[Replication]
A Meta-MDP Approach to Exploration for Lifelong
Reinforcement Learning

David Cabatingan* Kendrick Cole* Natalie Delworth*
Department of Computer Science Department of Computer Science Data Science Initiative
Brown University Brown University Brown University

Petar Peshev*
Department of Computer Science
Brown University

Abstract

In A Meta-MDP Approach to Exploration for Lifelong Reinforcement Learning by
Garcia and Thomas [4], the authors propose an improved method of optimizing
exploration in reinforcement learning agents by creating an ‘advisor agent’ that
solves its own MDP over distributions of tasks using meta-learning approaches.
We describe our efforts in replicating the results for the REINFORCE algorithm
using an advisor policy in the CartPole environment. We conclude that the strategy
is highly sensitive to variations in learnable environments, hyperparameters, and
training details, as we are unable to produce results that mirror the conclusions of
the paper.

1 Introduction

Humans have the ability to have a problem or task described to them and then leverage their prior
knowledge about similar tasks or problems to allow them to perform the new task well. Reinforcement
learning methods typically lack this ability, as they are trained from a fabula rasa for each task. They
lack the priors that humans are able to use.

When given a task to learn, it is common for a reinforcement learning agent to have an exploration
vs. exploitation trade-off as it learns the behaviors of the environment it is in while also trying to
maximize reward. That is, it will both have to take actions it believes grants it high reward while also
taking actions it does not have enough information about in order to explore its environment. This
trade-off can be explicit (as with Q-Learning [9]) or implicit (as with RMax [2]), but nevertheless
exists in all domains.

One question that this brings up is: when an agent is exploring, how should it most effectively do
so? In this paper, we will attempt to reproduce the results of Garcia and Thomas [4] (henceforth, the
authors) in their paper A Meta-MDP Approach to Exploration for Lifelong Reinforcement Learning.

They formalize the notion of what it means to learn an optimal exploration policy, and then give
a meta-learning approach where an agent is told how to explore by an advisor agent which learns
over many lifetimes of exploiter agents. We focus on the reproducibility of their empirical results on
learning optimal exploration policies in the CartPole problem domain [3].

*Equal contribution by all authors, ordered by last name.

Preprint. Under review.

2 Background

2.1 Meta-Learning

The problem of meta-learning is a problem of learning about learning. As discussed by Vilalta
and Drissi [8] and Bertinetto et al. [[1]], meta-learning is a process where there is a base-learner and
meta-learner, and the meta-learner’s objective is to maximize the performance of the base-learner.
The specifiec model used by the authors of the paper is one where the meta-learner, the advisor, is
used to dictate the exploration policy of the base-learner, the exploiter.

2.2 e-greedy Exploration

e-greedy Learning is a standard exploration model used where an agent explores with probability
e € [0,1], and otherwise takes the reward maximizing action. It is currently used in many contexts
(SARSA [7]], Q-Learning [9], and DQN [6]). This is the model that the authors use to base their
meta-learner off of, where the meta-learner replaces the e-greedy exploration and dictates how the
base-learner should behave in order to best explore.

2.3 Meta-MDPs

The authors describe a framework for meta-learning that allows for the incorporation of known results
about solving Markov Decision Processes (MDPs). They formulate the problem of learning how to
advise a sequence of agents attempting to solve MDPs over variations on an environment as being
itself an MDP, therefore constructing an MDP in an MDP, a meta-MDP.

3 Analysis

In their paper, Garcia and Thomas [4]] present a new approach to meta-learning that involves using
the meta-learner to only influence the exploration of the base-learner, thus creating a meta-learner
(advisor) that will advise the base-learner on how to explore its environment, but otherwise let the
base-learner learn the environment on its own. For the purposes of reproducing their results, we will
focus on their results obtained using REINFORCE [10]. The implementation of that approach is
captured in the following pseudocode:

Algorithm 1: Garcia and Thomas [4]]’s Agent and Advisor REINFORCE implementation

Initialize advisor policy p at random;
for iyneta € [0, Lneta] do
Sample a task ¢ from task distribution;

tmeta

€:=0.8;

for i € [0, 1] do
Initialize exploiter policy 7 at random;
fort € [0,7] do

Sample action a; from p with probability ¢, else sample from 7;
Take action a; and get reward 7, at state s;;

end

€:=0.995 x ¢;

Update policy 7 with (s¢, a¢,) for each ¢ € [0, T7;

end
if 4,000 %05 == 4 then

| Update policy p with (s, a;,r;) foreach t € [0, 5IT7;
end

end

with the values I,,,¢t, = 500, = 1000, 7 = 1000,~ = 0.99

4 Replication

Our focus was to replicate a particular empirical result from the paper. We chose to focus on the
results described in Section 6.1 of the original paper. To this end, we implemented two architectures
that solve the CartPole environment provided by OpenAl, including the meta-MDP framework. In
this section, we describe the process of implementation; in Section E] we describe our results. In
translating the pseudocode for Algorithm 1 (as provided in the paper) to a real model, it was necessary
to make decisions that were not described in the paper. We have included some of the details in our
above pseudocode for our implementation. Particularly, we had problems with replication owing to
training details, architectures, and possible issues with the CartPole environment.

4.1 Architecture

An important component of any deep learning model is network architecture. The REINFORCE
algorithm is largely agnostic to the particular model used to calculate policy, simply giving an update
rule for its parameters. We chose to initially implement the REINFORCE advisor/exploiter framework
using a neural network with a hidden layer of size 128 for both advisor and exploiter as used in the
PyTorch REINFORCE example implementation for CartPole El We later experimented with differing
values for the hyperparameters (architecture, -y for discounted reward, learning rates). Altering these
hyperparameters led to changes in the performance of the exploiters which we cover in the next
section. An issue we encountered with this method of solving the environments is that often, the
agents learned too quickly to allow the effectiveness of the advisor to be shown at all.

After correspondence with the authors of the original paper to clarify implementation details, we
learned that their implementation was based on a linear function, with features represented via the
Fourier basis as described by Konidaris et al. [S]] which was not mentioned in the original paper. In
light of this, we also experimented with using a linear function on the features after transforming
them into the Fourier basis.

4.2 Training Details

We found a significant challenge in tuning the model to work well. We experimented with large
ranges of hyperparameters and varying network architectures as described above. We reached out
to the authors to discuss what details we may have missed when we were unable to find success in
training an advisor.

Through correspondence with the authors, we learned that they were updating the advisors parameters
after multiple meta-iterations, which was not explicitly stated in the pseudocode of the algorithm.
The purpose of this modification is to reduce the variance in gradient estimates, allowing for more
stable updates. This is critical to consistent training, since the amount of noise introduced by action
selection and variance in environment parameters is significant. Beyond the high variance typically
present in the domain, the advisor generally receives rewards based on actions which it recommended,
but were not carried out, since the agent only takes the recommended action when exploring.

4.3 The CartPole Environment

The CartPole environment is a standard environment from control theory. With the default physics
parameters of the OpenAl Gym implementation of CartPole, there are a variety of algorithms that are
known to achieve optimal performance on the environment within several hundred training episodes.
But less is known about the effect that modifications to the environment have on the ability of agents
to solve the problem.

For the purposes of replication, we modified the environment as described in the original paper,
changing the length and mass of the pole, mass of the cart, and magnitude of the force applied by the
agent. However, the boundary between sets of environment parameters that are solvable and ones that
are not is unclear. We experimented with a variety of ranges for each parameter, and settled on values
that gave environments where agents were likely to have at least some level of success in learning
over time.

2github. com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py

github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py

Progression of Learning Curves Progression of Learning Curves

| —— lter: 0-50 R:18551
Iter: 450-500 R:19281

10009 —— Iter: 0-50 R:460779.2
Iter: 450-500 R:536933.2

e
e
e
il
=
N
o

600

[
400 | RJL 1

Average Return

@
8
==
Average Return
— [N] N (]
o] o N S
gf““h*
— .
‘_=t———j—4
rc‘_:_—q‘—‘_;_‘
v
~Z_
—
o]
=

8
3
N
‘l
i
5
g
,'-1
td_:_q%
p—
<t

<)
=
'S

0 200 400 600 800 1000 0 200 400 600 800 1000
Exploitation Policy Training Episode Exploitation Policy Training Episode
Figure 1: Average training curves during the Figure 2: Average training curves during the
first 50 and last 50 meta-iterations with neural first 50 and last 50 meta-iterations with Fourier
network. Figure 3(b) from original paper. basis. Figure 3(b) from original paper.

We also corresponded with the authors to clarify how the sampling of different tasks was implemented,
which is not specified in the paper, and learned that they experimented to find the bounds on which
CartPole tasks are learnable, and then sampled uniformly from the range of learnable tasks. However,
we did not obtain any exact bounds on environment parameters.

5 Results

5.1 Training Times

We trained the models on a Google Cloud Platfornﬂ virtual machine. We found that the memory
requirement was significant, choosing to use 40 GB of memory to run several training loops simul-
taneously. Given the small size of the models used to solve the environment, we chose to forego
using a GPU to train, finding that using a GPU actually slowed down training. This is likely because
the model was small, so the gain in computational speed was not worth the overhead of the GPU.
Instead, we trained on a VM with 14 vCPUs. Training times depended on the size of the agent models
and their performance - better-performing agents average more steps per episode, taking up to 10
times longer on average. In our implementation, we found the fastest training times were about 1
minute per meta-iteration (1000 iterations of the base-learner), and the slowest training times were 10
minutes per meta-iteration.

5.2 Empirical Results

We encountered difficulty in implementing an advisor agent that was able to achieve the high
performance described in the original paper across both the neural network and Fourier basis im-
plementations of the model and a large range of hyperparameters. Our advisor model was able to
achieve only marginal gains over a random exploration policy.

While working with our hyperparameter tuning, we focused on replicating the behavior found in
Figure 3(b) from the original paper, before running a random agent for comparison to create our
version of Figure 3(a) from the original paper. Figure 3(b) from the original paper shows two plots
on the chart: the return for each iteration of the base-learner averaged over the first 50 meta-iterations
and the return for each iteration of the base-learner averaged over the last 50 meta-iterations. We
used this chart to evaluate if training the advisor was making a difference in the performance of the
base-learner.

When tuning our REINFORCE implementation using the neural network, the best performance we
were able to achieve can be seen in Figure[I] Notice that we were able to tune the base-learner agent
to be able to achieve an average reward of up to 536 per iteration while the implementation in the
original paper only achieved an average reward of about 30, yet there was still no significant change

*https://cloud.google. com

https://cloud.google.com

Exploration Training Progress

210001 ___ advisor Policy

—— Random Exploration
20500 1

20000 A

19500 4

19000 4

sum of Returns

18500 4

18000

17500 4

17000 4

T T T T T
100 200 300 400 500
Training Iteration

o -

Figure 3: Performance during training, comparing advisor policy to random exploration policy.
Figure 3(a) from original paper.

from the beginning of meta-training to the end of meta-training. Thus we can conclude we were
unable to tune the advisor to be useful.

Figure 2] shows the same data plotted for our best-tuned Fourier basis implementation. Notice that the
average return over the iterations now much more closely matches the plots from the paper, but there
is still no substantial gain in base-learner performance over the training of the advisor. From this, it is
clear that the performance gains given by the advisor over time were yet again not as significant in
our experiments as in the ones given by the paper. The most clear indicator of this is the shape of the
average learning curve over the last 50 iterations. In our chart, it is nearly identical to the curve of the
first 50 iterations, albeit with a constant offset. On the other hand, the shape of the last 50 iterations
in the original paper is significantly different from that of the first 50, representing a shift in how the
base-learners progress in their learning. Given this, we are not able to conclude that the results of the
paper have been fully replicated.

However, we believe that an advisor which achieves more significant gains in training exploiters
is not out of reach. From the process of replication, it is clear that small modifications to a variety
of parameters of the training process can have a significant impact on results, and this approach of
training the advisor for learning an exploration policy is very sensitive to hyperparameters.

Figure 3] shows the sum of returns across the entire lifetime of the advisor agent, and for reference
compares it to the sum of returns for a random agent. This is our recreation of their original Figure
3(a), and we can see that learned advisor performance is very similar to that of using a random
advisor.

6 Conclusion

Through all of the testing, we found it very difficult to adapt our parameters and model to one that
would allow the advisor policy to properly learn any useful general information regarding how to
explore the CartPole environment. The biggest suspicion we have for this is that, in the neural
network case, the CartPole environment is easy enough to learn that even with the noise of an advisor
agent, the exploiter policy still managed to learn an effective policy to play the environment. The
rewards of the Fourier basis experiments resembled those of the paper, but the hyperparameters still
seemed to be sensitive enough to not result in sufficient learning on the side of the advisor. For future
efforts to verify the results of the original paper, we would advise more challenging environments
(including the continuous ones explored in the paper) and potentially more tuning of hyperparameters
that will allow for effective learning of the advisor’s policy.

Acknowledgments

We thank Francisco Garcia for providing invaluable information and advice throughout the course of
this project. We thank Jules Becker for his help as a shepherd TA.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

8]

(9]

(10]

L. Bertinetto, J. F. Henriques, P. H. S. Torr, and A. Vedaldi. Meta-learning with differentiable closed-form
solvers. CoRR, abs/1805.08136, 2018. URL http://arxiv.org/abs/1805.08136.

R. I. Brafman and M. Tennenholtz. R-max - a general polynomial time algorithm for near-optimal
reinforcement learning. J. Mach. Learn. Res., 3:213-231, Mar. 2003. ISSN 1532-4435. doi: 10.1162/
153244303765208377. URL https://doi.org/10.1162/153244303765208377.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai gym,
2016.

F. M. Garcia and P. S. Thomas. A meta-mdp approach to exploration for lifelong reinforcement learning.
CoRR, abs/1902.00843, 2019. URL http://arxiv.org/abs/1902.00843|

G. Konidaris, S. Osentoski, and P. Thomas. Value function approximation in reinforcement learning
using the Fourier basis. pages 380-385, August 2011. URL http://lis.csail.mit.edu/pubs/
konidaris-aaailla.pdf.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare, A. Graves, M. Riedmiller,
A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep reinforcement learning. Nature,
518:529-33, 02 2015. doi: 10.1038/nature14236.

R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press, Cambridge, MA, USA,
Ist edition, 1998. ISBN 0262193981.

R. Vilalta and Y. Drissi. A perspective view and survey of meta-learning. Artificial Intelligence Review, 18,
09 2001. doi: 10.1023/A:1019956318069.

C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3):279-292, May 1992. ISSN
1573-0565. doi: 10.1007/BF00992698. URL https://doi.org/10.1007/BF00992698.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Mach. Learn., 8(3-4):229-256, May 1992. ISSN 0885-6125. doi: 10.1007/BF00992696. URL https
//doi.org/10.1007/BF00992696.

http://arxiv.org/abs/1805.08136
https://doi.org/10.1162/153244303765208377
http://arxiv.org/abs/1902.00843
http://lis.csail.mit.edu/pubs/konidaris-aaai11a.pdf
http://lis.csail.mit.edu/pubs/konidaris-aaai11a.pdf
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696

	Introduction
	Background
	Meta-Learning
	-greedy Exploration
	Meta-MDPs

	Analysis
	Replication
	Architecture
	Training Details
	The CartPole Environment

	Results
	Training Times
	Empirical Results

	Conclusion

