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ABSTRACT

In this paper we study image captioning as a conditional GAN training, propos-
ing both a context-aware LSTM captioner and co-attentive discriminator, which
enforces semantic alignment between images and captions. We investigate the
viability of two discrete GAN training methods: Self-critical Sequence Training
(SCST) and Gumbel Straight-Through (ST) and demonstrate that SCST shows
more stable gradient behavior and improved results over Gumbel ST.

1 INTRODUCTION 1

Significant progress has been made on the task of generating image descriptions using neural image
captioning. Early systems were traditionally trained using cross-entropy (CE) loss minimization
(Karpathy & Li, 2015; Xu et al., 2015). Later, reinforcement learning techniques (Ranzato et al.,
2015; Liu et al., 2017) based on policy gradient methods were introduced to directly optimize met-
rics such as CIDEr or SPICE Anderson et al. (2016). Along a similar idea, Rennie et al. (2017)
introduced Self-critical Sequence Training (SCST), a light-weight variant of REINFORCE, which
produced state of the art image captioning results using CIDEr as an optimization metric. To ad-
dress the problem of sentence diversity and naturalness, image captioning has been explored in the
framework of GANs. However, due to the discrete nature of text generation, GAN training remains
challenging and has been generally tackled either with reinforcement learning techniques (Hjelm
et al., 2017; Rajeswar et al., 2017; Dai et al., 2017) or by using Gumbel softmax relaxation (Jang
et al., 2016), as in (Shetty et al., 2017; Kusner & Hernández-Lobato, 2016).

Despite impressive advances, image captioning is far from being a solved task. It remains a chal-
lenge to satisfactorily bridge the semantic gap between image and captions to produce diverse, cre-
ative, and “human-like” captions. Although applying GANs to image captioning for promoting
human-like captions is a very promising direction, the discrete nature of the text generation process
makes it challenging to train such systems. The recent work of Caccia et al. (2018) showed that the
task of text generation for current discrete GAN models is difficult, often producing unsatisfactory
results, and requires therefore new approaches and methods.

In this paper, we propose a novel GAN-based framework for image captioning that enables better
language composition, more accurate compositional alignment of image and text, and light-weight
efficient training of discrete sequence GAN based on SCST.

2 ADVERSARIAL CAPTION GENERATION

In this Section we present our novel captioner and discriminator models. We employ SCST for
discrete GAN optimization and compare it to the approach based on the Gumbel relaxation trick.

Context Aware Captioner Gθ. For caption generation we use an LSTM with visual attention (Xu
et al., 2015; Rennie et al., 2017) together with a visual sentinel Lu et al. (2017) to give the LSTM a
choice to attend to visual or textual cues. While Lu et al. (2017) feeds at each step t only an average
image feature, we feed a mixture of image and visual sentinel features from t−1 to make the LSTM
aware of the last attentional context (called Context Aware attention), as seen in Fig. 1. This simple
modification gives significant gains, as the captioner is now aware of the visual information used in
the past. As reported in Tab. 1, a captioner with an adaptive visual sentinel Lu et al. (2017) gives
99.7 CIDEr versus 103.3 for our Context Aware Attention on COCO validation set.
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Attention Model CE RL

Att2All Rennie et al. (2017) 98.5 115.7
Sentinel Lu et al. (2017) 99.7
Context Aware (ours) 103.3 118.6

Table 1: Performance of captioning systems given
various attention mechanisms, Att2All Rennie et al.
(2017), sentinel attention Dai et al. (2017) and Con-
text Aware attention on COCO validation set. Models
are built using cross-entropy (CE) and SCST Rennie
et al. (2017) (RL). Context aware attention brings large
gains in CIDEr for both CE and RL trained models.
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Figure 1: Context Aware Captioner. At each step the
LSTM is fed with the textual information and a mix-
ture of image features and visual sentinel from the pre-
vious steps to make the LSTM aware of the past atten-
tional context.

Co-attention Pooling Discriminator Dη . Previous works jointly embed the modalities at the sim-
ilarity computation level, referred to as Joint-Emb (e.g., Dai et al. (2017)). Instead, we propose to
jointly embed image and caption in earlier stages using a co-attention model Lu et al. (2016) and
compute similarity on the attentive pooled representation. We call it a Co-attention discriminator,
see Fig. 2. In Section 3 we compare Dη with Joint-Emb of (Dai et al., 2017; Shetty et al., 2017),
where EI is the average spatial pooling of CNN features and ES the last state of LSTM.
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Figure 2: Proposed co-attention discriminator (Co-att) architecture. By jointly embedding image and caption
with a co-attention model, the discriminator has the ability to modulate the image features depending on the
caption and vice versa.

I

Gsθ

G∗
θ

ws

ŵ
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Figure 3: SCST Training of GAN-captioning.

TrainingDη . Our discriminatorDη is not only trained to distinguish real captions from fake (gener-
ated), but also to detect when images are coupled with random unrelated real sentences, thus forcing
it to check sentence composition and semantic relationship between image and caption. We solve
the following optimization problem: maxη LD(η), where the loss LD(η) is

EI,w∈S(I) logDη(I, w) +
1

2
EI,ws∼pθ(.|I) log (1−Dη(I, w

s)) +
1

2
EI,w′ /∈S(I) log (1−Dη(I, w

′)) ,

where w is the real sentence, ws is sampled from generator Gθ (fake caption), and w′ is real but
random caption.

Training Gθ. The generator is optimized to solve maxθ LG(θ), where LG(θ) =
EI logDη(I,Gθ(I)). The main difficulty is the discrete, non-differentiables nature of the prob-
lem. We propose to solve this issue by adopting SCST Rennie et al. (2017) and compare it to the
Gumbel relaxation approach of Jang et al. (2016).

Training Gθ using SCST. SCST is a REINFORCE variant that uses the reward under the decoding
algorithm as baseline. In this work, the decoding algorithm is a “greedy max”, selecting at each
step the most probable word from argmax pθ(.|ht). For a given image, a single sample ws of
the generator is used to estimate the full sequence reward, L I

G(θ) = log(D(I, ws)) where ws ∼
pθ(.|I). Using SCST, the gradient is estimated as follows:

∇θL I
G(θ)≈(logDη(I, w

s)− logDη(I, ŵ)︸ ︷︷ ︸
Baseline

)∇θ log pθ(ws|I)=
(
log

Dη(I, w
s)

Dη(I, ŵ)

)
∇θ log pθ(ws|I),
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where ŵ is obtained using greedy max (see Fig. 3). Note that the baseline does not change the
expectation of the gradient but reduces the variance of the estimate. Also, observe that the GAN
training can be regularized with any NLP metric rNLP (such as CIDEr) to enforce closeness of the
generated captions to the provided ground truth on the n-gram level; the gradient then becomes:

(
log

Dη(I, w
s)

Dη(I, ŵ)
+λ (rNLP(w

s)−rNLP(ŵ))

)
∇θlog pθ(ws|I).

There are two main advantages of SCST over other policy gradient methods used in the sequential
GAN context: 1) The reward in SCST can be global at the sentence level and the training still
succeeds. In other policy gradient methods, e.g., Dai et al. (2017); Liu et al. (2017), the reward
needs to be defined at each word generation with the full sentence sampling, so that the discriminator
needs to be evaluated T times (sentence length). 2) In (Dai et al., 2017; Liu et al., 2017; Hjelm
et al., 2017), many Monte-Carlo rollouts are needed to reduce variance of gradients, requiring many
forward-passes through the generator. In contrast, due to a strong baseline, only a single sample
estimate is enough in SCST.

Training Gθ using the Gumbel Trick. An alternative way to deal with the discreteness of
the generator is by using Gumbel re-parameterization Jang et al. (2016). Define the soft sam-
ples yjt , for t = 1, . . . T (sentence length) and j = 1, . . .K (vocabulary size) such that: yjt =
Softmax

(
1
τ (logitsθ(j|ht, I) + gj)

)
, where gj are samples from Gumbel distribution, τ is a tem-

perature parameter. We experiment with Gumbel Soft and Gumbel Straight-Through (Gumbel ST)
approach, recently used in (Shetty et al., 2017; Kusner & Hernández-Lobato, 2016).

For Gumbel soft, we use the soft samples yt as LSTM input wst+1 at the next time step and
in Dη , i.e., ∇θL I

G(θ) = ∇θ log(Dη(I, y1:T )). For Gumbel ST, we define one-hot encodings
Ot = OneHot(argmaxj y

j
t ) and approximate the gradients ∂Oj

t /∂y
j′

t = δjj′ . To sample from
Gθ we use the hard Ot as LSTM input wst+1 at the next time step and in Dη , hence the gradient
becomes ∇θL I

G(θ) = ∇θ log(Dη(I,O1:T )) Observe that this loss can be additionally regularized
with Feature Matching (FM):

L I
G(θ) = log(Dη(I, y1:T ))− λIF

(
||EI(w∗1:T )− EI(y1:T )||2

)
− λSF

(
||Ew∗1:T (I)− Ey1:T (I)||

2
)
,

where (w∗1:T ) is the ground truth caption corresponding to image I , and EI and ES are co-attention
image and sentence embeddings (as defined earlier). Feature matching enables us to incorporate
more granular information from discriminator representations of the ground truth caption, similar to
how SCST reward can be regularized with CIDEr.

3 EXPERIMENTS

Experimental Setup. We evaluate our proposed method and the baselines on COCO dataset Lin
et al. (2014). Each image is encoded by a resnet-101 He et al. (2016), followed by a spatial adaptive
max-pooling to ensure a fixed size of 14×14×2048. An attention mask is produced over the 14×14
spatial locations, resulting in a spatially averaged 2048-dimension representation. LSTM hidden
state, image, word, and attention embedding dimensions are fixed to 512 for all models. Before the
GAN training, all the models are first pretrained with the cross entropy (CE) loss.

Experimental Results. Tab. 2 presents results on COCO dataset for context-aware captioner, two
discriminator architectures (ours Co-att, and baseline Joint-Emb) and all training algorithms (SCST,
Gumbel ST, and Gumbel Soft). For reference, we also include results for CE (trained only with
cross entropy) and CIDEr-RL (pretrained with CE, followed by SCST to optimize CIDEr), as well
as results from non-attentional models.

As expected, CIDEr-RL greatly improves the language metrics as compared to CE model (101.6 to
116.1 CIDEr), leading to a significant drop in the vocabulary coverage (from 9.2% to 5.1%). On
the other hand, the underperformance of GANs over CIDEr-RL in terms of CIDEr is also expected
since GAN’s objective is to make the sentences more descriptive and human-like, deviating from
the vanilla ground truth captions. The results also show the advantage of our Co-att architecture
as compared to the Joint-Emb one, showing the importance of the early joint embedding of the
image/caption pair for better similarity computation. Regularizing GANs with CIDEr additionally
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Table 2: Performance of the models mentioned in this work on COCO dataset. The results are averaged from
4 independent training runs.

CIDEr BLEU4 ROUGEL METEOR Vocab. cover

CE 101.6 ±0.4 0.312 ±.001 0.542 ±.001 0.260 ±.001 9.2 ±0.1
CIDEr-RL 116.1 ±0.2 0.350 ±.003 0.562 ±.001 0.269 ±.000 5.1 ±0.1

GAN1(SCST, Co-att, log(D)) 97.5 ±0.8 0.294 ±.002 0.532 ±.001 0.256 ±.001 11.0 ±0.1
GAN2(SCST, Co-att, log(D)+5×CIDEr) 111.1 ±0.7 0.330 ±.004 0.555 ±.002 0.271 ±.002 7.3 ±0.2
GAN3(SCST, Joint-Emb, log(D)) 97.1 ±1.2 0.287 ±.005 0.530 ±.002 0.256 ±.002 11.2 ±0.1
GAN4(SCST, Joint-Emb, log(D)+5×CIDEr) 108.2 ±4.9 0.325 ±.017 0.551 ±.008 0.267 ±.004 8.3 ±1.6

GAN5(Gumbel Soft, Co-att, log(D)) 93.6 ±3.3 0.282 ±.015 0.524 ±.007 0.253 ±.007 11.1 ±1.2
GAN6(Gumbel ST, Co-att, log(D)) 95.4 ±1.5 0.298 ±.009 0.531 ±.005 0.249 ±.004 10.1 ±0.9
GAN7(Gumbel ST, Co-att, log(D)+FM) 92.1 ±5.4 0.289 ±.020 0.523 ±.015 0.243 ±.011 8.6 ±0.8

G-GAN Dai et al. (2017) from Table 1 79.5 0.207 0.475 0.224 –

CE∗ – ∗ for non-attentional models 87.6 ±1.2 0.275 ±.003 0.516 ±.003 0.242 ±.001 9.9 ±0.8
CIDEr-RL∗ 100.4 ±7.9 0.305 ±.018 0.536 ±.010 0.253 ±.006 6.8 ±1.4

GAN1
∗(SCST, Co-att, log(D)) 89.7 ±0.9 0.276 ±.000 0.518 ±.001 0.246 ±.001 13.2 ±0.2

GAN2
∗(SCST, Co-att, log(D) + 5×CIDEr) 103.1 ±0.5 0.311 ±.003 0.542 ±.001 0.261 ±.001 7.1 ±0.2

GAN3
∗(SCST, Joint-Emb, log(D)) 90.7 ±0.1 0.277 ±.002 0.520 ±.000 0.248 ±.001 12.9 ±0.1

GAN4
∗(SCST, Joint-Emb, log(D) + 5×CIDEr) 102.7 ±0.4 0.315 ±.000 0.542 ±.000 0.260 ±.001 7.7 ±0.1

improves the language metrics but sacrifices sentence diversity by reducing vocabulary coverage.
Finally, note that the non-attentional models are behind in all metrics, except for vocabulary cover-
age. Interestingly, Co-att discriminators still provide better semantic scores than Joint-Emb despite
non-attentional generators.
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Figure 4: Discrimator scores during training across different Gumbel methods.

SCST vs. Gumbel Our experiments also showed that SCST is a more stable approach for training
discrete GAN nodels, achieving better results as compared to Gumbel relaxation approaches.
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Figure 5: Training of Gθ .

To demonstrate that our experiments fairly
compared both approaches, in Fig. 4 we
show training of different Gumbel meth-
ods, where we plot the discriminator
scores across gradient updates. As can be
seen, at the end of training the generated
sentences are scored around 0.5, random
near 0.1 and real sentences above 0.7, in-
dicating a properly trained discriminator
and a healthy execution of all the Gum-
bel methods. Fig. 5 also compares gradi-
ent behaviors during training for SCST and Gumbel, showing that SCST gradients have smaller
average norm and variance across minibatches, confirming our conclusion.

4 CONCLUSION

In summary, we demonstrated that SCST training for discrete GAN is a promissing new approach
that outperforms the Gumbel relaxation in terms of training stability and the overall performance.
Moreover, we showed that our context-aware attention gives larger gains as compared to the adap-
tive sentinel or the traditional visual attention. Finally, our co-attention model for discriminator
compares favorably against the joint embedding architecture.
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