(z1|xm)]] (B.3)

≥Eqφ(z1,x)[logEr(BM |x)[
p(BM )

r(BM |x)

1

M

M∑
m=1

qφ(z1|xm)]] (B.4)

=Eqφ(z1,x)[logEr(BM |x)[
1

NM

M∑
m=1

qφ(z1|xm)]] (B.5)

(B.6)

So then during training, one samples a minibatch {x1, x2, ..., xM} and can estimate Eqφ(z1) log qφ(z1)
as:

Eqφ(z1) log qφ(z1) ≈ 1

M

M∑
i=1

[log

M∑
j=1

qφ(z1i |xj)− logNM ] (B.7)

and z1i is a sample from qφ(z1|xi).

B.2 MINIBATCH WEIGHTED SAMPLING FOR qφ(zi), i > 1: β-TCGLGMS AND
SEATBELT-VAES

Here we have that q(z, x) =
∏L
l=2[qφ(zl|zl−1)]qφ(z1|x)q(x). Now instead of having a minibatch of

datapoints, we have a minibatch of draws of zi−1: Bi−1M = {zi−11 , zi−12 , ..., zi−1M }. Each member of
which is the result of sequentially sampling along a chain, starting with some particular datapoint
xm ∼ q(x).

For i > 2, members of Bi−1M are drawn:

zi−1j ∼ qφ(zi−1|zi−2j ) (B.8)

and for i = 2:
z1j ∼ qφ(z1|xj) (B.9)

Thus each member of this batch Bi−1M is the descendant of a particular datapoint that was sampled
in an iid minibatch BM as defined above. We similarly define r(Bi−1M |zi−1) as the probability of
selecting a particular minibatch Bi−1M of these values out from our set {zi−1n } (of cardinality N )
given that we have selected into our minibatch one particular zi−1 from these N values. Like above,
r(Bi−1M |zi−1) = 1

N

M−1
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Now we can consider Eqφ(zi) log qφ(zi) for i > 1:

Eqφ(zi) log qφ(zi) =Eqφ(zi,zi−1)[logEqφ(zi−1)[qφ(zi|zi−1)]] (B.10)

=Eqφ(zi,zi−1)[logEp(Bi−1
M )[

1

M

M∑
m=1

qφ(zi|zi−1m )]] (B.11)

≥Eqφ(zi,zi−1)[logEr(Bi−1
M |zi−1)[

p(BM )

r(BM |x)

1

M

M∑
m=1

qφ(zi|zi−1m )]] (B.12)

=Eqφ(zi,zi−1)[logEr(Bi−1
M |zi−1)[

1

NM

M∑
m=1

qφ(zi|zi−1m )]] (B.13)

Where we have followed the same steps as in the previous subsection.

During training, one samples a minibatch {zi−11 , zi−12 , ..., zi−1M }, where each is constructed by
sampling ancestrally. Then one can estimate Eqφ(zi) log qφ(zi) as:

Eqφ(zi) log qφ(zi) ≈ 1

M

M∑
k=1

[log

M∑
j=1

qφ(zik|zi−1j )− logNM ] (B.14)

and zik is a sample from qφ(zi|zi−1k ). In our model we only need terms of this form for i = L, so we
have:

Eqφ(zL) log qφ(zL) ≈ 1

M

M∑
k=1

[log

M∑
j=1

qφ(zLk |zL−1j )− logNM ] (B.15)

and zLk is a sample from qφ(zL|zL−1k ).
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C IMPLEMENTATION DETAILS

All runs were done on the Azure cloud system on NC6 GPU machines.

C.1 ENCODER AND DECODER ARCHITECTURES

We used the same architectures as Chen et al. 2018.
See file src/stochastic_layers/encoders.py and
src/stochastic_layers/decoders.py in the accompanying repository.

For β-TCVAE the range of ||z|| values used was {4, 6, 8, 16, 32, 64, 128}. For β-TCDLGMs and
Seatbelt-VAEs the number of units in each layer zi decreases sequentially. There is a list zsizes for
each dataset, and for a model of L layers that the last L entries to give ||zi||, i ∈ {1, ..., L}.

{||z||}dSprites ={96, 48, 24, 12, 6} (C.1)

{||z||}Chairs ={96, 48, 24, 12, 6} (C.2)

{||z||}3DFaces ={96, 48, 24, 12, 6} (C.3)

{||z||}CelebA ={256, 128, 64, 32} (C.4)
(C.5)

For β-TCDLGMs and Seatbelt-VAEs we also have the mappings qφ(zi+1|zi) and pθ(zi|zi+1). These
are amortised as MLPs with 2 hidden layers with batchnorm and Leaky-ReLU activation. The
dimensionality of the hidden layers also decreases as a function of layer index i:

||h||(qφ(zi+1|zi)) =hsizes[i] (C.6)

||h||(pθ(zi|zi+1)) =hsizes[i] (C.7)
hsizes = [1024, 512, 256, 128, 64] (C.8)

To train the model we used ADAM (Kingma & Ba, 2015) with default parameters and a learning
rate of 0.001. All data was preprocessed to fall on the interval -1 to 1. CelebA and Chairs were both
downsampled and cropped as in (Chen et al., 2018) and (Kulkarni et al., 2015) respectively.

D L2 NORM OF β-TCDLGM

Table D.1: L2 of Encoders and Decoders by dataset for β-TCDLGM (L = 4) showing the proportional
change from increasing β from 1 to 10.

Chairs 3D Faces CelebA

β : 1→ 10 β : 1→ 10 β : 1→ 10

Encoder β-TCDLGM +3.1% +5.7% +1.22%

Decoder β-TCDLGM -4.8% -3.5% +7.3%

7



Under review as a conference paper at ICLR 2020

E ROBUSTNESS TO NOISE
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(b) Chairs β-TCDLGM
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(c) Chairs Seatbelt-VAE
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(d) 3D Faces β-TCVAE
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(e) 3D Faces β-TCDLGM
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(f) 3D Faces Seatbelt-VAE
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(h) CelebA β-TCDLGM
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Figure E.1: Robustness of log pθ(x|z) to Gaussian noise ε ∼ N (0, 1) scaled by different magnitudes
and added to x: on Chairs, 3D Faces and CelebA by row; for β-TCVAE, β-TCDLGM, Seatbelt-VAE
by column. Within each plot a range of β values are shown. Best viewed digitally
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F ACTIVATION OF z

F.1 β-TCVAES

For this subsection. within each subplot we order the units of z by the values of their DKL divergence.
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Figure F.2: Eq(x)DKL(qφ(zj |x)||p(zj)) over dSprites for β-TCVAE over values of ||z|| and β. Best
viewed digitally.
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Figure F.3: Eq(x)DKL(qφ(zj |x)||p(zj)) over Chairs for β-TCVAE over values of ||z|| and β. Best
viewed digitally.
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3D Faces
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Figure F.4: Eq(x)DKL(qφ(zj |x)||p(zj)) over 3D Faces for β-TCVAE over values of ||z|| and β. Best
viewed digitally.
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F.2 SEATBELT-VAES

Here the DKL divergences are calculated per layer. dSprites
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Figure F.5: Eqφ(zi−1,zi+1)DKL(qφ(zi|zi−1)||p(zi|zi+1)) where x = z0 and p(zL|zL+1) = p(zL),
over dSprites for Seatbelt-VAEs over values of L and β. Best viewed digitally.
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Figure F.6: Eqφ(zi−1,zi+1)DKL(qφ(zi|zi−1)||p(zi|zi+1)) where x = z0 and p(zL|zL+1) = p(zL),
over Chairs for Seatbelt-VAEs over values of L and β. Best viewed digitally.
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3D Faces
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Figure F.7: Eqφ(zi−1,zi+1)DKL(qφ(zi|zi−1)||p(zi|zi+1)) where x = z0 and p(zL|zL+1) = p(zL),
over 3D Faces for Seatbelt-VAEs over values of L and β. Best viewed digitally.
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G AGGREGATE ANALYSIS OF ADVERSARIAL ATTACK

G.1 β-TCVAE
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Figure G.8: Plots showing the effect of varying β in a β-TCVAE for dSprites and 3D Faces on:
(a),(d) the L2 distance from xt to its reconstruction when given as input and the L2 distance from the
adversarial input x∗ and its reconstruction; (b),(e) the adversarial objectives ∆latnet/output
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G.2 β-TCDLGMS
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Figure G.9: Plots showing the effect of varying L on β-TCDLGMs for dSprites 3D Faces and
Chairs, on: (a),(d),(g) the L2 distance between xt and its reconstruction when given as input and the
same between the adversarial input x∗ and its reconstruction; (b),(e),(h) the adversarial objectives
∆output/image; (c),(f),(i) − log pθ(x

t|z), z ∼ qφ(z|x∗) and the MIG.

For a DLGM (Rezende et al., 2014) with 2-5 z layers, with qφ(z|x) factorised as in Eq (7), pθ(x, z)
factorised as in Eq (6), and βTC penalisation applied to the top layer, we find that latent attacks
targeted at z1 are highly effective and remain so as L and β each increase. These models are, however,
slightly more robust to output attacks and this attack becomes less effective as β increases, but more
effective as L increases.

The ease of attacking via z1 is consistent with its separation out from the rest of the model.
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G.3 SEATBELT-VAES
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Figure G.10: Plots showing the effect of varying L, β on Seatbelt-VAEs trained on dSprites, 3D
Faces and Chairs on: (a),(d),(g) the L2 distance between xt and its reconstruction when given as
input and the same between the adversarial input x∗ and its reconstruction; (b),(e),(h) the adversarial
objectives ∆output/image; (c),(f),(i) − log pθ(x

t|z), z ∼ qφ(z|x∗).
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G.4 SEATBELT-VAE LAYERWISE ATTACKS
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Figure G.11: − log pθ(x
t|z̃) for Seatbelt-VAEs for (a) 3D Faces and (b) Chairs; over β and L values

for latent attacks. We attack the bottom layer (z1), the top layer (zL), and finally show the effect when
attacking all layers (z). Larger values of − log pθ(x

t|z̃) correspond to less successful adversarial
attacks.
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H ADVERSARIAL ATTACK PLOTS

H.1 DSPRITES ADVERSARIAL ATTACK ON A SINGLE FACTOR
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Figure H.12: Latent space attacks on rotation only of a heart-shaped dSprite for β-TCVAEs, β-
TCDLGMs and Seatbelt-VAEs for β = {1, 2}.
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H.2 DSPRITES ADVERSARIAL ATTACK
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Figure H.13: Output attacks on dSprites on β-TCVAEs for β = {1, 2, 4, 6, 8, 10} and ||z|| =
{4, 6, 8, 16, 32, 64}.
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Figure H.14: Latent attacks on dSprites on β-TCVAEs for β = {1, 2, 4, 6, 8, 10} and ||z|| =
{4, 6, 8, 16, 32, 64}.

21



Under review as a conference paper at ICLR 2020

H.2.2 β-TCDLGMS

Output Attack

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 1, L = 1

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 2, L = 1

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 4, L = 1

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 6, L = 1

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 8, L = 1

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 10, L = 1

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 1, L = 2

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 2, L = 2

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 4, L = 2

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 6, L = 2

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 8, L = 2

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 10, L = 2

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 1, L = 3

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 2, L = 3

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 4, L = 3

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 6, L = 3

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 8, L = 3

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 10, L = 3

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 1, L = 4

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 2, L = 4

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 4, L = 4

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 6, L = 4

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 8, L = 4

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 10, L = 4

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 1, L = 5

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 2, L = 5

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 4, L = 5

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 6, L = 5

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 8, L = 5

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 10, L = 5

Figure H.15: Output attacks on dSprites on β-TCDLGMs for β = {1, 2, 4, 6, 8, 10} and L =
{1, 2, 3, 4, 5}.
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Figure H.16: Latent attacks on dSprites on β-TCDLGMs for β = {1, 2, 4, 6, 8, 10} and L =
{1, 2, 3, 4, 5}.
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Figure H.17: Output attacks on dSprites on Seatbelt-VAEs for β = {1, 2, 4, 6, 8, 10} and L =
{1, 2, 3, 4, 5}.
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Figure H.18: Latent attacks on dSprites for Seatbelt-VAEs for β = {1, 2, 4, 6, 8, 10} and L =
{1, 2, 3, 4, 5}.
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Figure H.19: Output attacks on Chairs for β-TCVAEs for β = {1, 2, 4, 6, 8, 10} and ||z|| =
{4, 6, 8, 16, 32, 64}.
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Figure H.20: Latent attacks on Chairs for β-TCVAEs for β = {1, 2, 4, 6, 8, 10} and ||z|| =
{4, 6, 8, 16, 32, 64}.
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Output attacks on Chairs for β-TCDLGMs for β = {1, 2, 4, 6, 8, 10} and L = {1, 2, 3, 4, 5}.
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Figure H.21: Latent attacks on Chairs for β-TCDLGMs for β = {1, 2, 4, 6, 8, 10} and L =
{1, 2, 3, 4, 5}.
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Figure H.22: Output attacks on Chairs for Seatbelt-VAEs for β = {1, 2, 4, 6, 8, 10} and L =
{1, 2, 3, 4, 5}.
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Figure H.23: Latent attacks on Chairs for Seatbelt-VAEs for β = {1, 2, 4, 6, 8, 10} and L =
{1, 2, 3, 4, 5}.
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Figure H.24: Output attacks on 3D Faces for β-TCVAEs for β = {1, 2, 4, 6, 8, 10} and ||z|| =
{4, 6, 8, 16, 32, 64}.
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Figure H.25: Latent attacks on 3D Faces for β-TCVAEs for β = {1, 2, 4, 6, 810} and ||z|| =
{4, 6, 8, 16, 32, 64}.
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Figure H.26: Output attacks on 3D Faces for β-TCDLGMs for β = {1, 2, 4, 8, 10} and L =
{1, 2, 3, 4, 5}.
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Figure H.27: Latent attacks on 3D Faces for β-TCDLGMs for β = {1, 2, 4, 8, 10} and L =
{1, 2, 3, 4, 5}.
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Figure H.28: Output attacks on 3D Faces for Seatbelt-VAEs for β = {1, 2, 4, 6, 8, 10} and L =
{1, 2, 3, 4, 5}.

36



Under review as a conference paper at ICLR 2020

Latent Attack

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 1, L = 1

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 2, L = 1

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 4, L = 1

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 6, L = 1

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 8, L = 1

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 10, L = 1

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 1, L = 2

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 2, L = 2

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 4, L = 2

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 6, L = 2

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 8, L = 2

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 10, L = 2

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 1, L = 3

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 2, L = 3

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 4, L = 3

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 6, L = 3

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 8, L = 3

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 10, L = 3

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 1, L = 4

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 2, L = 4

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 4, L = 4

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 6, L = 4

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 8, L = 4

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 10, L = 4

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 1, L = 5

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 2, L = 5

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 4, L = 5

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 6, L = 5

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 8, L = 5

Original Original rec. Adversarial

Target Adversarial rec. Distortion

β = 10, L = 5

Figure H.29: Latent attacks on 3D Faces for Seatbelt-VAEs for β = {1, 2, 4, 6, 8, 10} and L =
{1, 2, 3, 4, 5}.
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H.5 CELEBA ADVERSARIAL ATTACK

H.5.1 β-TCVAES

Output and Latent Attacks

Original Original rec. Adversarial

Target Adversarial rec. Distortion

(a) Output, β = 1

Original Original rec. Adversarial

Target Adversarial rec. Distortion

(b) Output, β = 10

Original Original rec. Adversarial

Target Adversarial rec. Distortion

(c) Latent, β = 1

Original Original rec. Adversarial

Target Adversarial rec. Distortion

(d) Latent, β = 10

Figure H.30: Output (a) (b) and Latent (c) (d) attacks on CelebA on β-TCVAEs for β = {1, 10} and
||z|| = 32.

H.5.2 β-TCDLGMS

Output and Latent Attack

Original Original rec. Adversarial

Target Adversarial rec. Distortion

(a) Output, β = 1

Original Original rec. Adversarial

Target Adversarial rec. Distortion

(b) Output, β = 10

Original Original rec. Adversarial

Target Adversarial rec. Distortion

(c) Latent, β = 1

Original Original rec. Adversarial

Target Adversarial rec. Distortion

(d) Latent, β = 10

Figure H.31: Output (a) (b) and Latent (c) (d) attacks on CelebA on L = 4 β-TCDLGMs for
β = {1, 10}.

H.5.3 SEATBELT-VAES

Output and Latent Attack

Original Original rec. Adversarial

Target Adversarial rec. Distortion

(a) Output, β = 1

Original Original rec. Adversarial

Target Adversarial rec. Distortion

(b) Output, β = 10

Original Original rec. Adversarial

Target Adversarial rec. Distortion

(c) Latent, β = 1

Original Original rec. Adversarial

Target Adversarial rec. Distortion

(d) Latent, β = 10

Figure H.32: Output (a) (b) and Latent (c) (d) attacks on CelebA on L = 4 Seatbelt-VAEs for
β = {1, 10}.
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I DATA GENERATION FROM MODELS

Ancestral Sampling in CelebA

(a) L = 1, β = 1 (b) L = 1, β = 10

(c) L = 4, β = 1 (d) L = 4, β = 10

Figure I.33: Means of the decoder from ancestral sampling in z, for Seatbelt-VAEs with L = {1, 4},
β = {1, 10}. Note that there is a reduction in diversity of the samples for L = 1 (ie a β-TC VAE),
β = 10, which is not the case for the samples from the β = 10 L = 4 Seatbelt-VAE.
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Latent Traversals for dSprites

(a) β-TC DLGM

(b) Seatbelt-VAE

Figure I.34: Latent traversals in the |z| = 6 top layer of L = 2, β = 2 for a β-TC DLGM and a
Seatbelt-VAE trained on dSprites. Note that the traversals do not capture the ground-truth factors of
variation.
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J MUTUAL INFORMATION GAP

The Mutual Information Gap (Chen et al., 2018) is average over ground truth factors of variation
of the entropy-normalised difference between the greatest mutual information between the any of
the units in z and a given ground-truth factor of variation ν and the second-greatest such mutual
information:

MIG =

K∑
k=1

1

H(νk)
[I(zj∗ , νk)−max

m
I(zj 6=j∗ , νk)] (J.1)

where z∗j = arg maxj I(zj , νk).

Table J.2: MIG in zL: for L = 2; for β-TC DLGMs and Seatbelt-VAEs; for a range of β values; for
dSprites, 3D Faces and Chairs.

dSprites 3D Faces Chairs
β β-TC DLGM Seatbelt-VAE β-TC DLGM Seatbelt-VAE β-TC DLGM Seatbelt-VAE
1 0.0411 0.0475 0.0211 0.0300 0.0381 0.0134
2 0.3294 0.3589 0.4038 0.2200 0.2641 0.5366
4 0.2751 0.3235 0.2904 0.2349 0.7660 0.4963
6 0.3213 0.3258 0.1806 0.1890 0.1929 0.3111
8 0.3076 0.3182 0.2046 0.2301 0.2526 0.3329
10 0.3547 0.3415 0.1440 0.1053 0.1625 0.2802
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(a) dSprites
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(b) 3D Faces
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(c) Chairs

Figure J.35: MIG for β-TC VAEs as a function of |z| for different values of β. Note that MIG
decreases as we increase |z|, indicating that we get degenerate latent representations - that is different
units in z end up with similar mutual information to the same ground truth factors. The red line in a)
is at |z| = 6, the number of ground-truth factors of variation for dSprites.
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