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Abstract—Deep neural networks (DNNs) have
witnessed as a powerful approach in this year
by solving long-standing Artificial intelligence
(AI) supervised and unsupervised tasks exists in
natural language processing, speech processing,
computer vision and others. In this paper, we
attempt to apply DNNs on three different cyber
security use cases: Android malware classifi-
cation, incident detection and fraud detection.
The data set of each use case contains real
known benign and malicious activities samples.
These use cases are part of Cybersecurity Data
Mining Competition (CDMC) 2017. The efficient
network architecture for DNNs is chosen by con-
ducting various trails of experiments for network
parameters and network structures. The exper-
iments of such chosen efficient configurations of
DNNs are run up to 1000 epochs with learning
rate set in the range [0.01-0.5]. Experiments
of DNNs performed well in comparison to the
classical machine learning algorithm in all cases
of experiments of cyber security use cases. This is
due to the fact that DNNs implicitly extract and
build better features, identifies the characteristics
of the data that lead to better accuracy. The
best accuracy obtained by DNNs and XGBoost
on Android malware classification 0.940 and
0.741, incident detection 1.00 and 0.997, and
fraud detection 0.972 and 0.916 respectively.
The accuracy obtained by DNNs varies -0.05%,
+0.02%, -0.01% from the top scored system in
CDMC 2017 tasks.

Index Terms—deep neural networks, cyber se-
curity, Android malware classification, incident
detection, fraud detection.

I. INTRODUCTION

In this era of technical modernization, explo-
sion of new opportunities and efficient potential
resources for organizations have emerged but at
the same time these technologies have resulted in
threats to the economy. In such a scenario proper
security measures plays a major role. Now days,
hacking has become a common practice in organi-
zations in order to steal data and information. This
highlights the need for an efficient system to detect
and prevent the fraudulent activities. cyber security
is all about the protection of systems, networks and
data in the cyberspace.

Malware remains one of the maximum enormous
security threats on the Internet. Malware are the
softwares which indicate malicious activity of the
file or programs. These are unwanted programs
since they cause harm to the intended use of the
system by making it behave in a very different
manner than it is supposed to behave. Solutions
with Antivirus and blacklists are used as the pri-
mary weapons of resistance against these malwares.
Both approaches are not effective. This can only
be used as an initial shelter in real time malware
detection system. This is primarily due to the fact
that both approaches completely fails in detecting
the new malware that is created using polymorphic,
metamorphic, domain flux and IP flux.

Machine learning algorithms have played a pivotal
role in several use cases of cyber security [1].
Fortunately, deep learning approaches are prevailing
subject in recent days due to the remarkable perfor-
mance in various long-standing artificial intelligence
(AI) supervised and unsupervised challenges [2].
This paper evaluates the effectiveness of deep neu-
ral networks (DNNs) for cyber security use cases:
Android malware classification, incident detection



and fraud detection.
The paper is structured as follows. Section II

discusses the related work. Section III discusses
the background knowledge of deep neural networks
(DNNs). Section IV presents the proposed method-
ology including the description of the data set.
Results are displayed in Section V. Conclusion is
placed in Section VI.

II. RELATED WORK

This section discusses the related work for cyber
security use cases: Android malware classification,
incident detection and fraud detection.

Static and dynamic analysis is the most commonly
used approaches in Android malware detection [3].
In static analysis, android permissions are collected
by unpacking or disassembling the app. In dynamic
analysis, the run-time execution characteristics such
as system calls, network connections, power con-
sumption, user interactions and memory utilization.
Mostly, commercial systems use combination of
both the static and dynamic analysis. In Android
devices, static analysis is preferred due to the fol-
lowing advantageous such as less computational
cost, low resource utilization, light-weight and less
time consuming. However, dynamic analysis has the
capability to detect the metamorphic and polymor-
phic malwares. In [4] evaluated the performance of
traditional machine learning classifiers for android
malware detection with using the permission, API
calls and combination of both the API calls and
permission as features. These 3 different feature
sets were collected from the 2510 APK files. All
traditional machine learning classifiers performance
is good with combination of API calls and permis-
sion feature set in comparison to the API calls as
well as permission. [5] proposed MalDozer that use
sequences of API calls with deep learning to detect
Android malware and classify them to their corre-
sponding family. The system has performed well
in both private and public data sets, Malgenome,
Drebin.

Recently, the privacy and security for cloud com-
puting is briefly discussed by [6]. The discussed
various 28 cloud security issues and categorized
those issues into five major categories. [7] proposed
machine learning based anomaly detection that acts
on different layers e.g. the network, the service,

or the workflow layers. [8] discussed the issues in
creating the intrusion detection for the cloud infras-
tructure. Also, how rule based and machine learning
based system can be combined as hybrid system
is shown. [9] discussed the security problems in
cloud and proposed incident detection system. They
showed how incident detection system can perform
well in comparison to the intrusion detection.

In [10] did comparative study of six different
traditional machine learning classifiers in identi-
fying the financial fraud. In [11] discussed the
applicability of data mining approaches for financial
fraud detection.

Deep learning is a sub model of machine learning
technique largely used by researchers in recent days.
This has been applied for various cyber security use
cases [12], [13], [14], [15], [16], [17], [18], [19].
Following, this paper proposes a unique DNN ar-
chitecture which works efficiently on various cyber
security use cases.

III. BACKGROUND

The purpose of this section is to discuss the con-
cepts of deep neural networks (DNNs) architecture
concisely and promising techniques behind to train
DNNs.

Artificial neural networks (ANNs) represent a
directed graph in which a set of artificial neuron
generally called as units in mathematical model that
are connected together with edges. This influenced
by the characteristics of biological neural networks,
where nodes represent biological neurons and edges
represent synapses. A feed forward network is a
type of ANNs.

A feed forward network (FFN) consists of a set
of units that are connected together with edges in a
single direction without formation of a cycle. They
are simple and most commonly used algorithm.
Multi-layer perceptron (MLP) is a subset of FFN
that consist of 3 or more layers with a number of
artificial neurons, termed as units. The 3 layers are
input layer, a hidden layer and output layer. There is
a possibility to increase the number of hidden layers
when the data is complex in nature. So, the number
of hidden layer is parameterized and relies on the
complexity of the data. These units together form
an acyclic graph that passes information or signals
in forward direction from layer to layer without the



TABLE I: Statistics of data set

Task name Total APKs Unique APIs Classes Training Samples Testing Samples
Task 1 61,730 37,107 2 30,897 30,000

Total Samples Features Classes Training Samples Testing Samples
Task 2 100,000 9 2 70,000 30,000
Task 3 100,000 12 3 70,000 30,000

dependence of past input. MLP can be written as
O : Rp × Rq where p and q are the size of the
input vector x = x1, x2, · · · , xp−1, xp and output
vector O(x) respectively. The computation of each
hidden layer Hli can be mathematically formulated
as follows.

HIi(x) = f(wi
Tx+ bi) (1)

HIi : Rdi−1 → Rdi (2)

f : R→ R (3)

wi ∈ Rd×di−1 and b ∈ Rdi , f is an element wise
non-linearity function. This can be either logistic
sigmoid or hyperbolic tangent function. logistic
sigmoid has value either 0 or 1 whereas [1,-1] range
of values for hyperbolic tangent. If we want to
use MLP for multi class classification problem, then
the output usually have multiple neurons. For this,
softmax function can be used. This provides the
probabilities of each class and selecting the highest
one results in crisp value.

sigmoid = σ(z) =
1

1 + e−z
(4)

hyperbolic tan gent = tanh(z) =
e2z − 1

e2z + 1
(5)

SF (Z)i =
ezi∑n
j=1 e

zj
(6)

When then network consist of l hidden layers
then the combined representation of them can be
generally defined as,

HI(x) = HIl(HIl−1(HIl−2(· · · (HI1(x))))) (7)

Fig. 1: Proposed deep neural networks (DNNs) architecture.
All connections and units are not shown, can be considered
as representative of DNNs

This way of stacking hidden layers on top of each
other is typically called as deep neural networks
(DNNs) Each hidden layer uses ReLU as non-linear
activation function. This helps to reduce the state of
vanishing and error gradient issue [12, 13, 14].

A. Rectified Linear Unit (ReLU)

Rectified linear units (ReLU ) have been turned
out to be more proficient and are capable of accel-
erating the entire training process altogether [20].
Selecting ReLU is a more efficient way when
considering the time cost of training the vast amount
of data. The reason being that not only does it
substantially speeds up the training process but
also possesses some advantages when comparing to
the traditional activation function including logistic
sigmoid function and hyperbolic tangent function
[21]. We refer to neurons with this nonlinearity
following [22].

IV. EXPERIMENTS

We consider TensorFlow [23] in conjunction with
Keras [24] as software framework. To increase the
speed of gradient descent computations of deep
learning architectures, we use with GPU enabled



TensorFlow in single NVidia GK110BGL Tesla k40.
All deep learning architectures are trained using the
back propagation through time (BPTT) technique.

A. Description of Data sets

Task 1 (Android Malware Classification): This
data set includes 37,107 unique API information
from 61,730 APK files [25]. These APK (applica-
tion package) files were collected from the Opera
Mobile Store over the period of January to Septem-
ber of 2014. When a user runs an application, a
set of APIs will be called. Each API is related
to a particular permission. The execution of the
API may solely achieve success within the case
that the permission is granted by the user. These
permissions are grouped into Normal, Dangerous,
Signature and Signature Or System in Android.
These permissions are explicitly mentioned in the
AndroidManifest.xml file of APK by application
developers.

Task 2 (Incident Detection): This dataset con-
tains operational log file that was captured from
Unified Threat Management (UTM) of UniteCloud
[26]. UniteCloud uses resilient private cloud infras-
tructure to supply e-learning and e-research services
for tertiary students and staffs in New Zealand.
Unified Threat Management is a rule based real-time
running system for UniteCloud server. Each sample
of a log file contains nine features. These features
are operational measurements of 9 different sensors
in UTM system. Each sample is labeled based on
the knowledge related to the incident status of the
log samples.

Task 3 (Fraud Detection): This dataset is
anonymised data that was unified using the highly
correlated rule based uniformly distributed synthetic
data (HCRUD) approach by considering similar
distribution of features [27]. The detailed statistics
of Task 1, Task 2 and Task 3 data sets are reported
in Table I.

B. Hyper parameter selection for deep neural networks
(DNNs)

To identify suitable parameter for DNNs, we used
moderately sized architecture with one hidden layer
containing 128, 256, 384, 512, 640, 768, 896 and
1024 units. 2 trails of experiment are run for each
parameters related to units. Each experiment is run

till 200 epochs. 1024 units have shown highest 10-
fold cross-validation accuracy for all use cases of
cyber security. Thus we decided to use 1024 units
for the rest of the experiments.

In order to find an optimal learning rate, we
run two trails of experiment till 500 epochs with
learning rate varying in the range [0.01-0.5]. The
highest 10-fold cross validation accuracy was ob-
tained by using the learning rate of 0.1. There was a
sudden decrease in accuracy at learning rate 0.2 and
finally attained highest accuracy at learning rates
of 0.35, 0.45 and 0.45 in comparison to learning
rate 0.1. This accuracy may have been enhanced
by running the experiments till 1000 epochs. As
more complex architectures we have experimented
with, showed less performance within 500 epochs,
we decided to use 0.1 as learning rate for the rest
of the experiments after considering the factors of
training time and computational cost.

C. Deep neural networks (DNNs) topologies

The following network topologies are used in
order to find an optimum network structure for our
input data.

1) DNN 1 layer
2) DNN 2 layer
3) DNN 3 layer
4) DNN 4 layer
5) DNN 5 layer
For all the above network topologies, we run 2

trails of experiments. Each trail of experiment was
run till 500 epochs. It was observed that most of
the deep learning architectures learn the normal
category patterns of input data within 600 epochs.
The number of epochs required to learn the ma-
licious category data usually varies. The complex
architecture networks required large number of iter-
ations in order to reach the best accuracy. Finally,
we obtained the best performed network topology
for each use case. For Task 2 and Task 3, 4 layer
DNNs network performed well. For Task 1, the
performance of 5 layer DNNs network is good
in comparison to the 4 layer DNNs. We decided
to use 5 layer DNNs network for the rest of the
experiments. 10-fold cross validation accuracy of
each DNNs network topology for all use cases is
shown in Table II.



TABLE II: Summary of test results

DNNs topology Task Name Accuracy
DNN 1 layer Task 1 0.712
DNN 2 layer Task 1 0.811
DNN 3 layer Task 1 0.891
DNN 4 layer Task 1 0.964
DNN 5 layer Task 1 0.978
DNN 1 layer Task 2 0.734
DNN 2 layer Task 2 0.852
DNN 3 layer Task 2 0.938
DNN 4 layer Task 2 0.991
DNN 5 layer Task 2 0.992
DNN 1 layer Task 3 0.721
DNN 2 layer Task 3 0.838
DNN 3 layer Task 3 0.912
DNN 4 layer Task 3 0.981
DNN 5 layer Task 3 0.985

D. Proposed Architecture

An intuitive overview of proposed DNNs architec-
ture, Deep-Net for all use cases is shown in Fig 1.
This contains an input layer, 5 hidden layer and out-
put layer. An input layer contains 4896 neurons for
Task 1, 9 neurons for Task 2 and 12 neurons for Task
3. An output layer contains 2 neurons for Task 1, 3
neurons for Task 2 and 2 neurons for Task 3. The
details about the structure and configuration details
of proposed DNNs architecture is shown in Table
III. The units in input to hidden layer and hidden to
output layer are fully connected. DNNs network is
trained using the backpropogation mechanism [2].
The proposed deep neural network is composed of
fully-connected layers, batch normalization layers
and dropout layers.

Fully-connected layers: The units in this layer
have connection to every other unit in the succeed-
ing layer. Thats why this layer is called as fully-
connected layer. Generally, these fully-connected
layers map the data into high dimension. The more
the dimensions the data has the more accurate the
data will be in determining the accurate output. It
uses ReLU as non-linear activation function.

Batch Normalization and Regularization: To

obviate over fitting and speed up DNNs model train-
ing, Dropout (0.01) [28] and Batch Normalization
[29] was used in between fully-connected layers.
A dropout removes neurons with their connections
randomly. In our alternative architectures for Task 1,
the deep networks could easily overfit the training
data without regularization even when trained on
large number samples.

Classification: For classification, the final fully
connected layer follows sigmoid activation function
for Task 1 and Task 2, softmax for Task 3. The
fully connected layer absorb the non-linear kernel
and sigmoid layer output 0 (benign) and 1 (mali-
cious), softmax provides the probability score for
each class. The prediction loss for Task 1 and Task
2 is estimated using binary cross entropy

loss(pd, ed) = − 1

N

N∑
i=1

[edi log pdi + (1− edi) log(1− pdi)]

(8)
where pd is a vector of predicted probability for

all samples in testing data set, ed is a vector of
expected class label, values are either 0 or 1.

The prediction loss for Task 3 is estimated using
categorical-cross entropy

loss(pd, ed) = −
∑

x
pd(x) log(ed(x)) (9)

where ed is true probability distribution, pd is
predicted probability distribution. We have used sgd
as an optimizer to minimize the loss of binary-cross
entropy and categorical-cross entropy.

V. RESULTS

We evaluate proposed DNNs model against clas-
sical machine learning classifier, on three different
cyber security use cases. The first use case is iden-
tifying Android malware based on API information,
the second use case is incident detection over unified
threat management (UTM) operation on UniteCloud
and the third use case is fraud detection in financial
transactions.

During training, we pass matrix of shape
30897*4896 for Task 1, 70000*9 for Task 2 and
70000*9 for Task 3 to the input layer of DNNs.
These inputs are passed to more than one hidden
layer (specifically 5) and output layer contains 1
neuron for Task 1 and Task 2, 3 neurons for Task



TABLE III: Structure and configuration details of proposed DNNs Architecture

Layers Type Output shape Number of units Activation function
Parameters Task1&Task3

(1,369,603),Task2-,(1,369,615)
0-1 Fully-connected (None, 1024) 1024 ReLU 13312
1-2 Batch Normalization (None, 1024) 4096
2-3 Dropout (0.01) (None, 1024) 0
3-4 Fully-connected (None, 768) 768 ReLU 787200
4-5 Batch Normalization (None, 768) 3072
5-6 Dropout (0.01) (None, 768) 0
6-7 Fully-connected (None, 512) 512 ReLU 393728
7-8 Batch Normalization (None, 512) 2048
8-9 Dropout (0.01) (None, 512) 0

9-10 Fully-connected (None, 256) 256 ReLU 131328
10-11 Batch Normalization (None, 256) 1024
11-12 Dropout (0.01) (None, 256) 0
12-13 Fully-connected (None, 128) 128 ReLU 32896
13-14 Batch Normalization (None, 128) 512
14-15 Dropout (0.01) (None, 128) 0

15-16 Fully-connected
Task1- (None, 1),Task2-

(None, 3),Task3- (None, 1)
Task1- 1,Task2- 3

,Task3- 1
Task1&Task3-sigmoid,

Task2-softmax
Task1&Task3-129

,Task2-387

16-17 Batch Normalization (None, 1)
Task1- 1,Task2- 3

,Task3- 1
Task1&Task3-4

,Task2-12

TABLE IV: Summary of test results

Algorithm Task Name Accuracy Precision Recall F-score
XGBoost Android Malware Classification 0.741 0.098 0.215 0.134
XGBoost Incident Detection 0.997 0.999 0.998 0.998
XGBoost Fraud Detection 0.916 0.922 0.916 0.917

DNN 5 layer Android Malware Classification 0.940 0.834 0.868 0.851
DNN 5 layer Incident Detection 1.00 1.00 1.00 1.00
DNN 5 layer Fraud Detection 0.972 0.973 0.972 0.972

3. We pass matrix of shape 30833*4896 for Task 1,
30000*9 for Task 2 and 30000*9 for Task 3. The
output layer contains sigmoid activation function to
classify the sample is malicious or benign in Task
1 and Task 2 and softmax activation function for
Task 3.

The detailed results of proposed DNNs model on
3 different use cases are displayed in Table IV.

XGBoost is short for Extreme Gradient Boosting,
where the term Gradient Boosting is proposed in
the paper Greedy Function Approximation [30].
XGBoost is based on this original model. XGBoost
is used for the given supervised learning problems
(Task1, Task2 and Task3), where we use the training
data (with multiple features) to predict a target
variable. Here ”multi:softmax” is used to perform
the classification. After the observation and experi-
ment, ”max depth” of the tree set it as 20. 10 fold

cross validation is performed to observe the training
accuracy.

Except Task 1, data are loaded as it is using
Pandas1. The ”NaN” values are replaced with 0. In
Task 1 the data is represented as a term - document
matrix, where the vocabulary built using the API
indication numbers in train and test. The scikit-learn
[12] count vectorizer is used to develop the term -
document matrix. On the successive representation,
the data are fed to the XG Booster for prediction.

The winner of CDMC 2017 tasks has acheived
0.9405, 0.9998 and 0.9824 on Task 1, Task 2 and
Task 3 respectively using Random Forest classifier
with Python scikit-learn [12]. The proposed method
has performed well on Task 2 in comparision to the
winner of CDMC 2017 and the accuracy obtained

1https://pandas.pydata.org/



by DNNs varies -0.05%, -0.01% from the winner of
CDMC 2017. The reported results of DNNs can be
further enhanced by simply adding hidden layers to
the existing architecture that we are incompetent to
try. Moreover, the proposed method can implicitly
obtain the best features itself.

VI. CONCLUSION

This paper has evaluated the performance of deep
neural networks (DNNs) for cyber security uses
cases: Android malware classification, incident de-
tection and fraud detection. Additionally, other clas-
sical machine learning classifier is used. In all cases,
the performance of DNNs is good in comparison to
the classical machine learning classifier. Moreover,
the same architecture is able to perform better than
the other classical machine learning classifier in all
use cases. The reported results of DNNs can be
further improved by promoting training or stacking
a few more layer to the existing architectures. This
will be remained as one of the direction towards the
future work.
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