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ABSTRACT

Self-explaining models are models that reveal decision making parameters in an
interpretable manner so that the model reasoning process can be directly under-
stood by human beings. General Linear Models (GLMs) are self-explaining be-
cause the model weights directly show how each feature contributes to the output
value. However, deep neural networks (DNNs) are in general not self-explaining
due to the non-linearity of the activation functions, complex architectures, obscure
feature extraction and transformation process. In this work, we illustrate the fact
that existing deep architectures are hard to interpret because each hidden layer
carries a mix of low level features and high level features. As a solution, we pro-
pose a novel feature leveling architecture that isolates low level features from high
level features on a per-layer basis to better utilize the GLM layer in the proposed
architecture for interpretation. Experimental results show that our modified mod-
els are able to achieve competitive results comparing to main-stream architectures
on standard datasets while being more self-explainable. Our implementations and
configurations are publicly available for reproductions†.

1 INTRODUCTION

Deep Neural Networks (DNNs) are viewed as back-box models because of their obscure decision
making process. One reason that makes deep neural networks hard to interpret is that they are
able to magically extract abstract concepts through multi-layer non-linear activations and end-to-
end training. From a human perspective, it is hard to understand how features are extracted from
different hidden layers and what features are used for final decision making.

In response to the challenge of interpretability, two paths are taken to unbox neural networks’ deci-
sion learning process. One method is to design verifying algorithms that can be applied to existing
models to back-trace their decision learning process. Another method is to design models that ”ex-
plain” the decision making process automatically. The second direction is promising in that the
interpretability is built-in architecturally. Thus, the verification feedback can be directly used to
improve the model.

One class of the self-explaining models borrows the interpretability of General Linear Models
(GLMs) such as linear regression. GLMs are naturally interpretable in that complicated interactions
of non-linear activations are not involved. The contribution of each feature to the final decision out-
put can simply be analyzed by examining the corresponding weight parameters. Therefore, we take
a step forward to investigate ways to make DNNs as similar to GLMs as possible for interpretability
purpose while maintaining competitive performance.

Fortunately, a GLM model naturally exists in the last layer of most discriminative architectures of
DNNs (See appendix A.3 for the reason that the last layer is a GLM layer). However, the GLM
could only account for the output generated by the last layer and this output is not easy to interpret
because it potentially contains mixed levels of features. In the following section, we use empirical
results to demonstrate this mixture effect. Based on this observation, one way to naturally improve
interpretation is to prevent features extracted by different layers from mixing together. Thus, we

† Public Repo URL annonymized for review purpose-See code folder for detailed implementation
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directly pass features extracted by each layer to the final GLM layer. This can further improve
interpretability by leveraging the weights of the GLM layer to explain the decision making process.
Motivated by this observation, we design a feature leveling network structure that can automatically
separate low level features from high level features to avoid mixture effect. In other words, if the
low level features extracted by the kth hidden layer can be readily used by the GLM layer, we should
directly pass these features to the GLM rather than feeding them to the k + 1th hidden layer. We
also propose a feature leveling scale to measure the complexity of different sets of features’ in an
unambiguous manner rather than simply using vague terms such as ”low” and ”high” to describe
these features.

In the following sections, we will first lay out the proposed definition of feature leveling. We then
will illustrate how different levels of features reside in the same feature space. Based on the above
observations, we propose feature leveling network, an architectural modification on existing models
that can isolate low level features from high level features within different layers of the neural
network in an unsupervised manner. In the experiment section, we will use empirical results to
show that this modification can also be applied to reduce the number of layers in an architecture
and thus reduce the complexity of the network. In this paper, we focus primarily on fully connected
neural networks(FCNN) with ReLU activation function in the hidden layers. Our main contributions
are as follows:

• We take a step forward to quantify feature complexity for DNNs.

• We investigate the mixture effect between features of different complexities in the hidden
layers of DNNs.

• We propose a feature leveling architecture that is able to isolate low level features from
high level features in each layer to improve interpretation.

• We further show that the proposed architecture is able to prune redundant hidden layers to
reduce DNNs’ complexity with little compromise on performance.

The remaining content is organized as follows: In section 2, we first introduce our definitions of
feature leveling and use a toy example to show the mixture effect of features in hidden layers. In
section 3, we give a detailed account of our proposed feature leveling network that could effectively
isolate different levels of features. In section 4, we provide a high level introduction to some related
works that motivated our architectural design. In Section 5, we test and analyze our proposed archi-
tecture on various real world datasets and show that our architecture is able to achieve competitive
performance while improving interpretability. In section 6, we show that our model is also able to
automatically prune redundant hidden layers, thus reducing the complexity of DNNs.

2 FEATURE LEVELING FOR NEURAL NETWORKS

The concepts of low level and high level features are often brought up within the machine learning
literature. However, their definitions are vague and not precise enough for applications. Intuitively,
low level features are usually ”simple” concepts or patterns whereas high level features are ”abstract”
or ”implicit” features.

Within the scope of this paper, we take a step forward to give a formal definition of feature leveling
that quantizes feature complexity in an absolute scale. This concept of a features’ scale is better
than simply having ”low” and ”high” as descriptions because it reveals an unambiguous ordering
between different sets of features. We will use a toy example to demonstrate how features can have
different levels and explain why separating different levels of features could improve interpretability.

2.1 A TOY EXAMPLE

We create a toy dataset called Independent XOR(IXOR). IXOR consists of a set of uniformally
distributed features X : {(x1, x2, x3)|x1 ∈ [−2, 2], x2 ∈ [−2, 2], x3 ∈ [0, 1]} and a set of labels
Y : {0, 1}. We use top indices for attributes of this toy example. The labels are assigned as:{

y = 1 x1 × x2 > 0 ∧ x3 > 0.5
y = 0 otherwise
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Figure 1: Toy IXOR dataset, with x1, x2 being two coordinates and x3 being the size of the point

In this dataset, (x1, x2, x3) clearly have different levels of feature. x3 can be directly used by the
GLM layer as it has a linear decision boundary. (x1, x2) is more complex as they form an XOR
pattern and cannot be linearly separated, thus requiring further decomposition to be made sufficient
for the GLM layer. To make correct decisions, the DNN should use one layer to decompose the
XOR into lower level features, and directly transport x3’s value to into the GLM layer.

2.2 CHARACTERIZE LOW AND HIGH LEVEL FEATURES WITH FEATURE LEVELING

From IXOR we can see that not all features have the same level of ”complexity”. Some could be
directly fed into the GLM layer, others may need to go through one or more hidden layers to be
transformed to features that can directly contribute to decision making.

Thus, instead of using ”low” and ”high” level to characterize features, we propose to frame the
complexity of different features with the definition of feature leveling.

For a dataset D consisting of N i.i.d samples with features and their corresponding labels
{(a1,y1), ..., (aN ,yN )}. We assume that samples ai ∈ D contains features that requires at most
K hidden layers to be transformed to perform optimal inference.

For a DNN trained with K hidden layers and a GLM layer, we define the set of kth level feature
as the set of features that requires k − 1 hidden layers to extract under the current network setup to
be sufficiently utilized by the GLM layer. In the following paragraphs, we denote lk ∈ Lk as the
kth level features extracted from one sample and Lk denotes the set of all kth level feature to be
learned in the target distribution. The rest of high level features are denoted by Hk that should be
passed to the kth layer to extract further level features. In this case, Lk and Hk should be disjoint,
that is Lk

⋂
Hk = ∅. In the case of the toy example, x3 is l1, level one feature, as it is learned by

the first hidden layer to directly transport its value to the GLM layer. (x1, x2) is h1. The XOR can
be decomposed by one hidden layer with sufficient number of parameters to be directly used by the
GLM layer to make accurate decisions. Assuming the first hidden layer f1 has sufficient parameters,
it should take in h1 and output l2.

2.3 HOW THE PROPOSED MODEL SOLVES THE MIXTURE EFFECT AND BOOSTS
INTERPRETATION

However, common FCNN does not separate each level of feature explicitly. Figure 2 shows the
heatmaps of the weight vectors for both FCNN baseline and proposed feature leveling network
trained on the IXOR dataset. We observe from FCNN that x3’s value is able to be preserved by the
last column of the weight vector from the first layer but is mixed with all other features in the second
layer, before passing into the GLM layer. Our proposed model, on the other hand, is able to cleanly
separate x3 and preserve its identity as an input to the GLM layer. In addition, our model is able to
identify that the interaction between (x1, x2) can be captured by one single layer. Thus, the model
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eliminates the second layer and pass (x1, x2) features extracted by the first hidden layer directly to
the GLM layer.

Looking at the results obtained from the toy example, we can clearly see that the proposed model
is able to solve the mixture effect of features and gives out correct levels for features with different
complexities in the context of the original problem. Therefore, the model is more interpretable in that
it creates a clear path of reasoning and the contirbution of each level of features can be understood
from the weight parameters in the GLM.

Figure 2: Weight heatmap of Baseline and proposed model with the initial architecture of 3-16-8-2.
Arrows denotes information flow. x3 in the proposed model is gated from mixing with other features
input to the hidden layer.

3 OUR PROPOSED ARCHITECTURE

Inspired by our definition of feature leveling and to resolve the mixture of features problem, we
design an architecture that is able to recursively filter the kth level features from the kth layer inputs
and allow them to be directly passed to the final GLM layer.

We start with a definition of a FCNN and extend that to our model: we aim to learn a function F
parametrized by a neural network with K hidden layers. The function F can be written as:

F = d
(
fK(fK−1(...f1(a; θ1)); θK)

)
(1)

fk is the kth hidden layer function with parameters θk. d(·) is the GLM model used for either
classification, or regression. Thus, the goal is to learn the function F such that:

R(θ) = 1

N

( N∑
i=1

L(F(ai; θ),yi)
)

θ∗ = argmin
θ

(R(θ)) (2)

In our formulation, each hidden layer can be viewed as separator for the kth level features and
extractor for higher level features. Thus, the output of fk has two parts: lk is the set of kth level
feature extracted from inputs and can be readily transported to the GLM layer for decision making.
And hk is the abstract features that require further transformations by fk. In formal language, we
can describe our network with the following equation (”\”denotes set subtraction):

F = d
(
l1, l2, ...lK , fK(fK−1(...f1(a\l1; θ1))− lK)

)
(3)

In order for fk to learn mutually exclusive separation, we propose a gating system for layer k,
paramatrized by φk, that is responsible for determining whether a certain dimension of the input
feature should be in lk or hk. For a layer with input dimension J , the gate {z1

k, ...z
J
k } forms the

corresponding gate where zjk ∈ {0, 1}. φk is the parameter that learns the probability for the gate
zjk to have value 1 for the input feature at jth dimension to be allocated to hk and lk otherwise.

In order to maintain mutual exclusiveness between lk and hk, we aim to learn φk such that the it
allows a feature to pass to lk if and only if the gate is exactly zero. Otherwise, the gate is 1 and the
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feature goes to hk. Thus, we can rewrite the neural network F with the gating mechanism for the
ith sample ai from the dataset:

F = d
(
B(z1)�ai, B(z2)�f1(z1�ai), ..., fK(zK�fK−1(zK−1�fK−2(...f1(z1�ai)))))

)
(4)

Here,� acts as element-wise multiplication. The functionB acts as a binary activation function that
returns 1 if and only if the value of z is 1 and 0 otherwise. The function B allows level k feature
lk = B(zk)� fk−1 to be filter out if and only if it does not flow into the next layer at all.

Then the optimization objective becomes:

R(θ, φ) = 1

N

( N∑
i=1

(L(F(ai, z; θ, φ,B),yi)

)
+ λ

K∑
k=1

||zk||0 , zk = g(φk) (5)

With an additional L0 regularization term to encourage less hk to pass into the next layer but more
lk to flow directly to the GLM layer. g(φ) act as a transformation function that maps the parameter
φ to the corresponding gate value.

Figure 3: Illustration of the model with three hidden layers. Yellow denotes hidden layer that typi-
cally has ReLU activations and green denotes the kth level feature separated out by the gates. Thick
arrows denote vector form of input and output. The dimension between the input of the hidden
layers and the output can be different.

To achieve this discrete gate construction, we propose to learn the gating parameters under the
context of L0 regularization. To be able to update parameter values through backpropogation, we
propose to use the approximation technique developed by (Louizos et al., 2017) on differentiable L0

regularization. We direct interested readers to the original work for full establishment of approxi-
mating L0 and will summarize the key concept in terms of our gating mechanism below.

Although the gate value z ∈ {0, 1} is discrete and the probability for a certain gate to be 0 or 1 is
typically treated as a Bernoulli distribution, the probability space can be relaxed by the following:
Consider s to be a continuous random variable with distribution q(s|φ) paramaterized by φ. The
gate could be obtained by transformation function m(·) as:

s ∼ q(s|φ), z = m(s) = min(1,max(0, s)) (6)
Then the underlying probability space is continuous because s is continuous and can achieve exactly
0 gate value. The probability for the gate to be non-zero is calculated by the cumulative distribution
function Q:

q(z 6= 0|φ) = 1−Q(s ≤ 0|φ) (7)
The authors furthers use the reparameterization trick to create a sampling free noise ε ∼ p(ε) to
obtain s: s = n(ε, φ) with a differentiable transformation function n(·), and thus g(·) is equivalent
to m ◦ n where ◦ denotes function composition.

Then the objective function under our feature leveling network is:

R(θ, φ) = 1

N

( N∑
i=1

(L(F(ai, z; θ, φ,B, g), yi)
)
+
λ

K

K∑
k=1

(
1−Q(sk ≤ 0|φ)

)
zk = g(φk, ε), g(φk, ε) = m ◦ n(φk, ε), ε ∼ p(ε)

(8)
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4 RELATED WORK

Interpreting existing models: The ability to explain the reasoning process within a neural network
is essential to validate the robustness of the model and to ensure that the network is secure against
adversarial attacks (Moosavi-Dezfooli et al., 2016; Brown et al., 2017; Gehr et al., 2018). In recent
years, Many works have been done to explain the reasoning process of an existing neural network
either through extracting the decision boundary (Bastani et al., 2018; Verma et al., 2018; Wang et al.,
2018; Zakrzewski, 2001), or through a variety of visualization methods (Mahendran & Vedaldi,
2015; Zeiler & Fergus, 2014; Li et al., 2015). Most of those methods are designed for validation
purpose. However, their results cannot be easily used to improve the original models.

Self explaining models are proposed by (Alvarez Melis & Jaakkola, 2018) and it refers to models
whose reasoning process is easy to interpret. This class of models does not require a separate
validation process. Many works have focused on designing self-explaining architectures that can
be trained end-to-end(Zhang et al., 2018; Worrall et al., 2017; Li et al., 2018; Kim & Mnih, 2018;
Higgins et al., 2017). However, most self-explaining models sacrifice certain amount of performance
for interpretability. Two noticeable models among these models are able to achieve competitive
performance on standard tasks while maintaining interpretability. The NIT framework (Tsang et al.,
2018) is able to interpret neural decision process by detecting feature interactions in a Generalized
Additive Model style. The framework is able to achieve competitive performance but is only able to
disentangle up to K groups of interactions and the value K needs to be searched manually during the
training process. The SENN framework proposed by (Alvarez Melis & Jaakkola, 2018) focuses on
abstract concept prototyping. It aggregates abstract concepts with a linear and interpretable model.
Compared to our model, SENN requires an additional step to train an autoencoding network to
prototype concepts and is not able to disentangle simple concepts from more abstract ones in a
per-layer basis.

Sparse neural network training refers to various methods developed to reduce the number of
parameters of a neural model. Many investigations have been done in using L2 or L1 (Han et al.,
2015; Ng, 2004; Wen et al., 2016; Girosi et al., 1995) regularization to prune neural network while
maintaining differentiability for back propagation. Another choice for regularization and creating
sparsity is the L0 regularization. However, due to its discrete nature, it does not support parameter
learning through backpropagation. A continuous approximation of L0 is proposed in regard to
resolve this problem and has shown effectiveness in pruning both FCNN and Convolutional Neural
Networks (CNNs) in an end to end manner (Louizos et al., 2017). This regularization technique
is further applied not only to neural architecture pruning but to feature selections (Yamada et al.,
2018). Our work applies the L0 regularization’s feature selection ability in a novel context to select
maximum amount of features as direct inputs for the GLM layer.

Compared to Residual Structures, our model is able to explain features at different levels and
their contributions separately due to the linear nature of GLM. ResNet (He et al., 2016), Highway
Networka (Srivastava et al., 2015) cannot isolate each level as their skip features are further entan-
gled by polling, non-linear activation and if the following blocks. Different from ResNet with full
connection to all features, we propose to learn which feature to pass to GLM from a probabilistic
perspective.

5 EXPERIMENTS

We validate our proposed architecture through three commonly used datasets - MNIST, and Califor-
nia Housing. For each task, we use the same initial architecture to compare our proposed model and
FCNN baseline. However, due to the gating effect of our model, some of the neurons in the middle
layers are effectively pruned. The architecture we report in this section for our proposed model is
the pruned version after training with the gates. The second to last layer of our proposed models
is labeled with a star to denote concatenation with all previous lk and the output of the last hidden
layer. For example, in the California Housing architecture, both proposed and FCNN baseline start
with 13− 64− 32− 1 as the initial architecture, but due to gating effect on deeper layers, the layer
with 32∗ neurons should have in effect 32 + (13 − 10) + (64 − 28) = 71 neurons accounting for
previously gated features. (13− 10 = 3 for l1, 64− 28 = 36 for l2).
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Table 1: MNIST classification and California Housing price prediction
MNIST California Housing

Model Architecture Accuracy Model Architecture RMSE

FCNN 784-300-100-10 0.984 FCNN 13-64-32-1 0.529
L0-FCNN 219-214-100-10 0.986 GAM - 0.506
SENN (FCNN) 784-300-100 0.963 NIT 8-400-300-200-100-1 0.430
Proposed 291-300*-10 0.985 Proposed 10-28-32* -1 0.477

The two objectives of our experiments are: 1) To test if our model is able to achieve competitive
results, under the same initial architecture, compared to FCNN baseline and other recently proposed
self-explaining models. This test is conducted by comparing model metrics such as root mean square
error (RMSE) for regression tasks, classification accuracy for multi-class datasets. 2) Because our
model can separately account for each layer’s contribution, we can apply the gradient with respect
to each layer and get the level of features our model recognize for each part of the input.

Experiment implementation details are deferred to appendix A7-10.

5.1 DATASETS & PERFORMANCES

The MNIST hand writing dataset (LeCun et al., 2010) consists of pictures of hand written digits
from 0 to 9 in 28×28 grey scale format. We use a 784−300−100−10 architecture for both FCNN
baseline and the proposed model. This is the same architecture used in the original implementations
of (Louizos et al., 2017). Our model is able to achieve similar result, with less number of layers,
as those state-of-the-art architectures using ReLU activated FCNNs . The feature gates completely
eliminated message passing to the 100 neuron layer, which implies that our model only need level 1
and level 2 layers for feature extractions to learn the MNIST datasets effectively.

The California Housing dataset (Pace & Barry, 1997) is a regression task that contains various
metrics, such as longitude and owners’ age to predict the price of a house. It contains 8 features and
one of the features is nominal. We converted the nominal feature into one-hot encoding and there
are 13 features in total. Since California Housing dataset does not contain standard test set, we split
the dataset randomly with 4:1 train-test ratio. Our proposed model could beat the FCNN baseline
with the same initial architecture. Only 3 out of 13 original features are directly passed to the GLM
layer, implying that California Housing’s input features are mostly second and third level.

5.2 DISENTANGLING THE CONTRIBUTION OF EACH LEVEL OF FEATURES

MNIST: With digit 4 as an example, compared to FCNN and SENN-FCNN, our model’s l1 identi-
fies the contour of digit 4 and the corners of 4(larger in gradient) as first level feature for 4. l2 shows
concentrated negative gradients in the middle of the digit which corresponds to the ”hole” in digit 4.

Cal Housing: We compare with NIT in [22]. The left figure shows that our model with differ-
ent colors indicating feature gradients from different layers, NIT’s colors indicate different groups.
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Compared to [22], our model’s l1 identifies ”longitude”(long) as a feature that linearly relates to
housing price since in California, longitude is a major determining factor for housing price com-
paring to latitude. According to the gradients, l2 and l3 emphasizes on different parts of the input,
justifying that our model could divide the features to different sets. However, for [22], gradients of
most groups are similar, indicating that the features are not sufficiently disentangled among groups.
In contrast, our model identifies most important features with stronger weight and zero or minimal
weight for irrelevant ones.

5.3 SCALABILITY

During the training stage, our model requires more computation resources as features from higher
layers are passed to the final layer as well as to the final GLM layer. However, during the inference
time when the gates are learned, each feature input to the neural layer is only computed once due to
the mutual exclusion of our gating setup. The weight parameters related to the ”zeroed out” features
can also be eliminated. In most cases our model results in lower parameter count. In the Appendix
(A2) we show the number of parameters our framework needs for the reported inference models.

5.4 EXTEND TO CONVOLUTIONAL NEURAL NETWORKS

Our framework is also applicable to be applied to convolutional architectures. To modify, we simply
apply the gate to the input features. Appendix (A11 and Figure 5) shows our model can also clearly
isolate features from different levels. To reduce the gated feature size, we apply convolutions with
no activation to reduce dimension while maintaining linearity.

6 STRENGTH IN PRUNING REDUNDANT HIDDEN LAYERS

Due to our proposed model’s ability to encourage linearity, our model is also able to reduce its net-
work complexity automatically by decreasing the number of hidden layers. MNIST classification,
as an example, when the dataset feature level is less than the number of hidden layers, our proposed
model can learn to prune excess hidden layers automatically as the network learns not to pass in-
formation to further hidden layers. As a result, the number of hidden layers are effectively reduced.
Therefore, we believe that our framework is helpful for architectural design by helping researchers
to probe the ideal number of hidden layers to use as well as understanding the complexity of a given
task.

Figure 4: MNIST training performance curve and number of inputs passed to the following hidden
layer (blue denotes the number of features passed to the firs hidden layer. Orange curve denotes the
second).

7 DISCUSSION

In this work we propose a novel architecture that could perform feature leveling automatically to
boost interpretability. We use a toy example to demonstrate the fact that not all features are equal
in complexity and most DNNs take mixed levels of features as input, decreasing interpretability.
We then characterize absolute feature complexity by the number of layers it requires to be extracted
to make GLM decision. To boost interpretability by isolating the kth level features. We propose
feature leveling network with a gating mechanics and an end-to-end training process that allow the
kth level features to be directly passed to the GLM layer. We perfrom various experiments to show
that our feature leveling network is able to successfully separate out the kth level features without
compromising performance.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENT

Table 2: CIFAR-10 Binary
Model Architecture AUC

FCNN 3072-2048-1024-2 0.855
GAM (Tsang et al., 2018) - 0.829
NIT (Tsang et al., 2018) 3072-400-400-1 0.860
SENN (FCNN) 3072-2048-1024-2 0.856
Proposed 3072-130- 1024*-2 0.866

The CIFAR-10 Dataset (Krizhevsky et al., 2014) consists of 32 × 32 RGB images of 10 different
classes. We test our model’s ability to extract abstract concepts. For comparison, we follow the
experiments in the NIT paper and choose the class cat and deer to perform binary classification.
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The resulting architecture shows that for FCNN networks, most of the the two chosen classes are
mainly differentiated through their second level features. None of the raw inputs are used for direct
classification. This corresponds to the assumption that RGB images of animals are relatively high
level features.

A.2 NUMBER OF PARAMETERS REQUIRED FOR THE REPORTED MODELS

Table 3: MNIST
Model Number of parameters

FCNN 266,200
L0-FCNN 240,962
SENN (FCNN) 532,400
Proposed 97,098

Table 4: Cal-Housing
Model Number of parameters

FCNN 2,912
Proposed 1,247

Table 5: CIFAR-10 Binary
Model Number of parameters

FCNN 8,390,656
SENN (FCNN) 16,781,312
Proposed 6,430,460

Due to unable to reproduce a result reported by NIT paper on CIFAR-10, we used the original
architecture that the authors used in the original NIT paper. As a result, we did not include the
number of parameters in our table.

A.3 REVISIT GLM FOR INTERPRETATIONS OF DEEP NEURAL NETWORKS

Consider training a linear model with dataset {X ,Y} where X is the set of features and Y is the
corresponding set of labels. The goal is to learn a function f(x) from (xi, yi) ∈ {X ,Y}subject to a
criteria function Lθ(xi, yi) with parameter set θ.

In a classical setting of Linear Models, θ usually refers to a matrix w such that:

ŷ = f(x) = T (w>x+ β) (9)

Here, ŷ refers to the predicted label given a sample instance of a set of feature x and T refers to
the set of functions such as Logictic, Softmax and Identity. GLM is easy to interpret because the
contribution of each individual dimension of x to the decision output y by its corresponding weight.
Therefore, we hope to emulate GML’s interpretability in a DNN setting - by creating a method to
efficiently back-trace the contribution of different features.

We argue that our proposed architecture is similar to a GLM in that our final layer makes deci-
sion based on the weights assigned to each level of input features. Our model is linear in rela-
tionship to various levels of features. Given k levels of features, our model makes decision with
y = [w>1 l1, w

>
2 l2, ..., w

>
K lK ], each weight parameter wi indicates the influence of that layer. With

this construction, we can easily interpret how each levels of feature contribute to decision making.
This insight can help us to understand whether the given task is more ”low level” or ”high level” and
thus can also help us to understand the complexity of a given task with precise characterization.
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A.4 THE LAST LAYER OF COMMON NEURAL NETWORKS IS A GLM LAYER

The ”classical” DNN architecture consists of a set of hidden layers with non-linear activations and
a final layer that aggregates the result through sigmoid, softmax, or a linear function. The final layer
is in fact similar to the GLM layer since it itself has the same form and optimization objective.

A.5 OUR NOVELTY COMPARED TO RESNET AND OTHER SIMILAR ARCHITECTURE

Compared to Residual Networks, our model is able to explain features at different levels and their
contributions separately due to the linear nature of GLM. ResNet and DenseNet cannot isolate each
level as their skip features are further entangled by polling, non-linear activation and the following
hidden layers. Different from ResNet with full connection to all features, we propose to learn
which feature to pass to GLM from a probabilistic perspective. Specifically, we introduce the l0
regularization for the purpose of performing effective feature leveling. In contrast, Resnet and Dense
Net do not perform such layer wise regularization.

A.6 POWER TO EXTRACT FEATURE COMPLEXITY THROUGH PRUNING

To demonstrate that our network achieves effective pruning and can help practitioners to determine
the complexity of a given problem, we use Cal Housing as an example and train our models with
2-5 hidden layers. Each intermediate hidden layer has 32-32 structure. To prove that our model can
find the optimal structure, we first run the baseline model (without gating) with 2-5 hidden layers
separately. We observe that the mse is 0.2364 for 3 layer, 0.2618 for 4 and 0.4807 for 5. Thus, the 3
layer model is sufficient to make accurate prediction. Then we train our model with gate selections
and observed that when started with more than 4 hidden layers, our model would completely be
reduced to a 3 layer model after training and this is indeed the best structure for the Cal housing
task as verified with the complete models. Thus, we argue that our model is able to discover optimal
number of hidden layer to make accurate prediction of housing price. This further proves that our
model would be helpful for architecture engineers to decide on the optimal number of layers for any
given task.

A.7 REPRODUCING EMPIRICAL RESULTS: GENERAL CONFIGURATION

All models are implemented in TensorFlow(Abadi et al., 2016) and hyperparameters configurations
could be found in our public repository or supplemental code. Model name with citation denotes that
the result is obtained from the original paper. SEEN’s architecture listed is the prototyping network
while we use similar architecture for autoencoder parts. All SENN models are re-implemented with
fully connected networks for comparison purposes.

A.8 DATASET AND PREPROCESSING

MNIST is a dataset that contains 60000 training and 10000 testing of handwriting digits from 0 to
9. Experiment results were tested against the allocated testing set.

CIFAR-10 is a dataset consists of 10 classes of images each with 10000 training and 2000 testing.
We used the allocated testing set for reporting results.

For MNIST, CIFAR-10, we rescaled the color channel with a divisor of 255., to make pixel values
from 0 to 1.

For Cal Housing, we dropped all samples with any empty value entry. Normalize all numerical
values with mean and standard deviation.

The IXOR dataset is generated with the script attached in the supplemental material under
src/independent xor.

A.9 HYPERPARAMETER

The only tunable hyperparameter in our model is the λ which we usually consider values from 0.5 to
0.01. All the λ values to display result is in the model scripts of the attached folder. Generally, lower
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λ are better for training more complicated dataset such as CIFAR-10 to prevent too many Gating at
early stage.

A.10 EXACT NUMBER OF ITERATION RUNS

MNIST 280000
CIFAR-10 680000
California Housing 988000

A.11 RESULT OF OUR MODEL ON CONVOLUTIONAL NEURAL NETWORKS
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Figure 5: MNIST model trained with 4 layers of convolutional neural network structure. We use
the gradients to show different level of features our model extract from each layer. We see that each
class is emphasized on features on different levels. 5, 0, 1 and 8 are more sensitive to l0 feature.
Some other class are more sensitive to other level of features except from the last level. At the same
time, due to feature gating, the highest level feature in the last column is obvious.
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