
Under review as a conference paper at ICLR 2020

TRAJECTORY GROWTH LOWER BOUNDS FOR RANDOM
SPARSE DEEP RELU NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper considers the growth in the length of one-dimensional trajectories as
they are passed through deep ReLU neural networks, which, among other things,
is one measure of the expressivity of deep networks. We generalise existing re-
sults, providing an alternative, simpler method for lower bounding expected tra-
jectory growth through random networks, for a more general class of weights dis-
tributions, including sparsely connected networks. We illustrate this approach by
deriving bounds for sparse-Gaussian, sparse-uniform, and sparse-discrete-valued
random nets. We prove that trajectory growth can remain exponential in depth
with these new distributions, including their sparse variants, with the sparsity pa-
rameter appearing in the base of the exponent.

1 INTRODUCTION

Deep neural networks continue to set new benchmarks for machine learning accuracy across a wide
range of tasks, and are the basis for many algorithms we use routinely and on a daily basis. One fun-
damental set of theoretical questions concerning deep networks relates to their expressivity. There
remain different approaches to understanding and quantifying neural network expressivity. Some
results take a classical approximation theory approach, focusing on the relationship between the ar-
chitecture of the network and the classes of functions it can accurately approximate (Lu et al. (2017);
Cybenko (1992); Hornik et al. (1989)). Another more recent approach has been to apply persistent
homology to characterise expressivity (Guss & Salakhutdinov (2018)), while Poole et al. (2016)
focus on global curvature, and the ability of deep networks to disentangle manifolds. Other works
concentrate specifically on networks with piecewise linear activation functions, using the number of
linear regions (Montufar et al. (2014)) or the volume of the boundaries between linear regions (Hanin
& Rolnick (2019)) in input space. In 2017, Raghu et al. (2017) proposed trajectory length as a mea-
sure of expressivity; in particular, they consider the expected change in length of a one-dimensional
trajectory as it is passed through Gaussian random neural networks (see Figure 1 for an illustration).
Their primary theoretical result was that, in expectation, the length of a one-dimensional trajectory
which is passed through a fully-connected, Gaussian network is lower bounded by a factor that is
exponential with depth, but not with width.

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

(a) Input

−3 −2 −1

−2.5

−2.0

−1.5

−1.0

−0.5

(b) Layer 6

−4 −2 0 2 4

−25

−20

−15

(c) Layer 12

Figure 1: A circular trajectory, passed through a ReLU network with σw = 2. The plots show the
pre-activation trajectory at different layers projected down onto 2 dimensions.

One-dimensional trajectories and their evolution through deep networks are also of interest in their
own right because they constitute simple data manifolds. Firstly, we commonly assume that the real

1

Under review as a conference paper at ICLR 2020

data which we aim to correctly classify or predict with a deep network lie on one or more manifolds,
and thus design a network to perform appropriately on such a manifold. Secondly, researchers are
beginning to consider whether the output (manifolds) of generator networks could be a good model
for real word data manifolds, for example, as priors for a variety of inverse problems (Manoel et al.
(2017); Huang et al. (2018)). Both of these hypotheses motivate an understanding of how manifolds
are acted upon by deep networks.

Our results in this paper pertain specifically to the ‘trajectory length’ measure of expressivity. We
produce a simpler proof than in the pioneering work of Raghu et al. (2017), which also generalises
their results, deriving similar lower bounds for a broader class of random deep neural networks.

Theoretical work of this nature is important because it allows for more straightforward transfer and
adaptation of prior theoretical results to new contexts of interest. For example, there is a current
surge in research around low-memory networks, training sparse networks, and network pruning.
Sparsely connected networks have shown the capacity to retain very high test accuracy (Frankle &
Carbin (2019); Han et al. (2015)), increased robustness (Ahmad & Scheinkman (2019); Aghasi et al.
(2017)), with much smaller memory footprints, and less power consumption (Yang et al. (2019)).
The approach we take in this work enables us to extend results from dense random networks to sparse
ones. It also allows us to consider the other weight distributions of sparse-Gaussian, sparse-uniform
and sparse-discrete networks (see Definitions 2 - 4).

More specifically we make the following contributions:

Contributions:

1. We provide an alternative, simpler method for lower bounding expected trajectory growth
through random networks, for a more general class of weights distributions (Theorem 2).

2. We illustrate this approach by deriving bounds for sparse-Gaussian, sparse-uniform, and
sparse-discrete random nets. We prove that trajectory growth can be exponential in depth
with these distributions, with the sparsity appearing in the base of the exponential (Corol-
laries 1 - 3).

3. We observe that the expected length growth factor is strikingly similar across the aforemen-
tioned three distributions. This suggests a universality of the expected growth in length for
iid centered distributions determined only by the variance and sparsity (Figure 3).

1.1 NOTATION

We consider feedforward ReLU deep neural networks. We denote a the d-th post-activation layer as
z(d), and the subsequent pre-activation layer as h(d), such that

h(d) = W (d)z(d) + b(d), z(d+1) = φ(h(d)),

where φ(x) := max(x, 0) is applied elementwise. We denote x = z(0).

We use fNN (x;P,Q) to denote a random feedforward deep neural network which takes as input
the vector x, and is parameterised by random weight matrices W (d) with entries sampled iid from
the distribution P , and bias vectors b(d) with entries drawn iid from distribution Q.
Definition 1. A random sparse network with sparsity parameter α, denoted fNN (x;α,P,Q), is
a random feedforward network in which all weights are sampled from a mixture distribution of the
form

wij ∼ αP + (1− α)δ,

where δ is the delta distribution at 0, and P is some other distribution. In other words, weights are
0 with probability 1− α, and sampled from P with probability α. Biases are drawn iid from Q.
Definition 2. A sparse-Gaussian network is a random sparse network fNN (x;α,P,Q), where
P = N (0, σ2

w) and Q = N (0, σ2
b).

Definition 3. A sparse-uniform network is a random sparse network fNN (x;α,P,Q), where
P = U(−Cw, Cw) and Q = U(−Cb, Cb).
Definition 4. A sparse-discrete network is a random sparse network fNN (x;α,P,Q), where P is
a uniform distribution over a finite, discrete, symmetric setW , with cardinality |W| = Nw, and Q
is a uniform distribution over a finite, discrete, symmetric set B, with cardinality |B| = Nb.

2

Under review as a conference paper at ICLR 2020

For a weight matrix W in a random sparse network, with wi denoting the ith row, we define wPi
as

the vector containing only the P-distributed entries of wi.

We define a trajectory x(t) in input space as a curve between two points, say x0 and x1, parameter-
ized by a scalar t ∈ [0, 1], with x(0) = x0 and x(1) = x1, and we define z(d)(x(t)) = z(d)(t) to
be the image of the trajectory in layer d of the network. The trajectory length l(x(t)) is given by the
standard arc length, ∫

t

∣∣∣∣∣∣∣∣dx(t)

dt

∣∣∣∣∣∣∣∣dt.
As in the work by Raghu et al. (2017), this paper considers trajectories with x(t+ dt) having a non-
trivial component perpendicular to x(t) for all t, dt.

Finally, we say a probability density or mass function fX(x) is even if fX(−x) = fX(x) for all
random vectors x in the sample space.

2 EXPECTED TRAJECTORY GROWTH THROUGH RANDOM NETWORKS

Raghu et al. (2017) considered ReLU and hard-tanh Gaussian networks with the standard deviation
scaled by 1/

√
k. Their result with respect to ReLU networks is captured in the following theorem.

Theorem 1 (Raghu et al. (2017)). Let fNN (x;N (0, σ2
w/k),N (0, σ2

b)) be a random Gaussian deep
ReLU neural network with layers of width k, then

E[l(z(d)(t))] ≥ O
(
σw
√
k√

k + 1

)d
· l(x(t)),

for x(t) a 1-dimensional trajectory in input space.

There are, however, other network weight distributions which may be of interest. For example, the
expressivity and generative power of sparse networks are of particular interest in the current mo-
ment, given the current interest in low-memory and low-energy networks, training sparse networks,
and network pruning (Frankle & Carbin (2019); Han et al. (2015); Yang et al. (2019)). We prove
that even for sparse random networks, trajectory growth can remain exponential in depth given suf-
ficiently large initialisation scale σw. Scaling σw by 1/

√
k can yield a width-independent lower

bound on this growth. Moreover, a sufficiently high sparsity fraction (1 − α) results in a lower
bound which, instead of growing exponentially, shrinks exponentially to zero. This is captured by
the following result.

Corollary 1 (Trajectory growth in deep sparse-Gaussian random networks). Let
fNN (x;α,N (0, σ2

w),N (0, σ2
b)) be a sparse-Gaussian, feedforward ReLU network as defined

in Section 1.1, with layers of width k. Then

E[l(z(d)(t))] ≥
(
ασw
√
k√

2π

)d
· l(x(t)), (1)

for x(t) a 1-dimensional trajectory in input space.

Corollary 1 with α = 1 and σw replaced by σw/
√
k recovers a bound which is very similar to the

prior bound by Raghu et al. (2017) in Theorem 1.

Beyond Gaussian weights, we consider other distributions commonly used for initialis-
ing and analysing deep networks. Uniform distributions, for example, still constitute
the default initialisations of linear network layers in both Pytorch and Tensorflow (uni-
form according to U(−1/

√
k, 1/
√
k) in the case of Pytorch, and uniform according to

U(−6/
√
kin + kout, 6/

√
kin + kout) – a.k.a the Glorot/Xavier uniform initialization (Glorot &

Bengio (2010)) – in the case of Tensorflow). We prove an analogous lower bound for uniformly
distributed weights.

3

Under review as a conference paper at ICLR 2020

Corollary 2 (Trajectory growth in deep sparse-uniform random networks). Let
fNN (x;α,U(−Cw, Cw),U(−Cb, Cb)) be a sparse-Uniform, feedforward ReLU network as
defined in Section 1.1, with layers of width k. Then

E[l(z(d)(t))] ≥
(
αCw

√
k

4
√

2

)d
· l(x(t)), (2)

for x(t) a 1-dimensional trajectory in input space.

Another research direction which has gathered some momentum in recent years are quantized or
discrete-valued deep neural networks (Li et al. (2017); Hubara et al. (2016; 2017)), including recent
work using integer valued weights (Wu et al. (2018)). This motivates consideration of discrete
weight distributions, in addition to continuous ones. As an example of such, we prove a similar lower
bound for networks with weights and biases uniformly sampled from finite, symmetric, discrete sets.
Corollary 3 (Trajectory growth in deep sparse-discrete random networks). Let
fNN (x;α,P,Q) be a sparse-discrete random feedforward ReLU network as defined in Sec-
tion 1.1, and layers of width k. Then

E[l(z(d)(t))] ≥
(
α
√
k

2
√

2
·
∑
w∈W |w|
Nw

)d
· l(x(t)) (3)

for x(t) a 1-dimensional trajectory in input space.

In all cases these lower bounds show how to choose the combination of σw and α to guarantee (or
not) exponential growth in trajectory length in expectation at initialisation.

The main idea behind the derivation of these results is to consider how the length of a small piece
of a trajectory (some ‖dz(d)‖) grows from one layer to the next (‖dz(d+1)‖ = ‖φ(hd(t + dt)) −
φ(h(d)(t)‖). In the context of random feedforward networks, we can consider piecewise linear
activation functions as restrictions of dh(d) to a particular support set which is statistically dependent
on h(d). This approach was developed by Raghu et al. (2017). The key to our proof is providing
a more direct and more generally applicable way of accounting for this dependence than originally
provided by Raghu et al. (2017). Specifically, our approach lets us derive the following, more general
result, from which Corollaries 1, 2, and 3 follow easily.
Theorem 2 (Trajectory growth in deep random sparse networks). Let fNN (x;α,P,Q) be a
random sparse network as defined in Section 1.1, with layers of width k. Let P and Q be such
that the joint distribution over a vector of independent elements from both distributions is even. If
E[|u>ŵPi

|] ≥M‖u‖ for any constant vector u, for all i, then

E[l(z(d)(t))] ≥
(
αM
√
k

2

)d
· l(x(t)) (4)

for x(t) a 1-dimensional trajectory in input space.
Remark. It is trivial to amend this result for networks where the width, distribution, and sparsity
varies layer by layer, in which case the lower bound (4) is replaced by

d∏
j=i

(
αjMj

√
kj

2

)
· l(x(t))

Moreover, the bounds from Theorem 2 and Corollaries 1 - 3 hold true in the 0 bias case as well.

3 PROOF OF THEOREM 2

We prove Theorem 2 in three stages: i) We turn the problem into one of bounding from below
the change in the length of an infinitesimal line segment; ii) we account simply and explicitly for
the dependence generated by the ReLU activation; and iii) we break this dependence by taking
advantage of the symmetry characterising this class of distributions. Supporting lemmas can be
found in Appendix A.

4

Under review as a conference paper at ICLR 2020

Proof. Stage 1:

For the first stage of proof, we will closely follow Raghu et al. (2017). We are interested in deriving
a lower bound of the form,

E
[∫

t

∣∣∣∣∣∣∣∣dz(d)(t)

dt

∣∣∣∣∣∣∣∣dt] ≥ C · ∫
t

∣∣∣∣∣∣∣∣dx(t)

dt

∣∣∣∣∣∣∣∣dt, (5)

for some constant C. As noted by Raghu et al. (2017), it suffices to instead derive a bound of the
form

E
[
‖dz(d)(t)‖

]
≥ C‖dx(t)‖,

since integrating over t yields the desired form. Our approach will be to derive a recurrence relation
between ‖dz(d+1)‖ and ‖dz(d)‖, where we refrain from explicitly including the dependence of dz
on t, for notational clarity.

Next, like Raghu et al. (2017), our proof relies on the observation that

dz(d+1) = φ(W (d)z(d)(t+ δt) + b(d))− φ(W (d)z(d)(t) + b(d))

= φ(d)(t+ δt)− φ(d)(t)

= dφ(d),

and that since φ is the ReLU operator, dφ

dh
(d)
j

is either 0 or 1. When z(d) is fixed independently of

W (d) and b(d), then P (h
(d)
j = 0) = 0 (see the preamble to Lemma 6 for more detail on this), and

thus we need only note that dφ(d)
j = dh

(d)
j when h(d)

j > 0, and dφ(d)
j = 0 when h(d)

j < 0. We
define A(d) to be the set of ‘active nodes’ in layer d; specifically,

A(d) := {j : h
(d)
j > 0},

and IA(d) ∈ Rk×k is defined as the matrix with ones on the diagonal entries indexed by set A(d),
and 0 everywhere else. We can then write

‖dz(d+1)‖ = ‖IA(d)(h(d)(t+ dt)− h(d)(t))‖
= ‖IA(d)W (d)dz(d)‖.

From here we will drop the weight index (d) to minimise clutter in the exposition.

It is at this point where we depart from the proof strategy used by Raghu et al. (2017). The next steps
in their proof depend heavily on the weight matrices in the network being Gaussian. For example,
they require that a weight matrix after rotation has the same, i.i.d. distribution as the matrix before
rotation. Instead, our proof can tackle a number of other, non-rotationally-invariant distributions, as
well as sparse networks.

Stage 2:

The next stage of the proof begins by noting that after conditioning on size of the set A,

E[‖IAWdz(d)‖ | |A|] = E[‖Ŵdz(d)‖ | ŵ>i z(d) + b̂i > 0 ∀i, |A|], (6)

where Ŵ ∈ R|A|×k is the matrix comprised of the rows of W indexed by A, and we denote the i-th
row of Ŵ as ŵi, and the i-th entry of b̂ as b̂i. Equation 6 follows since the elements of Wdz(d) are
i.i.d., and A(d) selects all entries whose corresponding entries in h(d) have positive values. Thus,
in expectation, pre-multiplying by the matrix IA(d) is equivalent to considering Ŵdz(d) instead of
IAWdz(d) together with conditioning on the fact that every element in the vector Ŵz(d) + b̂ is
positive.

5

Under review as a conference paper at ICLR 2020

This gives us

E[‖IAWdz(d)‖] = E

 Ê
w1

Ê
w2

· · · E
ŵ|A|


√√√√ |A|∑

i=1

(ŵ>i dz
(d))2

∣∣∣∣ ŵ>i z(d) + b̂i > 0 ∀i, |A|


 (7)

= E

 Ê
w1

Ê
w2

· · · E
ŵ|A|


√√√√ |A|∑

i=1

|ŵ>i dz(d)|2
∣∣∣∣ ŵ>i z(d) + b̂i > 0 ∀i, |A|


 (8)

≥ E


√√√√ |A|∑

i=1

Ê
wi

[|ŵ>i dz(d)| |ŵ>i z(d) + b̂i > 0]2

 , (9)

where (7) follows from the analysis above and the independence of each ŵi, (8) is trivial, and (9)
follows from iteratively applying Jensen’s inequality, after noting that f(x) =

√
x2 + C is convex

for x,C ≥ 0.

Now let Ji denote the (random) index set of the P-distributed entries of ŵi, and let wJi , dz
(d)
Ji
, z

(d)
Ji

denote the restrictions to the indices in Ji of ŵi, dz(d) and z(d) respectively. Then ŵ>i z
(d) =

w>Jiz
(d)
Ji

, and ŵ>i dz
(d) = w>Jidz

(d)
Ji

, such that, after conditioning on Ji, we have that

E[‖Ŵp‖ | ŵ>i z(d) + b̂i > 0 ∀i, |A|] ≥ E


√√√√√√√√
|A|∑
i=1

(∗∗)︷ ︸︸ ︷
E
Ji

[
E
wJi

[|w>Jidz
(d)
Ji
| |w>Jiz

(d)
Ji

+ b̂i > 0, Ji]︸ ︷︷ ︸
(∗)

]
2


︸ ︷︷ ︸

(∗∗∗)

.

(10)

Stage 3:

The third stage of the proof is to work our way from the inside out, lower bounding (∗) first, then
(∗∗), and finally (∗ ∗ ∗).

Consider the expectation in (∗). Having conditioned on Ji, we can define X = w>Jidz
(d)
Ji

and

Y = w>Jiz
(d)
Ji

+ b̂i, such that lower bounding (∗) means lower bounding

E[|X| |Y > 0]. (11)

By assumption the joint distribution over G = [wJi,1, . . . , wJi,k, b̂i]
> is even. The vector H =

[X,Y,wJi,3 . . . , wJi,k, b̂i]
> is obtained by a linear transformation of G (which is invertible since

‖z(d)‖ is not parallel to ‖dz(d)‖). Thus by Lemma 1 (continuous) or Lemma 2 (discrete) this joint
distribution over H is also even, and by Lemma 3 (continuous) or Lemma 4 (discrete), the joint
distribution of [X,Y]> is even too. We can therefore apply Lemma 5 (continuous) or Lemma 6
(discrete) and need only consider E[|X|], which is bounded as

E[|X|] ≥M‖dz(d)
Ji
‖, (12)

again by assumption.

Having bounded (∗), we average over Ji to get (∗∗), for which we can apply Lemma 7 to get

E
Ji

[M‖dz(d)
Ji
‖] ≥ αM‖dz(d)‖. (13)

6

Under review as a conference paper at ICLR 2020

Finally, we can bound (∗ ∗ ∗) as follows

E[‖IAWdz(d)‖] ≥ E
|A|


√√√√ |A|∑

i=1

α2M2‖dz(d)‖2

 (14)

= E
|A|

[√
|A| · α2M2‖dz(d)‖2

]
(15)

≥ E
|A|

[
1√

kαM‖dz(d)‖
· |A| · α2M2‖dz(d)‖2

]
(16)

=
αM‖dz(d)‖√

k
· E[|A|]. (17)

where (14) is obtained by substituting the bound for (∗∗) into the inequality in (10), (15) follows
since there is no dependence on i in the summed terms, and (16) follows since for any 0 ≤ γ ≤
max(γ),

√
γ ≥ 1√

max(γ)
γ, and |A| is at most k.

The proof is concluded by calculating E[|A|]. Since |A| is the number of entries in the vector h(d)

which are positive, and each entry in that vector is an independent, centred random variable, |A| has
a binomial distribution with probability 1/2, and therefore an expected value of k/2. Plugging this
in yields the final recursive relation between ‖dz(d+1)‖ and ‖dz(d)‖,

E[‖dz(d+1)‖] ≥ αM
√
k

2
‖dz(d)‖.

Iterative application of this result starting at the first layer yields the final result.

Let us illustrate the ease with which Corollaries 1, 2 and 3 are obtained. In the case of each distri-
bution, we need to do two things. First, we must verify that the necessary assumption holds in the
case of those distributions P andQ: that the joint distribution over a vector of independent elements
from both distributions is even. Second, we must derive a bound of the form E[|u>w|] ≥ M‖u‖,
where wi ∼ P , and substitute M into Theorem 2.

When P and Q are centred Gaussians, the joint distribution over elements from one or both distri-
butions is a multivariate Gaussian, with an even joint probability density function. Moreover, for
U = u>w, E[|U |] has a closed form solution,

E[|U |] =

√
2σw√
π
‖u‖

When P and Q are centred uniform distributions, the joint distribution is uniform over the polygon
bounded in each dimension by the symmetric bounds [−Cw, Cw] or [−Cb, Cb], and thus is even.
Next, to bound E[|U |], we apply the Marcinkiewicz-Zygmund inequality with p = 1, using the
optimal A1 from Lemmas 8 and 9, to get that

E[|U |] ≥ Cw

2
√

2
‖u‖;

for details of this derivation, see Lemma 10.

Likewise, when P and Q are uniform distributions over discrete, symmetric, finite sets W and B
respectively, we make a discrete analogue of the argument made in the continuous uniform case
to confirm the necessary assumption holds. Bounding E[|U |] in this case also follows from a very
similar argument to that made in the continuous case, detailed in full in Lemma 11, yielding

E[|U |] ≥
∑
w∈W |w|√

2Nw
‖u‖.

7

Under review as a conference paper at ICLR 2020

4 NUMERICAL SIMULATIONS

In this section we demonstrate, through numerical simulations, how the relationships between the
the network’s distributional and architectural properties observed in practice compare with those
described in the lower bounds of Corollaries 1 - 3. To this end, we use as our trajectory a straight
line between two (normalised) MNIST datapoints1, discretized into 10000 pieces. For each combi-
nation of distribution and parameters, we pass the aforementioned line through 100 different deep
neural networks of width 784, and average the results. Specifically, we consider three different net-
works types, sparse-Gaussian, sparse-uniform, and sparse-discrete networks, from Definitions 2 - 4
respectively. For each distribution we consider different values of network fractional density α rang-
ing from 0.1 to 1. In the sparse-Gaussian networks, non-zero weights are sampled fromN (0, σ2

w/k),
and biases from N (0, 0.012). In the sparse-Uniform networks, non-zero weights are sampled from
U(−C/

√
k,C/

√
k), and biases from U(−0.01, 0.01). In the sparse-discrete networks, non-zero

weights are uniformly sampled fromW := (1/
√
k)� {−C,−(C + 1), . . . , C − 1, C}, and biases

from B := {−0.01, 0.01}. We do this for a variety of σw and C values. The results are shown in
Figures 2 and 3.

0 2 4 6 8 10
d

102

104

106

E
[l
(z

(d
) (
t)
)]

α = 0.9

α = 0.7

α = 0.5

α = 0.3

α = 0.1

Figure 2: Expected length of a line connecting two MNIST data points as it passes through a sparse-
Gaussian deep network, plotted at each layer d.

Figure 2 plots the average length of the trajectory at layer d of a sparse-Gaussian network, with
σw = 6 and for different choices of sparsity ranging from 0.1 to 0.9. We see exponential increase
of expected length with depth even in sparse networks, with smaller slopes for smaller α (higher
sparsity). In Figures 3a and 3b we plot the growth ratio of a small piece of the trajectory from one

5 10 15 20
σw

0.0

2.5

5.0

7.5

10.0

12.5

E
[‖d

z(
d
+
1)
‖/
‖d

z(
d
) ‖
]

Sparse Gaussian

Sparse uniform

Sparse discrete

(a)

0.2 0.4 0.6 0.8 1.0
α

0.0

0.5

1.0

1.5

2.0

E
[‖d

z(
d
+
1)
‖/
‖d

z(
d
) ‖
]

Sparse Gaussian

Sparse uniform

Sparse discrete

(b)

Figure 3: Expected growth factor, that is, the expected ratio of the length of any very small line
segment in layer d + 1 to its length in layer d. Figure 3a shows the dependence on the variance of
the weights’ distribution, and Figure 3b shows the dependence on sparsity.

layer to the next, averaged over all pieces, at all layers, and across all 100 networks for a given
distribution. This E[‖dz(d+1)‖/‖dz(d)‖] corresponds to the base of the exponential in our lower
bound. The solid lines reflect the observed averages of this ratio, while the dashed lines reflect

1In this experiment we chose the 101st and 1001st points from the MNIST test set, but the choice of points
does not qualitatively change the results.

8

Under review as a conference paper at ICLR 2020

the lower bound from Corollaries 1, 2, and 3. Figure 3a illustrates the dependence on the standard
deviation of the respective distributions (before scaling by 1/

√
k), with α fixed at α = 0.5. We

observe both that the lower bounds clearly hold, and that the dependence on σw is linear in practice,
exactly as we expect from our lower bounds. Figure 3b shows the dependence of this ratio on the
sparsity parameter α, where we have fixed σw = 2 for all distributions. Once again, the lower
bounds hold, but in this case there is a slight curve in the observed values, not a strictly linear
relationship. The reason for this is that the linear bound we provide is necessary in order to account
for the more pathological cases of dz. This is discussed in more depth in Appendix B.

One striking observation in Figures 3a and 3b is that for a given σw, the observed
E[‖dz(d+1)‖/‖dz(d)‖] matches perfectly across all three distributions, for different values of σw
and different α. This remains true when we repeat the experiments with different datapoints, and
with points chosen uniformly at random in a high-dimensional space, both when the trajectory con-
sidered is a straight line and when it is not (e.g. arcs in two or more dimensions.) See Appendix
C.1 for these figures. Another implication of these experiments is that they give some guidance for
how to trade off weight scale against sparsity depending on the desired network properties. For ex-
ample, Figure 3b considers the initialisation scheme with σw = 2/

√
k. We see that the empirically

observed growth factor from one layer to the next is approximately 1.5 when the matrices are dense
(α = 1), while the growth factor is 1 with α ≈ 0.5, and less than one as α decreases further.

In Appendix C.2 we present some preliminary numerical experiments looking at the extent to which
the results proved and verified for random networks apply to trained networks as well. Our results
indicate that indeed some of the results appear to carry over: trained networks appear to retain the
exponential trajectory growth with depth, and that the trajectory growth factor retains a roughly
linear dependence on σw. However, this expected growth factor is not the same size in random nets
as it is in trained nets with the same σw, nor is the expected growth factor trajectory independent in
trained networks, as it is for random networks.

5 CONCLUSION

Our proof strategy and results generalise and extend previous work by Raghu et al. (2017) to develop
theoretical guarantees lower bounding expected trajectory growth through deep neural networks for
a broader class of network weight distributions and the setting of sparse networks. We illustrate this
approach with Gaussian, uniform, and discrete valued random weight matrices with any sparsity
level.

REFERENCES

Alireza Aghasi, Afshin Abdi, Nam Nguyen, and Justin Romberg. Net-trim: Convex pruning of deep
neural networks with performance guarantee. In Advances in Neural Information Processing
Systems, pp. 3177–3186, 2017.

Subutai Ahmad and Luiz Scheinkman. How can we be so dense? the benefits of using highly sparse
representations. arXiv preprint arXiv:1903.11257, 2019.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Con-
trol, Signals, and Systems (MCSS), 5(4):455–455, 1992.

Dietmar Ferger. Optimal constants in the marcinkiewicz–zygmund inequalities. Statistics & Prob-
ability Letters, 84:96–101, 2014.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=rJl-b3RcF7.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

William H Guss and Ruslan Salakhutdinov. On characterizing the capacity of neural networks using
algebraic topology. arXiv preprint arXiv:1802.04443, 2018.

9

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7

Under review as a conference paper at ICLR 2020

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in neural information processing systems, pp. 1135–1143,
2015.

Boris Hanin and David Rolnick. Complexity of linear regions in deep networks. In International
Conference on Machine Learning, pp. 2596–2604, 2019.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Wen Huang, Paul Hand, Reinhard Heckel, and Vladislav Voroninski. A provably convergent scheme
for compressive sensing under random generative priors. arXiv preprint arXiv:1812.04176, 2018.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In Advances in neural information processing systems, pp. 4107–4115, 2016.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized
neural networks: Training neural networks with low precision weights and activations. The Jour-
nal of Machine Learning Research, 18(1):6869–6898, 2017.

Hao Li, Soham De, Zheng Xu, Christoph Studer, Hanan Samet, and Tom Goldstein. Training
quantized nets: A deeper understanding. In Advances in Neural Information Processing Systems,
pp. 5811–5821, 2017.

Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep learning. In
Advances in Neural Information Processing Systems, pp. 3288–3298, 2017.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of
neural networks: A view from the width. In Advances in neural information processing systems,
pp. 6231–6239, 2017.

Andre Manoel, Florent Krzakala, Marc Mézard, and Lenka Zdeborová. Multi-layer generalized
linear estimation. In 2017 IEEE International Symposium on Information Theory (ISIT), pp.
2098–2102. IEEE, 2017.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep neural
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pp. 2498–2507. JMLR. org, 2017.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. In Advances in neural information processing systems, pp.
2924–2932, 2014.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Expo-
nential expressivity in deep neural networks through transient chaos. In Advances in Neural
Information Processing Systems 29, pp. 3360–3368. 2016.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl Dickstein. On the
expressive power of deep neural networks. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pp. 2847–2854. JMLR.org, 2017.

Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi. Training and inference with integers in deep
neural networks. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=HJGXzmspb.

Haichuan Yang, Yuhao Zhu, and Ji Liu. Energy-constrained compression for deep neural networks
via weighted sparse projection and layer input masking. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=BylBr3C9K7.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, 2017.

10

https://openreview.net/forum?id=HJGXzmspb
https://openreview.net/forum?id=HJGXzmspb
https://openreview.net/forum?id=BylBr3C9K7

Under review as a conference paper at ICLR 2020

A SUPPORTING LEMMAS

Lemma 1. Let fX(x) be an even joint probability density function over random vector X ∈ Rk.
Let A ∈ Rk×k be an invertable linear transformation such that Y = AX . Then the joint density
fY (y) is also even.

Proof. Wlog we assume fX is defined on Rk. To calculate the density over Y ∈ Rk we make a
change of variables such that

fY (y) = fX(A−1y)|A−1|. (18)

Since A is one-to-one, we have that fX(x) = fX(A−1y) for some y, and fX is even, so
fX(A−1y) = fX(−(A−1y)) = fX(A−1(−y)) for all y. Putting this together completes the proof,

fY (y) = fX(A−1y)|A−1| = fX(A−1(−y))|A−1| = fY (−y) (19)

Lemma 2. Let fX(x) be an even joint probability mass function over random vector X ∈ Rk. Let
A ∈ Rk×k be an invertable linear transformation such that Y = AX . Then the joint mass function
fY (y) is also even.

Proof. fX is defined on some discrete, finite, symmetric set X . To calculate the density over Y ∈
Y := {Ap : p ∈ X} we make a change of variables such that

fY (y) =
∑

x∈{Ax=y}

fX(x). (20)

Since A is one-to-one, we have that fX(x) = fX(A−1y) for some y, and fX is even, so
fX(A−1y) = fX(−(A−1y)) = fX(A−1(−y)) for all y. Putting this together completes the proof,

fY (y) =
∑

x∈{Ax=y}

fX(A−1y) =
∑

x∈{Ax=y}

fX(A−1(−y)) = fY (−y) (21)

Lemma 3. Let fX1,...,Xk
(x1, . . . , xk) be an even probability density function. Then

fX1,...,Xk−1
(x1, . . . , xk−1) =

∫∞
−∞ fX1,...,Xk

(x1, . . . , xk)dxk is also even.

Proof.

fX1,...,Xk−1
(x1, . . . , xk−1) =

∫ ∞
−∞

fX1,...,Xk
(x1, . . . , xk)dxk

=

∫ ∞
−∞

fX1,...,Xk
(−x1, . . . ,−xk)dxk

=

∫ ∞
−∞

fX1,...,Xk
(−x1, . . . ,−xk−1, xk)dxk

= fX1,...,Xk−1
(−x1, . . . ,−xk−1)

The first and last equalities follow from the definition of marginalisation of random variables. The
second equality follows from the assumption that fX1,...,Xk

is even, and the third equality follows
from the change of variables: −xk −→ xk.

Lemma 4. Let X1, . . . , Xk be discrete random variables with symmetric support sets X1, . . . ,Xk
respectively, i.e. xi ∈ Xj ⇐⇒ −xi ∈ Xj . Let P (X1 = x1, . . . , Xk = xk) be an even probability
mass function such that P (X1 = x1, . . . , Xk = xk) = P (X1 = −x1, . . . , Xk = −xk) .

Then P (X1 = x1, . . . , Xk−1 = xk−1) is also even.

11

Under review as a conference paper at ICLR 2020

Proof.

P (X1 = x1, . . . , Xk−1 = xk−1) =
∑
xk∈Xk

P (X1 = x1, . . . , Xk = xk) (22)

=
∑
xk∈Xk

P (X1 = −x1, . . . , Xk = −xk) (23)

=
∑

−xk∈Xk

P (X1 = −x1, . . . , Xk = xk) (24)

=
∑
xk∈Xk

P (X1 = −x1, . . . , Xk = xk) (25)

= P (X1 = −x1, . . . , Xk−1 = −xk−1) (26)

Lines 22 and 26 follow from the definition of marginal distributions, (23) follows by assumption,
(24) follows fro a change of variables, and (25) follows since summing over −xk is equivalent to
summing over xk.

Lemma 5. Let X and Y be random variables with an even joint probability density function
fXY (x, y). Then

E[|X| | Y > 0] = E[|X|]

Proof. Letting |X| = Z, we can make a straightforward change of variables to calculate the joint
distribution fZY (z, y), which works out to be

fZY (z, y) = fXY (z, y) + fXY (−z, y)

for z ≥ 0 and y ∈ R. Then we have that

E[Z|Y > 0] =

∫ ∞
0

z · fZ|Y >0(z|y > 0)dz

=

∫ ∞
0

z · fZ,Y >0(z, y > 0)∫∞
0
fY (y)dy

dz

= 2

∫ ∞
0

z · fZ,Y >0(z, y > 0)dz

= 2

∫ ∞
0

z

∫ ∞
0

fZY (z, y)dydz

= 2

∫ ∞
0

z

∫ ∞
0

(fXY (z, y) + fXY (−z, y))dydz.

One the other hand, we have that

E[Z] =

∫ ∞
0

z · fZ(z)dz

=

∫ ∞
0

z · (fX(z) + fX(−z))dz

= 2

∫ ∞
0

z · fX(z)dz

= 2

∫ ∞
0

z ·
∫ ∞
−∞

fXY (z, y)dydz

= 2

∫ ∞
0

z ·
(∫ 0

−∞
fXY (z, y)dy +

∫ ∞
0

fXY (z, y)dy

)
dz

12

Under review as a conference paper at ICLR 2020

Comparing the expressions for E[Z|Y > 0] and E[Z], we can see that they are equal if∫ 0

−∞
fXY (z, y)dy =

∫ ∞
0

fXY (−z, y)dy.

A change of variables on the left hand side from y to −y yields∫ 0

−∞
fXY (z, y)dy =

∫ ∞
0

fXY (z,−y)dy.

and by assumption, we know that fXY (z,−y) = fXY (−z, y) since fXY is even, which completes
the proof.

Lemma 5 implicitly makes use of the fact that P (Y = 0) = 0, which follows from w
Ji

and b̂i being
continuous random variables, and Y = w>JizJi + b̂i, with zJi being fixed independent of wJi . We
similarly make use of the fact that P (Y = 0) = 0 in the application of Lemma 6, though that this
is true is less immediately apparent in the discrete case. For clarity, let us define v := [wJi , b̂i], the
concatenation of wJi and b̂i, and ẑ := [zJi , 1], the concatenation of zJi and 1, such that Y = v>ẑ.
Associated with the discrete distribution over v there are N |Ji|w Nb possible discrete random vectors
in R|Ji|+1. The set of vectors ẑ ∈ R|Ji|+1 orthogonal to such a discrete set is measure zero, and as
such for ẑ fixed independent of the choice of the discrete measure v we have P (v>ẑ = 0) = 0.
If however ẑ were selected with knowledge of the discrete distribution v then one of two cases
will occur; either v>ẑ 6= 0, or ẑ is selected to be from the measure zero set of vectors orthogonal
to any of the N |Ji|w Nb vectors generated by v. In the latter case, the assumptions in Lemma 6 of Y
excluding 0 would not be satisfied. In such an adversarial case there would be a discrepancy between
E[|X| | Y > 0] and E[|X|] which would shrink as the proportion of the N |Ji|w Nb vectors generated
by v to which that particular ẑ is orthogonal.
Lemma 6. Let X and Y be discrete random variables with finite, symmetric support sets X and
Y respectively, where 0 /∈ Y , and an even joint probability mass function fXY (x, y) such that
P (X = x, Y = y) = P (X = −x, Y = −y). Then

E[|X| | Y > 0] = E[|X|]

Proof. Letting |X| = Z, we can make a change of variables to obtain the joint mass function
fZY (z, y), which works out to be

fZY (z, y) =

{
fXY (z, y) + fXY (−z, y) for (z, y) where z ∈ X+ and y ∈ Y
fXY (z, y) for (z, y) where z = 0 and ∈ Y

where X+ is the set of all positive elements of X .

Next, we have that

E[Z|Y > 0] =
∑
z∈X+

zP (Z = z|Y > 0)

=
∑
z∈X+

z
P (Z = z ∩ Y > 0)

P (Y > 0)
(27)

= 2
∑
z∈X+

zP (Z = z ∩ Y > 0) (28)

= 2
∑
z∈X+

∑
y∈Y+

zP (Z = z ∩ Y = y)

= 2
∑
z∈X+

∑
y∈Y+

z (fXY (z, y) + fXY (−z, y)) (29)

On the other hand, we have

13

Under review as a conference paper at ICLR 2020

E[Z] =
∑
z∈X+

zP (Z = z) (30)

=
∑
z∈X+

z (fX(z) + fX(−z)) (31)

= 2
∑
z∈X+

zfX(z) (32)

= 2
∑
z∈X+

∑
y∈Y

zfXY (z, y) (33)

= 2
∑
z∈X+

∑
y∈Y+

zfXY (z, y) +
∑
y∈Y−

zfXY (z, y)

 (34)

Next, we not that ∑
y∈Y−

zfXY (z, y) =
∑
y∈Y+

zfXY (z,−y)

=
∑
y∈Y+

zfXY (−z, y)

Thus the expressions in 29 and 34 are equal, which completes the proof.

Lemma 7 (Expected norm of a random sub-vector). Let u ∈ Rk be a fixed vector and let J ⊆
{1, 2, . . . , k} be a random index set, where the probability of any index from 1 to k appearing in any
given sample is independent and equal to α. Then, defining uJ to be the vector comprised only of
the elements of u indexed by J , we can lower bound the expectation of the norm of this subvector by

EJ [‖uJ‖] ≥ α‖u‖ (35)

Proof. First, we bound the expectation of the norm in terms of the expectation of the squared norm
as follows:

E[‖uJ‖] = E[

√∑
j∈J

u2
J,j] (36)

≥ 1

‖u‖E[
∑
j∈J

u2
J,j] (37)

This follows because for any 0 ≤ γ ≤ max(γ),
√
γ ≥ 1√

max(γ)
γ.

Next we note that
∑
j∈J u

2
J,j is exactly equivalent to

∑k
i=1 u

2
iBi, a weighted sum of k iid Bernoulli

random variables Bi with p = α, and so

E[
∑
j∈J

u2
J,j] =

k∑
i=1

u2
i · E[B] (38)

= ‖u‖2 · α. (39)

Substituting this into inequality 37 completes the proof,

E[‖uJ‖] ≥ α‖u‖

Lemmas 8 and 9 are taken from Ferger (2014), and are restated here for completeness.

14

Under review as a conference paper at ICLR 2020

Lemma 8 (Marcinkiewicz-Zygmund Inequality (Ferger (2014))). Let X1, . . . , Xn be n ∈ N in-
dependent and centered real random variables defined on some probability space (Ω, A, P) with
E[|Xi|p] <∞ for every i ∈ {1, ..., n} and for some p > 0. Then for every p ≥ 1 there exist positive
constants Ap and Bp depending only on p such that

ApE

(n∑
i=1

X2
i

)p/2 ≤ E

[∣∣∣∣ n∑
i=1

Xi

∣∣∣∣p
]
≤ BpE

(n∑
i=1

X2
i

)p/2 (40)

Lemma 9 (Optimal constants for Marcinkiewicz-Zygmund Inequality (Ferger (2014))). Let Γ de-
note the Gamma function and let p0 be the solution of the equation Γ(p+1

2) =
√
π/2 in the interval

(1, 2), i.e. p0 ≈ 1.84742. Then for every p > 0 it holds:

Ap,opt =


2p/2−1, 0 < p ≤ p0

2p/2 · Γ(p+1
2)√
π

, p0 < p < 2

1 2 ≤ p <∞
(41)

and

Bp,opt =

{
1 0 < p ≤ 2

2p/2 · Γ(p+1
2)√
π

, 2 < p <∞
(42)

Lemma 10. Let X =
∑
i αiwi, where wi ∼ U(−C,C) Then

E[|X|] ≥ C

2
√

2
‖α‖

Proof. DefiningXi = αiwi, we can then apply the Marcinkiewicz-Zygmund inequality with p = 1,
using the optimal A1 from Lemma 9 to get that

E[|X|] = E

[∣∣∣∣ k∑
i=1

Xi

∣∣∣∣
]
≥ 1√

2
E


√√√√ k∑

i=1

X2
i


Next we use the same tricks as early in the proof of the Gaussian case:

1√
2
E


√√√√ k∑

i=1

X2
i

 =
1√
2
E


√√√√ k∑

i=1

|Xi|2


≥ 1√
2

√√√√ k∑
i=1

E[|Xi|]2,

where the first equality is trivial and the second follows from a repeated application of Jensen’s
inequality.

To calculate E[|Xi|] we note that Xi = αiwi is uniformly distributed Xi ∼ U(−|αi|C, |αi|C), and
thus

E[|Xi|] =
C|αi|

2
and so

E[|X|] ≥ 1√
2

√√√√ k∑
i=1

E[|Xi|]2

=
1√
2

√√√√C2

4

k∑
i=1

|αi|2

=
C

2
√

2
‖α‖

15

Under review as a conference paper at ICLR 2020

Lemma 11. Let X =
∑
i αiwi, where wi are uniformly sampled from some discrete symmetric

sample spaceW . Then

E[|X|] ≥
∑
w∈W |w|√

2Nw
‖α‖

Proof. Defining Xi = αiwi, we follow exactly the same steps as in the first part of the proof of
Lemma 10, to get that

E[|X|] ≥ 1√
2

√√√√ k∑
i=1

E[|Xi|]2.

To calculate E[|Xi|] we note that Xi = αiwi is uniformly sampled from αiW and thus

E[|Xi|] =
|αi|

∑
w∈W |w|
Nw

and so

E[|X|] ≥ 1√
2

√√√√ k∑
i=1

E[|Xi|]2

=
1√
2

√√√√ (
∑
w∈W |w|)2

N2
w

k∑
i=1

|αi|2

=

∑
w∈W |w|√

2Nw
‖α‖

Lemma 12. Let W,X ⊂ Rk be discrete sets with finite cardinality, and g : W −→ X be a one-
to-one transformation. Then if P (W = w) = P (W1 = w1, . . . ,Wk = wk) = C for all w ∈ W ,
where C is constant, then P (X = x) = C for all x ∈ X

Proof.

P (X = x) =
∑

w∈{g(w)=x}

P (W = w) (43)

= C (44)

Equation 43 is a change of variables, and (44) follows from the fact the there is only ever one term
in the sum, since g is one-to-one.

B NON-LINEAR DEPENDENCE ON α IN THE TYPICAL CASE

One interesting observation which merits further detail is that the observed dependence of the growth
factor on α in practice, shown in Figure 3b, is not exactly linear, but rather the shape of that depen-
dence looks closer to

√
α. The likely source of this qualitative discrepancy is the use of Lemma 7,

to lower bound

EJi [‖dzJi‖] ≥ α‖dz‖, (45)

used in (13) in Stage 3 of the proof of Theorem2. It is straightforward to derive an upper bound for
this same quantity, as

EJi [‖dzJi‖] ≤
√
α‖dz‖, (46)

first using Jensen’s inequality to get that EJi [
√
‖dzJi‖2] ≤

√
E[‖dzJi‖2], and then using the strat-

egy from the proof of Lemma 7 to get E[‖dzJi‖2] = α‖dz‖2.

16

Under review as a conference paper at ICLR 2020

To explore this discrepancy between the observed growth ratio and the lower and upper bounds
from (45) and (46), we consider different fixed vectors dz ∈ Rk, and average over subvectors dzJi .
Specifically, we calculated the expected value of a subvector dzJi containing only the entries of dz
indexed by Ji, where Ji ⊆ {1, 2, . . . , k} is a random index set, where the probability of any index
from 1 to k appearing in any given sample is independent and equal to α. Figure 4a shows the results
when dz a realisation of the uniform distribution over the unit sphere, with different dimensions k.

For even moderately large k, and vectors dz where most entries are roughly this same magnitude,
this upper bound is very tight, such that the expected norm of the subvector generally behaves like√
α‖dz‖, not α‖dz‖. However, it is also possible to construct an example where the lower bound is

0.0 0.2 0.4 0.6 0.8 1.0
α

0.0

0.2

0.4

0.6

0.8

1.0

E
J
i[
‖d

z J
i‖]

Bounds

k = 4

k = 10

k = 20

k = 50

k = 100

(a)

0.0 0.2 0.4 0.6 0.8 1.0
α

0.0

0.2

0.4

0.6

0.8

1.0

E
J
i[
‖d

z J
i‖]

Bounds

k = 4

k = 10

k = 20

k = 50

k = 100

(b)

Figure 4: The dependence on α and k of expected value of a subvector dzJi . In Figure 4a, dz is a
realisation of the uniform distribution over the unit sphere. In Figure 4b, dz has the first entry equal
to 1, and the rest zeros.

tight, by letting dz have only a single non-zero entry, which case E[‖uJ‖] = α‖u‖ (see Figure 4b).
While the former case, with entries of dz mostly of the same order, is typical, especially past the
first few layers of the network, the bound cannot be improved without further assumptions on ‖dz‖.
Further work on quantifying the probabilistic concentration of E[‖uJ‖] close to

√
α‖u‖ would be

an interesting extension of this research.

17

Under review as a conference paper at ICLR 2020

C ADDITIONAL NUMERICAL EXPERIMENTS

C.1 OTHER DATAPOINTS AND TRAJECTORIES WITH RANDOM NETWORKS

5 10 15 20
σw

2.5

5.0

7.5

10.0

12.5

E
[‖d

z(
d
+
1)
‖/
‖d

z(
d
) ‖
]

Sparse Gaussian

Sparse uniform

Sparse discrete

(a)

0.2 0.4 0.6 0.8 1.0
α

0.0

0.5

1.0

1.5

2.0

E
[‖d

z(
d
+
1)
‖/
‖d

z(
d
) ‖
]

Sparse Gaussian

Sparse uniform

Sparse discrete

(b)

5 10 15 20
σw

2.5

5.0

7.5

10.0

12.5

E
[‖d

z(
d
+
1)
‖/
‖d

z(
d
) ‖
]

Sparse Gaussian

Sparse uniform

Sparse discrete

(c)

0.2 0.4 0.6 0.8 1.0
α

0.0

0.5

1.0

1.5

2.0

E
[‖d

z(
d
+
1)
‖/
‖d

z(
d
) ‖
]

Sparse Gaussian

Sparse uniform

Sparse discrete

(d)

Figure 5: Expected growth factor for trajectories joining randomly chosen (normalised) points in
R500. Figure 5a and Figure 5c show the dependence on the standard deviation of the weights’
distribution for a straight and curved trajectory respectively, and Figure 5b and Figure 5d show the
dependence on sparsity with a straight and curved trajectory respectively. In this experiment we
have chosen as the curved trajectory a straight line which has been modified to be a semi-circular
arc in 100 randomly chosen hyperplanes.

C.2 TRAINED NETWORKS

One might consider the extent to which the results proved and numerically verified for random
networks carry over to the context of trained networks.

Here we present a preliminary investigation into trajectory growth through trained networks. For 5
different values of initial σw, we train 20 different randomly initialised dense Gaussian deep ReLU
networks (10 layers, hidden layers of width 32) on MNIST to test accuracy of greater than 95%.
After training we calculate the new, post-training σw of each net. We then sample pairs of data
points of the same class, and of different classes, and connect them with straight lines. These are
the trajectories we pass through the trained networks (each is pass through the 20 trained networks
for each σw, and the growth factor averaged over all these networks). Each trajectory was then
also passed through 20 random Gaussian networks of the same architecture in order to compare the
outcomes.

The results are shown in Figure 6. Two key observations from Figure 6, consistent with Corollaries
1 - 3, are that: there remains a roughly linear dependence of σw in the base of the growth factor and
2) that the expected trajectory growth remains exponential with depth.

Figure 6a illustrates this for paths between data points within and between classes, which is one of
the potential factors that would impact the behaviour of a trained, rather than random, network; we
observe that the average growth factor for trajectories between classes is larger than for trajectories

18

Under review as a conference paper at ICLR 2020

joining points within the same class. However, trajectory growth can remain exponential in depth in
both cases.

Figure 6b shows individual results for individual lines passed through the 20 trained networks per
initialization value σw. In addition to the average behaviour shown in Figure 6a, we observe that
each path shows the same two aforementioned key observations of path length having dependence
proportional to σw. The black curves in Figure 6b are the result of the same procedure, but with
random networks pre-training. Individual data points in Figure 6b come from averaging the post-
training σw and trajectory growth factor over twenty trained networks, each curve in Figure 6b thus
corresponds to one trajectory, for varying values of σw. The variance, over the 20 trained networks,
of both computed values (post-training σw and growth factor), is displayed in the figures, but is
typically smaller than the dot used by the plotting software. Consequently visual gaps between data
points indicate a statistically significant difference between the expected growth factors for different
trajectories. The consistency across different trained networks for each given trajectory is remark-
able given the different random initializations of the networks. Moreover, however, the gaps between
the plots for different trajectories illustrates a key different between trained and untrained networks:
in trained networks, the growth factor is trajectory-dependent, while (as shown in Figure 5), this is
not the case for random networks.

A further numerical exploration of these preliminary results would be necessary to confirm consis-
tency across the many hyperparameters involved in such experiments; for example, which sample
pairs of points are used, what trajectory shape, or what regularisation is used during training. Sim-
ilarly, potential experiments on trained sparse networks may be influenced by the choice of method
for imposing sparsity on the trained network (e.g variational dropout (Molchanov et al. (2017)), l0
regularization (Louizos et al. (2017)), or magnitude pruning (Zhu & Gupta (2017))). Such an ex-
pansive numerical investigation is beyond the scope of the focus of this paper, but may serve as an
interesting alternative direction of inquiry.

1.2 1.4 1.6 1.8 2.0
σw

1.05

1.10

1.15

1.20

1.25

1.30

E[
|d
z(
d

+
1)

|/|
dz

(d
) |]

Points from same classes
Points from different classes

(a)

1.0 1.2 1.4 1.6 1.8 2.0
σw

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

E[
|d
z(
d

+
1)

|/|
dz

(d
) |]

Points from different classes
Points from class 1.0
Points from class 2.0
Points from class 4.0
Points from class 6.0
Points from class 8.0

(b)

Figure 6: Expected growth factor for trajectories passed through trained feedforward ReLU net-
works trained on MNIST.

19

	Introduction
	Notation

	Expected Trajectory Growth Through Random Networks
	Proof of Theorem 2
	Numerical Simulations
	Conclusion
	Supporting Lemmas
	Non-linear dependence on in the typical case
	Additional numerical experiments
	Other datapoints and trajectories with random networks
	Trained networks

