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ABSTRACT

In this article we use rate-distortion theory, a branch of information theory de-
voted to the problem of lossy compression, to shed light on an important problem
in latent variable modeling of data: is there room to improve the model? One
way to address this question is to find an upper bound on the probability (equiva-
lently a lower bound on the negative log likelihood) that the model can assign to
some data as one varies the prior and/or the likelihood function in a latent vari-
able model. The core of our contribution is to formally show that the problem
of optimizing priors in latent variable models is exactly an instance of the varia-
tional optimization problem that information theorists solve when computing rate-
distortion functions, and then to use this to derive a lower bound on negative log
likelihood. Moreover, we will show that if changing the prior can improve the log
likelihood, then there is a way to change the likelihood function instead and attain
the same log likelihood, and thus rate-distortion theory is of relevance to both op-
timizing priors as well as optimizing likelihood functions. We will experimentally
argue for the usefulness of quantities derived from rate-distortion theory in latent
variable modeling by applying them to a problem in image modeling.

1 INTRODUCTION

A statistician plans to use a latent variable model

p(x) =

∫
p(z)`(x|z)dz, (1)

where p(z) is known as the prior over the latent variables, and `(x|z) is the likelihood of the data
conditional on the latent variables; we will often use (p(z), `(x|z)) as a shorthand for the model.
Frequently, both the prior and the likelihood are parametrized and the statistician’s job is to find rea-
sonable parametric families for both - an optimization algorithm then chooses the parameter within
those families. The task of designing these parametric families can sometimes be time consuming
- this is one of the key modeling tasks when one adopts the representation learning viewpoint in
machine learning.

In this article we ask the question of how much p(z) can be improved if one fixes `(x|z) and vicev-
ersa, with the goal of equipping the statistician with tools to make decisions on where to invest her
time. One way to answer whether p(z) can be improved for fixed `(x|z) is to drop the assumption
that p(z) must belong to a particular family and ask how a model could improve in an unrestricted
setting. Mathematically, given data {x1, · · · , xN} the first problem we study is the following opti-
mization problem: for a fixed `(x|z),

min
p(z)
− 1

N

N∑
i=1

log

∫
p(z)`(xi|z)dz (2)

which as we will show, is also indirectly connected to the problem of determining if `(x|z) can be
improved for a given fixed p(z). The quantity being optimized in (2) is called the average negative
log likelihood of the data, and is used whenever one assumes that the data {x1, · · · , xN} have been
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drawn statistically independently at random. Note that in this paper we are overloading the meaning
of p(z): in (1) it refers to prior in the “current” latent variable model in the statistician’s hands, and
in (2) and other similar equations, it refers to a prior that can be optimized. We believe that the
meaning will be clear depending on the context.

Obviously, for any given `(x|z), p(z), from the definition (1) we have the trivial upper bound

min
p(z)
− 1

N

N∑
i=1

log

∫
p(z)`(xi|z)dz ≤ −

1

N

N∑
i=1

log p(xi) (3)

Can we give a good lower bound? A lower bound could tell us how far we can improve the model
by changing the prior. The answer turns out to be in the affirmative. In an important paper, Lindsay
(1983) proved several facts about the problem of optimizing priors in latent variable models. In
particular, he showed that

min
p(z)
− 1

N

N∑
i=1

log

∫
p(z)`(xi|z)dz ≥ −

1

N

N∑
i=1

log p(xi)− sup
z

log

(
1

N

N∑
i=1

`(xi|z)
p(xi)

)
. (4)

This result is very general - it holds for both discrete and continuous latent variable spaces, scalar
or vector. It is also sharp - if you plug in the right prior, the upper and lower bounds match. It also
has the advantage that the lower bound is written as a function of the trivial upper bound (3) - if
someone proposes a latent variable model p(x) which uses a likelihood function `(x|z), the optimal
negative log likelihood value when we optimize the prior is thus known to be within a gap of

sup
z

log

(
1

N

N∑
i=1

`(xi|z)
p(xi)

)
(5)

bits. The individual quantities under the sup

c(z)
∆
=

1

N

N∑
i=1

`(xi|z)
p(xi)

(6)

have a specific functional meaning: they can be regarded as multiplicative factors that tell you how
to modify the prior to improve the log likelihood (see the Blahut-Arimoto algorithm (Blahut, 1972)):

p(z)← p(z)c(z). (7)

Lindsay (1983) derived his results with no apparent reference to earlier published work on rate-
distortion theory, which is how information theorists study the problem of lossy compression Shan-
non (1959). There is no reason for why this connection could be reasonably made, as it is not im-
mediately obvious that the problems are connected; However, the quantity c(z) and the lower bound
(4) in fact can be derived from ideas in Berger’s book on rate-distortion theory (Berger, 1971); in
fact Lindsey’s classical result that the optimal prior in a latent variable model has finite support with
size equal to the size of the training data can be, drawing the appropriate connection, seen as a result
of a similar result in rate-distortion theory also contained in Berger (1971).

With time, the fundamental connection between the log likelihood optimization in latent variable
modeling and the computation of rate-distortion functions became more clear. Although not explic-
itly mentioned in these terms, Rose (1998), Neal & Hinton (1998) restate the optimal log likelihood
as a problem of minimizing the variational free energy of a certain statistical system; this expres-
sion is identical to the one that is optimized in rate-distortion theory. The Information Bottleneck
method of Tishby et al. (1999) is a highly successful idea that exists in this boundary, having created
a subfield of research that remains relevant nowadays (Tishby & Zaslavsky, 2015) (Shwartz-Ziv
& Tishby, 2017). Slonim & Weiss (2002) showed a fundamental connection between maximum
likelihood and the information bottleneck method: “every fixed point of the IB-functional defines a
fixed point of the (log) likelihood and vice versa”. Banerjee et al. (2004) defined a rate-distortion
problem where the output alphabet Z is finite and is jointly optimized with the test channel. By
specializing to the case of where the distortion measure is a Bregman divergence, they showed the
mathematical equivalence between this problem and that of maximum likelihood estimation where
the likelihood function is an exponential family distribution derived from the Bregman divergence.
Watanabe & Ikeda (2015) study a variation of the maximum likelihood estimation for latent variable
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models where the maximum likelihood criterion is instead replaced with the entropic risk measure.
The autoencoder concept extensively used in the neural network community is arguably directly mo-
tivated by the encoder/decoder concepts in lossy/lossless compression. Giraldo & Prı́ncipe (2013)
proposed using a matrix based expression motivated by rate-distortion ideas in order to train au-
toencoders while avoiding estimating mutual information directly. Recently, Alemi et al. (2018)
exploited the β-VAE loss function of Higgins et al. (2017) to explicitly introduce a trade-off be-
tween rate and distortion in the latent variable modeling problem, where the notions of rate and
distortion have similarities to those used in our article.

Latent Variable Modeling is undergoing an exciting moment as it is a form of representation learn-
ing, the latter having shown to be an important tool in reaching remarkable performance in difficult
machine learning problems while simultaneously avoiding feature engineering. This prompted us
to look deeper into rate-distortion theory as a tool for developing a theory of representation learn-
ing. What excites us is the possibility of using a large repertoire of tools, algorithms and theoretical
results in lossy compression in meaningful ways in latent variable modeling; notably, we believe
that beyond what we will state in this article, Shannon’s famous lossy source coding theorem, the
information theory of multiple senders and receivers, and the rich Shannon-style equalities and in-
equalities involving entropy and mutual information are all of fundamental relevance to the classical
problem (1) and more complex variations of it.

The goal of this article is laying down a firm foundation that we can use to build towards the program
above. We start by proving the fundamental equivalence between these two fields by using simple
convexity arguments, avoiding the variational calculus arguments that had been used before. We
then take an alternate path to proving (2) also involving simple convexity arguments inspired by
earlier results in rate-distortion theory.

We then focus on what is a common problem - instead of improving a prior for a fixed likelihood
function, improve the likelihood function for a fixed prior but for a fixed prior. Interestingly, rate-
distortion theory still is relevant to this problem, although the question that we are able to answer
with it is smaller in scope. Through a simple change of variable argument, we will argue that
if the negative log likelihood can be improved by modifying the prior, exactly the same negative
log likelihood can be attained by modifying the likelihood function instead. Thus if rate-distortion
theory predicts that there is scope for improvement for a prior, the same holds for the likelihood
function but conversely, while rate-distortion theory can precisely determine when it is that a prior
can no longer be improved, the same cannot be said for the likelihood function.

Finally, we test whether the lower bound derived and the corresponding fundamental quantity c(z)
are useful in practice when making modeling decisions by applying these ideas to a problem in image
modeling for which there have been several recent results involving Variational Autoencoders.

2 TECHNICAL PRELIMINARIES

In our treatment, we will use notation that is commonly used in information theory. If you have
two distributions P,Q the KL divergence from P to Q is denoted as DKL(P‖Q) which is known
to be nonnegative. For a discrete random variable A, we denote its entropy H(A). If you have two
random variables A, B, their mutual information is

I(A;B)

We assume that the data {x1, · · · , xN} comes from some arbitrary alphabet X which could be
continuous or discrete. For example, it could be the set of all sentences of length up to a given
number of words, the set of all real valued images of a given dimension, or the set of all real valued
time series with a given number of samples.

Let X be a random variable distributed uniformly over the training data {x1, · · · , xN}. The entropy
H(X) of this random variable is logN , and the fundamental lossless compression theorem of Shan-
non tells us that any compression technique for independently, identically distributed data samples
following the law of X must use at least H(X) bits per sample. But what if one is willing to allow
losses in the data reconstruction? This is where rate-distortion theory comes into play. Shannon
introduced the idea of a reconstruction alphabet Z (which need not be equal to X ), and a distortion
function d : X ×Z → R which is used to measure the cost of reproducing an element of X with an
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element of Z . He then introduced an auxiliary random variable Z, which is obtained by passing X
through a channel QZ|X , and defined the rate-distortion function as

R(D) = min
QZ|X :EX,Zd(X,Z)≤D

I(X;Z) (8)

Shannon’s fundamental lossy source coding theorem in essence shows that R(D) plays the same
role as the entropy plays for lossless compression - it represents the minimum number of bits per
sample needed to compress X within a fidelity D, showing both necessity and sufficiency when
the number of samples being compressed approaches infinity. This fundamental result though is
not needed for this paper; its relevance to the modeling problem will be shown in a subsequent
publication. What we will use instead is the theory of how you compute rate-distortion functions.
In particular, by choosing a uniform distribution over {x1, · · · , xN} and by not requiring that these
are unique, we are in effect setting the source distribution to be the empirical distribution observed
in the training data.

3 THE MAIN MATHEMATICAL RESULTS

In latent variable modeling, the correct choice for the distortion function turns out to be

d(x, z)
∆
= − log `(x|z).

The fundamental reason for this will be revealed in the statement of Theorem 1 below. Computing
a rate-distortion function starts by noting that the constraint in the optimization (8) defining the
rate-distortion function can be eliminated by writing down the Lagrangian:

min
QZ|X

{I(X;Z)− αEX,Z log `(X|Z)}

Our first result connects the prior optimization problem (2) with the optimization of the Lagrangian:

Theorem 1 (prior optimization is an instance of rate-distortion) For any α > 0,

min
p(z)
− 1

N

N∑
i=1

log

∫
p(z)`(xi|z)αdz = min

QZ|X
{I(X;Z)− αEX,Z log `(X|Z)} (9)

The two central actors in this result p(z),QZ|X both have very significant roles in both latent variable
modeling and rate-distortion theory. The prior p(z) is known as the “output marginal” in rate-
distortion theory, as it is related to the distribution of the compressed output in a lossy compression
system. On the other hand, QZ|X , which is called the “test channel” in rate-distortion theory, is the
conditional distribution that one uses when optimizing the famous Evidence Lower Bound (ELBO)
which is an upper bound to the negative log likelihood (in contrast, (4) is a lower bound on the
same). In the context of variational autoencoders, which is a form of latent variable modeling,
QZ|X is also called the “stochastic encoder”. An optimal prior according to (2) is also an optimal
output distribution for lossy compression, and conversely, from an optimal test channel in lossy
compression one can derive an optimal prior for modeling.

3.1 PROOF OF THEOREM 1

The proof consists on proving “less than or equal” first in (9) and then “more than or equal”. We start
with the following lemma which is a simple generalization of the Evidence Lower Bound (ELBO).
It can be proved through a straightforward application of Jensen’s inequality.

Lemma 1 For any conditional distribution Q(z|x), p(z), `(x|z), and for any x, and α > 0,

log

∫
p(z)`(x|z)αdz ≥ −

∫
Q(z|x) log

Q(z|x)

p(z)
dz + α

∫
Q(z|x) log `(x|z)dz (10)

Taking the expectation w.r.t. X in (10) (assuming X is uniform over {x1, · · · , xN}), and through
an elementary rearrangement of terms, one derives that for any `(x|z), any conditional distribution
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Q(z|x), any p(z), and defining (X,Z) to be random variables distributed according to 1
NQ(z|x),

min
p(z)
−EX

[
log

∫
p(z)`(X|z)αdz

]
≤ −EX

[
log

∫
p(z)`(X|z)αdz

]
≤ I(X;Z) +DKL

(
N∑
i=1

1

N
Q(z|xi)‖p(z)

)
+ αEX

[∫
Q(z|X)(− log `(X|z))dz

]
(11)

Since we are free to choose p(z) whatever way we want, we set p(z) ∆
=
∑N
i=1

1
NQ(z|xi) thus

eliminating the divergence term in (11). Since this is true for any conditional distribution Q(z|x),
we can take the infimum in the right hand side, proving ”less than or equal”. To prove the other
direction, let p(z) be any distribution and define

Q(z|x)
∆
=

p(z)`(x|z)α∫
p(z)`(x|z)αdz

(12)

Let (X,Z) be distributed according to 1
NQ(z|x). Then

min
Q(z|x)

{I(X;Z) + αEX,Z [− log `(X|Z)]} ≤ I(X;Z) + αEX,Z [− log `(X|Z)]

= −DKL

(
N∑
i=1

Q(z|xi)
N

‖p(z)

)
− EX

[
log

∫
p(z)`(X|z)αdz

]
≤ −EX

[
log

∫
p(z)`(X|z)αdz

]
Since this is true for any distribution p(z), we can take the minimum in the right hand side, com-
pleting the proof.

3.2 LOWER BOUND ON THE NEGATIVE LOG LIKELIHOOD: OPTIMIZING PRIORS

The goal in this section is to derive the lower bound (4). Theorem 1 suggests that the problem of
lower bounding negative log likelihood in a latent variable modeling problem may be related to the
problem of lower bounding a rate-distortion function. This is true - mathematical tricks in the latter
can be adapted to the former. The twist is that in information theory, these lower bounds apply to
(8), where the object being optimized is the test channel QZ|X whereas in latent variable modeling
we want them to apply directly to (1), where the object being optimized is the prior p(z).

The beginning point is an elementary result, inspired by the arguments in Theorem 2.5.3 of Berger
(1971), which can be proved using the inequality log 1

u ≥ 1− u:

Lemma 2 For any p(z), and ν(x) > 0

− log

∫
p(z)`(x|z)αdz ≥ − log ν(x) + 1−

∫
p(z)

`(x|z)α

ν(x)
dz.

Taking the expectation with respect to X in Lemma 2 we obtain

−EX log

∫
p(z)`(X|z)αdz ≥ −EX log ν(X) + 1−

∫
p(z)EX

[
`(X|z)α

ν(X)

]
dz

For any τ(x) > 0, if you substitute ν(x) = τ(x)
∫
p(z)EX

[
`(X|z)α
τ(X)

]
dz then we obtain

−EX
[
log

∫
p(z)`(X|z)αdz

]
≥ −EX [log τ(X)]− log

(∫
p(z)EX

[
`(X|z)α

τ(X)

]
dz

)
We now eliminate any dependence on p(z) on the right hand side by taking the sup, and then take
the min over p(z) on both sides, obtaining that for any τ(x) > 0,

min
p(z)
−EX

[
log

∫
p(z)`(X|z)αdz

]
≥ −EX [log τ(X)]− sup

z
log

(
EX

[
`(X|z)α

τ(X)

]
dz

)
The p(z) we eliminated refers to the “optimal” prior, which we don’t know (hence why we want to
eliminate it). We now bring the ”suboptimal” prior: since the above is true for any τ(x) > 0, set
τ(x) = p(x), where p(x) is the latent variable model (1) for a given (p(z), `(x|z)). Note now that
the expression on the left is a log likelihood only for α = 1, so choosing this value and assuming
that X is distributed uniformly over the training data {x1, · · · , xN}, then we obtain
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Theorem 2 (information theoretic lower bound on negative log likelihood)

min
p(z)
− 1

N

N∑
i=1

log

∫
p(z)`(xi|z)dz ≥ −

1

N

N∑
i=1

log p(xi)− sup
z

log

(
1

N

N∑
i=1

`(xi|z)
p(xi)

)
. (13)

This bound is sharp. If you plug in the p(z) that attains the min, then the sup is exactly zero, and
conversely, if p(z) does not attain the min, then there will be slackness in the bound. It’s sharpness
can be argued in a parallel manner to the original rate-distortion theory setting. In particular, by
examining the variational problem defining the latent variable modeling problem, we can deduce
that an optimal p(z) must satisfy

1

N

N∑
i=1

`(xi|z)∫
p(z)`(xi|z)dz

{
= 1 if p(z) > 0
≤ 1 if p(z) = 0

Thus for an optimal p(z) the sup in Theorem 2 is exactly zero and the lower bound matches exactly
with the trivial upper bound (3).

The reader may be wondering: what if we don’t know p(xi) exactly? We reinforce that p(xi)
represents not the true model, but rather the proposed model for the data. Still, when performing
variational inference, the most typical result is that we know how to evaluate exactly a lower bound
to p(xi) (this is true when we are using the Evidence Lower Bound or importance sampling (Burda
et al., 2016)). In that case, you obtain an upper bound to the gap supz c(z) (see (6) for the definition
of c(z)). If the statistician wants to get a tighter bound, she can simply increase the number of
samples in the importance sampling approach; by Theorem 1 of Burda et al. (2016) we know that
this methodology will approximate p(xi) arbitrarily closely as the number of samples grows.

3.3 OPTIMIZING THE LIKELIHOOD FUNCTION FOR A FIXED PRIOR.

A very common assumption is to fix the prior to a simple distribution, for example, a unit variance,
zero mean Gaussian random vector, and to focus all work on designing a good likelihood function
`(x|z). Can rate-distortion theory, which we have only shown relevant to the problem optimizing a
prior, say anything about this setting?

We assume that Z is an Euclidean space in some dimension k. Assume that we start with a latent
variable model (p(z), `(x|z)), and then we notice that there is a better choice p̂(z) for the same
`(x|z), in the sense that

− 1

N

N∑
i=1

log

∫
p̂(z)`(xi|z)dz < −

1

N

N∑
i=1

log

∫
p(z)`(xi|z)dz (14)

Further assume that there is a function g : Z → Z with the property that if Z is a random vari-
able distributed as p(z), then Y = g(Z) is a random variable distributed as p̂(y). For example,
p(z) may describe a unit variance memoryless Gaussian vector and p̂(y) may describe a Gaussian
vector with a given correlation matrix; then it is known that there is a linear mapping g(z) such
that Y has distribution p̂(y). Another example is when both p(z) and p̂(z) are product distributions
p(z) = Πk

i=1pi(z), p̂(z) = Πk
i=1p̂i(z), where each of the components pi(z), p̂i(z) are continuous

distributions. Then from the probability integral transform and the inverse probability integral trans-
form we can deduce that such a g(z) exists. We do point out that when p(z) is discrete (for example,
when Z is finite), or when it is a mixture of discrete and continuous components, then such g(z) in
general cannot be guaranteed to exist.

We regard p, p̂ as probability measures used to measure sets from the σ-algebra σ(Z). In the
Appendix, we prove that if g(z) is a measurable function g : (Z, σ(Z)) → (Z, σ(Z)) the two
following Lebesgue integrals are identical:∫

`(xi|g(z))dp(z) =

∫
`(xi|y)dp̂(y) (15)

The last integral in (15) is identical to ith integral in the left hand side of (14). Therefore, one
can define a new ˆ̀(x|z) = `(x|g(z)), and the negative log likelihood of the latent variable model
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(p(z), ˆ̀(x|z)) will be identical to that of (p̂(z), `(x|z)). A key consequence is that if the lower bound
in Theorem 2) shows signs of slackness, then it automatically implies that the likelihood function
admits improvement for a fixed prior. It is important to note that this is only one possible type of
modification to a likelihood function. Thus if rate-distortion theory predicts that a prior cannot be
improved any more, then this does not imply that the likelihood function cannot be improved - it
only means that there is a specific class of improvements that are ruled out.

4 EXPERIMENTAL VALIDATION

The purpose of this section is to answer the question: are the theoretical results introduced in this
article of practical consequence? The way we intend to answer this question is to pose a hypothetical
situation involving a specific image modeling problem where there has been a significant amount of
innovation in the design of priors and likelihood functions, and then to see if our lower bound, or
quantities motivated by the lower bound, can be used, without the benefit of hindsight to help guide
the modeling task.

We stress that it makes little sense to choose an “optimal” likelihood function or “optimal” prior
if the resulting model overfits the training data. We have taken specific steps to ensure that we do
not overfit. The methodology that we follow, borrowed from (Tomczak & Welling, 2018), involves
training a model with checkpoints, which store the best model found from the standpoint of its
performance on a validation data set. The training is allowed to go on even as the validation set
performance degrades, but only up to a certain number of epochs (50), during which an even better
model may be found or not. If a better model is not found within the given number of epochs, then
the training is terminated early, and the model used is the best model as per the checkpoints. We
then apply our results on that model. Thus, if it turns out that our mathematical results suggest that
it is difficult to improve the model, then we have the best of both worlds - a model that is believed to
not overfit while simultaneously is close to the best log likelihood one can expect (when optimizing
a prior) or a model that cannot be improved much more in a specific way (when improving the
likelihood function).

The main analysis tool revolves around the quantity c(z) defined as c(z) ∆
= 1

N

∑N
i=1

`(xi|z)
p(xi)

. We
know that if supz log c(z) > 0, then it is possible to improve the negative log likelihood of a
model by either changing the prior while keeping the likelihood function fixed, or by changing the
likelihood while keeping the prior fixed, the scope of improvement being identical in both cases, and
upper bounded by supz log c(z) nats. We also know that if supz log c(z) = 0 then the prior cannot
be improved any more (for the given likelihood function), but the likelihood function may still be
improved.

Thus supz log c(z) is in principle an attractive quantity to help guide the modeling task. If the latent
space Z is finite, as it is done for example with discrete variational autoencoders (Rolfe, 2017),
then it is straightforward to compute this quantity provided Z is not too large. However if Z is
continuous, in most practical situations computing this quantity won’t be possible.

The alternative is to choose samples {z1, · · · , zm} ⊂ Z in some reasonable way, and then to com-
pute some statistic of {c(zi)}mi=1. Recall that the individual c(z) elements can be used to improve
the prior using the Blahut-Arimoto update rule:

log p(z)← log p(z) + log c(z)

If log c(z) is close to a zero (infinite) vector, then the update rule would modify the prior very little,
and because rate-distortion functions are convex optimization problems, this implies that we are
closer to optimality. Inspired on this observation, we will compute the following two statistics:

max
i
{log c(zi)}mi=1 , Ŝtd {log c(zi)}mi=1 (16)

which we will call the glossy statistics, in reference to the fact that they are supporting a generative
modeling process using lossy compression ideas. The core idea is that the magnitude of these
statistics are an indicator of the degree of sub optimality of the prior. As discussed previously,
sub-optimality of a prior for a fixed likelihood function immediately implies sub-optimality of the
likelihood function for a fixed prior. These statistics of will vary depending on how the sampling
has been done, and thus can only be used as a qualitative metric of the optimality of the prior.
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In Variational Inference it is a common practice to introduce a ”helper” distribution Q(z|x) and to
optimize the ELBO lower bound of log likelihood log p(x) ≥

∫
Q(z|x) log p(z)`(x|z)

Q(z|x) dz. Beyond
its use as an optimization trick, the distribution Q(z|x), also called the ”encoder” in the variational
autoencoder setting (Kingma & Welling, 2014), plays an important practical role: it allows us to
map a data sample x to a distribution over the latent space.

Note that one wants to find values of z for which log c(z) is ”large”. One way to find good such
instances is to note that the dependency on z is through `(x|z). Additionally note that Q(z|x) in
essence is designed to predict for a given x values for z for which `(x|z) will be large. Our proposal
thus is to set zi to be the mean of Q(z|xi) for i = 1, · · · , N (and thus m = N ). There are many
additional variants of this procedure that will in general result in different estimates for the glossy
statistics. We settled on this choice as we believe that the general conclusions that one can draw
from this experiment are well supported by this choice.

4.1 EXPERIMENTS AND INTERPRETATION

Our experimental setup is an extension of the publicly available source code that the authors of
the VampPrior article (Tomczak & Welling, 2018) used in their work. We use both a synthetic
dataset as well as standard datasets. The purpose of the synthetic dataset is to illustrate how the
statistics proposed evolve during training of a model where the true underlying latent variable model
is known. For space reasons, the results for the synthetic dataset are included in the Appendix. The
data sets that we will use are image modeling data sets are Static MNIST (Larochelle & Murray,
2011), OMNIGLOT (Lake et al., 2015), Caltech 101 Silhouettes (Marlin et al., 2010), Frey Faces
(FreyFaces), Histopathology (Tomczak & Welling, 2016) and CIFAR (Krizhevsky, 2009). In order
to explore a variety of prior and likelihood function combinations we took advantage of the publicly
available source code that the authors of the VampPrior article (Tomczak & Welling, 2018) used in
their work, and extended their code to create sample from Z using the strategy described above, and
implemented the computation of the c(z) quantities, both of which are straightforward given that the
ELBO optimization gives us Q(z|x) and an easy means to evaluate c(z) for any desired value of z.

For the choice of priors, we use the standard zero mean, unit variance Gaussian prior as well as
the variational mixture of posteriors prior parametric family from (Tomczak & Welling, 2018) with
500 pseudo inputs for all experiments. Our choices for the autoencoder architectures are a sin-
gle stochastic layer Variational Autoencoder (VAE) with two hidden layers (300 units each), a two
stochastic layer hierarchical Variational Autoencoder (HVAE) described in (Tomczak & Welling,
2018) as well as a PixelHVAE, a variant of PixelCNN (van den Oord et al., 2016) which uses the
HVAE idea described earlier. Each of these (VAE, HVAE, PixelHVAE) represent distinct likelihood
function classes. We are aware that there are many more choices of priors and models than consid-
ered in these experiments; we believe that the main message of the paper is sufficiently conveyed
with the restricted choices we have made. In all cases the dimension of the latent vector is 40 for
both the first and second stochastic layers. We use Adam (Kingma & Ba, 2015) as the optimization
algorithm. The log test likelihood reported is not an ELBO evaluation - it is obtained through im-
portance sampling (Burda et al., 2016). We refer the reader to this Tomczak & Welling (2018) for a
precise description of their setup.

We now refer the reader to Table 1. We want the reader to focus on this prototypical setting:

A modeling expert has chosen a Gaussian unit variance, zero mean prior p(z) (denoted by ”stan-
dard”), and has decided on a simple likelihood function class (denoted by ”VAE”). Can these
choices be improved?

The goal is to answer without actually doing the task of improving the parametric families. This
setting is the first row in all of the data sets in Table 1. We first discuss the MNIST experiment (top
left in the table). The modeling expert computes the max and Std statistics, and notices that they are
relatively large compared to the negative log likelihood that was estimated. Given the discussion in
this paper, the expert can conclude that the negative log likelihood can be further improved by either
updating the prior or the likelihood function.

A modeling expert may then decide to improve the prior (second row of the table), or improve
the likelihood function (third and fifth rows of the table). We see that in all these cases, there are
improvements in the negative log likelihood. It would be incorrect to say that this was predicted by

8



Published as a conference paper at ICLR 2019

Table 1: Glossy statistics for our experiments - test NLL in nats. Lower is better. L denotes the
number of stochastic layers.

staticMNIST Omniglot

likelihood function
class prior class NLL glossy

max stat
glossy
std stat NLL glossy

max stat
glossy
std stat

VAE standard 88.44 15.7 34.3 107.83 18.4 27.3
VampPrior 85.78 12.1 37.6 107.62 19.0 25.6

HVAE standard 86.21 11.8 38.3 103.40 16.3 33.3
(L = 2) VampPrior 84.96 9.8 40.1 103.78 14.6 31.6

PixelHVAE standard 80.41 7.3 3.0 90.80 10.3 1.0
(L = 2) VampPrior 79.86 7.7 4.1 90.99 8.0 0.8

Caltech 101 Frey Faces

likelihood function
class prior class NLL glossy

max stat
glossy
std stat NLL glossy

max stat
glossy
std stat

VAE standard 128.63 79.4 160.5 1808.19 89.3 331.5
VampPrior 127.64 63.6 143.7 1746.33 82.3 349.1

HVAE standard 125.82 59.4 204.8 1798.42 170.2 347.0
(L = 2) VampPrior 121.02 47.2 210.7 1761.82 152.0 325.5

PixelHVAE standard 85.79 18.4 7.4 1687.10 45.7 55.1
(L = 2) VampPrior 86.34 20.8 7.5 1676.04 9.4 33.8

Histopathology cifar10

likelihood function
class prior class NLL glossy

max stat
glossy
std stat NLL glossy

max stat
glossy
std stat

VAE standard 3295.07 167.8 324.5 13812.19 198.1 1325.3
VampPrior 3286.61 69.5 348.9 13817.33 628.1 1303.9

HVAE standard 3149.11 127.3 475.3 13400.96 479.3 1634.4
(L = 2) VampPrior 3127.67 92.2 484.9 13399.95 195.6 1539.0

PixelHVAE standard 2636.78 -0.0 0.0 10915.34 178.4 105.5
(L = 2) VampPrior 2625.61 -0.1 0.0 10961.67 246.7 36.3

9
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the glossy statistics in the first row; instead what we can say is that this was allowed - it can still
be the case that the statistics allow an improvement on the negative log likelihood, but a particular
enhancement proposal does not result on any improvement. Next notice that the std glossy statistic
for the fifth row is much smaller than the in the previous configurations. The suggestion is that
improving the negative log likelihood by improving the prior is becoming harder. Indeed, in the
sixth row we see that a more complex prior class did not result in an improvement in the negative
log likelihood. As discussed previously, this does not mean that the likelihood function class can no
longer be improved. It does mean though that a particular class of enhancements to the likelihood
function - in particular, transforming the latent variable with an invertible transformation - will likely
not be fruitful directions for improvement.

The general pattern described above repeats in other data sets. For example, for Caltech 101 the
reduction of the max and Std glossy statistics when PixelHVAE is introduced is even more pro-
nounced than with MNIST, suggesting a similar conclusion more strongly. A result that jumps out
though is the PixelHVAE result for Histopathology, which prompted us to take a close look - here the
statistics are actually zero. It turns out that this is an instance where the likelihood function learned
to ignore the latent variable, a phenomenon initially reported by Bowman et al. (2016). It also serves
as a cautionary tale: the glossy statistics only tell us whether for a fixed likelihood function one can
improve the prior, or whether for a fixed prior, a certain type of changes to the likelihood function
will actually be an improvement to the negative log likelihood. If the likelihood function is ignoring
the latent variable, any prior would be optimal, and no transformation of that prior would result in a
better likelihood function, which is what the statistics report. We stress that the exact numbers being
reported matter little - a simple change in the sampling process for producing the {z1, · · · , zm} will
immediately result in different numbers. However our experimentation with changing the sampling
process resulted in essentially the same general conclusion we are deriving above.

Based on these experiments, we claim that the information theoretically motivated quantity log c(z)
and its associated glossy statistics (16) do provide useful guidance in the modeling task, and given
how easy they are to estimate, could be regularly checked by a modeling expert to gauge whether
their model can be further improved by either improving the prior or the likelihood function.

5 CONCLUSIONS AND FUTURE WORK

The main goal for this article was to argue strongly for the inclusion of rate-distortion theory as
key for developing a theory of representation learning. In the article we showed how some classical
results in latent variable modeling can be seen as relatively simple consequences of results in rate-
distortion function computation, and further argued that these results help in understanding whether
prior or likelihood functions can be improved further (the latter with some limitations), demonstrat-
ing this with some experimental results in an image modeling problem. There is a large repertoire
of tools, algorithms and theoretical results in lossy compression that we believe can be applied in
meaningful ways to latent variable modeling. For example, while rate-distortion function computa-
tion is an important subject in information theory, the true crown jewel is Shannon’s famous source
coding theorem; to-date we are not aware of this important result being connected directly to the
problem of latent variable modeling. Similarly, rate-distortion theory has evolved since Shannon’s
original publication to treat multiple sources and sinks; we believe that these are of relevance in
more complex modeling tasks. This research will be the subject of future work.
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6 APPENDIX

6.1 SUPPORTING PROOF FOR EQUATION (15)

In the paper we argue that if one is able to improve a latent variable model by changing the prior,
then the same improvement can be attained by changing the likelihood function instead. In order to
prove this, we claimed that if g(z) is a measurable function g : (Z, σ(Z)) → (Z, σ(Z)) the two
following Lebesgue integrals are identical:∫

`(xi|g(z))dp(z) =

∫
`(xi|y)dp̂(y) (17)

This can be seen as follows: for a measurable set B ∈ σ(Z), by definition

p([g(Z) ∈ B]) = p̂(B)

and therefore setting for any given real η, B = [`(xi|Y ) > η]

p̂([`(xi|Y ) > η]) = p([g(Z) ∈ {y : `(xi|y) > η}]) = p([`(xi|g(Z)) > η])

One definition of the Lebesgue integral is through the Riemann integral:∫
`(xi|g(z))dp(z) =

∫ ∞
0

p([`(xi|g(Z)) > η])dη =

∫ ∞
0

p̂([`(xi|Y ) > η])dη =

∫
`(xi|y)dp̂(y)

This demonstrates (15).

6.2 EXPERIMENTS ON A SYNTHETIC DATA SET

The theme of the article is on how we can use information theoretic methods to understand how
much more a model can be improved. One way to illustrate this is to create training and test data
samples coming from a known “true” latent variable model, and then to showcase the statistics that
we are proposing in the context of a training event. As the training goes on, we would hope to see
how the statistics ”close in” the true test negative log likelihood.

For the synthetic data set, in the true latent variable model we have a discrete latent alphabet Z =
{0, 1, · · · , 9}, each denoting an digit that we took from a static binarized MNIST data set (Larochelle
& Murray, 2011). We assume that p(z) is the uniform distribution overZ , and we assume that `(x|z)
is a probability law which adds i.i.d. Bernoulli noise (p = 0.02) to each of the binary pixels of the
digit associated with latent variable z. Following the MNIST data set structure, we created a data set
with 50K training, 10K validation and 10K test images by sampling from the latent variable model.
The 10K test images have a true negative log likelihood score of 78.82.

We refer the reader to Figure 1 for our experimental results on the synthetic data set. For this ex-
periment, we consider only a single stochastic layer VAE with the standard zero mean, unit variance
prior. This figure is a graphical depiction of the upper and lower bounds (3) and (4), applied to the
test data set negative log likelihood. The figure shows how the estimate of the lower bound starts
to approach the true negative log likelihood as the epochs progress - the gap between the upper and
lower bounds is exactly

sup
z∈{0,1,··· ,9}

log

(
1

N

N∑
i=1

`(xi|z)
p(xi)

)
(18)

12



Published as a conference paper at ICLR 2019

20 40 60 80 100 120
70

75

80

85

90

95

100

epoch

T
e

s
t 

N
L

L
 (

n
a

ts
)

True test NLL: 78.82 nats

20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

g
lo

s
s
y
 s

td
 s

ta
ti
s
ti
c

Test NLL (glossy lower bound estimate)

Test NLL (upper bound)

Glossy standard deviation statistic

True test NLL

Figure 1: Upper bound and glossy lower bound estimate on negative log likelihood as the training
evolves for the synthetic data set. The glossy standard deviation statistic is also overlaid.

which can be computed exactly since the latent variable space Z is finite. The figure also overlays
on a second axis the square root of the glossy variance statistic which we may also call the glossy
std statistic.

What we were hoping to show is that the statistics initially show a large potential margin for im-
provement which eventually shows convergence. As we can see from the Figure, this intuition is
confirmed. The gap between upper and lower bounds (18) starts large, but does improve significantly
as the training progresses. We also see improvements in the standard deviation statistic, although
they are not as dramatic as those in the upper and lower bound gaps - we suspect we had to wait
longer to see this effect.
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