
Under review as a conference paper at ICLR 2020

HIERARCHICAL GRAPH MATCHING NETWORKS FOR
DEEP GRAPH SIMILARITY LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

While the celebrated graph neural networks yield effective representations for in-
dividual nodes of a graph, there has been relatively less success in extending to
deep graph similarity learning. Recent work has considered either global-level
graph-graph interactions or low-level node-node interactions, ignoring the rich
cross-level interactions between parts of a graph and a whole graph. In this paper,
we propose a Hierarchical Graph Matching Network (HGMN) for computing the
graph similarity between any pair of graph-structured objects. Our model jointly
learns graph representations and a graph matching metric function for computing
graph similarity in an end-to-end fashion. The proposed HGMN model consists of
a multi-perspective node-graph matching network for effectively learning cross-
level interactions between parts of a graph and a whole graph, and a siamese graph
neural network for learning global-level interactions between two graphs. Our
comprehensive experiments demonstrate that our proposed HGMN consistently
outperforms state-of-the-art graph matching network baselines for both classifica-
tion and regression tasks.

1 INTRODUCTION

Learning a general similarity metric between arbitrary pairs of graph-structured objects is one of
the key challenges in machine learning. Such learning problems often arise in a variety of applica-
tions, ranging from graph similar searching in graph-based database (Yan & Han, 2002), to Fewshot
3D Action Recognition (Guo et al., 2018), unknown malware detection (Wang et al., 2019), and
promising selection in automatic theory proving (Wang et al., 2017), to name just a few.

Conceptually, classical exact (or inexact) graph matching techniques (Ullmann, 1976; Caetano et al.,
2009; Bunke & Allermann, 1983; Riesen et al., 2010) provide a strong tool for learning graph sim-
ilarity. However, these methods usually either require input graphs with similar sizes or consider
mainly the graph structures for finding a correspondence between the nodes of different graphs with-
out taking into account the node representations or features. In contrast, in this paper, we consider
the graph matching problem of learning a mapping between a pair of graph inputs pG1, G2q P GˆG
and the similarity score y P Y , based on a set of training triplet of structured input pairs and scalar
output score pG1

1, G
2
1, y1q, ..., pG

1
n, G

2
n, ynq P G ˆ G ˆ Y drawn from some fixed but unknown

probability distribution.

Recent years have seen a surge of interests in graph neural networks (GNNs), which have been
demonstrated to be a powerful class of models for learning node embeddings of graph-structured
data (Bronstein et al., 2017). Various GNN models have since been developed for learning effective
node representations for node classification (Li et al., 2016; Kipf & Welling, 2016; Hamilton et al.,
2017; Veličković et al., 2017), or pooling the learned node embeddings into a graph vector for graph
classification (Ying et al., 2018; Ma et al., 2019), or combining with variational auto-encoder to
learn the graph distribution for graph generation (Simonovsky & Komodakis, 2018; Li et al., 2018;
Samanta et al., 2018; You et al., 2018). However, there is relatively less study on learning graph
similarity using GNNs.

To learn graph similarity, a simple yet straightforward way is to encode each graph as a vector
and combine two vectors of each graph to make a decision. This approach is useful since graph-
level embeddings contain important information of a pair of graphs. One obvious limitation of
this approach lies in the fact of the ignorance of more fine-grained interactions among different level

1

Under review as a conference paper at ICLR 2020

embeddings of two graphs. Very recently, a few of attempts have been made to take into account low-
level interactions either by considering the histogram information of node-wise similarity matrix of
node embeddings (Bai et al., 2019) or improving the node embeddings of one graph by incorporating
implicit attentive neighbors of another graphs through a soft attention (Li et al., 2019). However,
there are two significant challenges making these graph matching models potentially ineffective: i)
how to learn different-level granularity (global level and local level) of interactions between a pair
of graphs; ii) how to effectively learn richer cross-level interactions between parts of a graph and a
whole graph.

Inspired by these observations, in this paper, we propose a Hierarchical Graph Matching Network
(HGMN) for computing the graph similarity between any pair of graph-structured objects. Our
model jointly learns graph representations and a graph matching metric function for computing
graph similarity in an end-to-end fashion. The proposed HGMN model consists of a novel multi-
perspective node-graph matching network for effectively learning cross-level interactions between
parts of a graph and a whole graph, and a siamese graph neural network for learning global-level
interactions between two graphs. Our final small prediction networks consume these feature vectors
from both cross-level and global-level interactions to perform either graph-graph classification or
graph-graph regression tasks, respectively.

Recently proposed works only compute graph similarity by considering either graph-graph classi-
fication problem (with labels Y “ t´1, 1u) (Li et al., 2019), or graph-graph regression problem
(with similarity score Y “ r0, 1s) (Bai et al., 2019). To demonstrate the effectiveness of our model,
we systematically investigate the performance of our HGMN model compared with these recently
proposed graph matching models on four datasets for both graph-graph classification and regression
tasks. To bridge the gap of the lack of standard graph matching datasets, we also create one new
dataset from a real application together with a previously released dataset by (Xu et al., 2017) for
graph-graph classification task 1. One important aspect is previous works did not consider the impact
of the size of two input graphs, which often plays an important role in determining the performance
of graph matching. Motivated by this observation, we have considered three different ranges of
graph sizes from [3, 200], [20,200], and [50,200] in order to evaluate the robustness of each graph
matching model.

We highlight our main contributions of this paper as follows:

• We propose a hierarchical graph matching network (HGMN) for computing the graph simi-
larity between any pair of graph-structured objects. Our HGMN model jointly learns graph
representations and a graph matching metric function for computing graph similarity in an
end-to-end fashion.

• In particular, we propose a multi-perspective node-graph matching network for effectively
capturing the cross-level interactions between a node embeddings of a graph and a corre-
sponding attentive graph-level embedding of another graph.

• We systematically investigate different factors on the performance of all graph matching
models such as the impact of different tasks (classification and regression) and the sizes of
input graphs.

• Our comprehensive experiments demonstrate that our proposed HGMN consistently out-
performs state-of-the-art graph matching network baselines for both classification and re-
gression tasks. Compared with previous works, our proposed model HGMN is also more
robust when the sizes of the two input graphs increase.

2 PROBLEM FORMULATION

In this section, we briefly introduce the problem formulation. Given a pair of graph inputs pG1, G2q,
the aim of the graph matching problem we consider in this paper is to produce a graph similarity
score y “ spG1, G2q P Y . The graph G1 “ pV 1, E1q is represented as a set of N nodes vi P
V 1 with a feature matrix X1 P RNˆd, edges pvi, vjq P E1 (binary or weighted) formulating an
adjacency matrix A1 P RNˆN , and a degree matrix D1

ii “
ř

j A
1
ij . Similarly, the graph G2 “

1We release these datasets via this link: https://github.com/runningoat/hgmn_dataset.
Our codes will be released as well upon the acceptance of this paper.

2

https://github.com/runningoat/hgmn_dataset

Under review as a conference paper at ICLR 2020

GCN

GCN

𝛼"#=𝑓%(ℎ"(, ℎ#*)

𝑣"

𝑣#

𝑓-

.ℎ/ = 1
∈3

𝛼"#ℎ#

ℎ# 4ℎ#

𝑓-

BiLSTM

BiLSTM

Aggregate

Aggregate

Cosine()
or

Sigmoid(FC)

Predicted
Similarity

Score

Node Embedding Graph EmbeddingMatching and Aggregation

Figure 1: Overall Model Architecture of Hierarchical Graph Matching Networks (HGMN)

pV 2, E2q is represented as a set of M nodes vi P V 2 with a feature matrix X2 P RMˆd, edges
pvi, vjq P E

2 (binary or weighted) formulating an adjacency matrix A2 P RMˆM , and a degree
matrix D2

ii “
ř

j A
2
ij . Note that, when performing graph-graph classification task the scalar y is

the class labels y “ t´1, 1u; when performing graph-graph regression task the scalar y is the the
measure of the similarity score y P r0, 1s. We train a graph matching model based on a set of training
triplet of structured input pairs and scalar output score pG1

1, G
2
1, y1q, ..., pG

1
n, G

2
n, Ynq P G ˆ G ˆ Y

drawn from some fixed but unknown probability distribution in real applications.

3 HIERARCHICAL GRAPH MATCHING NETWORKS ARCHITECTURE

In this section, we will introduce two key components of our HGMN architecture - Siamese Graph
Neural Networks (SGNN) and Multi-Perspective Node-Graph Matching Networks (MPNGMN). We
first discuss SGNN for learning the global-level interactions between two graphs and then outline
MPNGMN for effectively learning the cross-level node-graph interactions between parts of one
graph and one whole graph. Our overall model architecture for HGMN is shown in Fig. 1.

3.1 SGNN FOR GLOBAL-LEVEL INTERACTION LEARNING

The graph-level embeddings contain important information of a graph. Therefore, learning graph-
level interactions between two graphs could be an important component for learning the graph simi-
larity of two graphs. In order to capture the global-level interactions between two graphs, we employ
SGNN which is based on Siamese Networks architecture (Bromley et al., 1994), which has achieved
great success in many applications such as visual recognition (Bertinetto et al., 2016; Varior et al.,
2016) and sentence similarity (He et al., 2015; Mueller & Thyagarajan, 2016). Independently, a sim-
ilar idea using high-order siamese graph neural networks was presented for brain network analysis
(Chaudhuri et al., 2019).

Our SGNN adapts popular Graph Convolution Networks (GCN) (Kipf & Welling, 2016) with
siamese neural networks for simplicity. Other variants of graph neural networks such as Graph-
SAGE (Hamilton et al., 2017) and Gated Graph Neural Networks (Li et al., 2016) can also be used.
Our SGNN consists of three components: 1) node embedding layers; 2) graph-level embedding
aggregation layers; 3) graph-graph matching and prediction layers.

Node Embedding Layers. We utilize three-layer GCN with the siamese networks to generate node
embeddings H l “ thl

iu
tN,Mu
i“1 P RtN,Muˆd1

of both graphs G1 and G2,

H l “ fpX l, Alq “ ReLU
´

sAl ReLU
´

sAl ReLU
´

sAlX lW p0q
¯

W p1q
¯

W p2q
¯

, l “ t1, 2u. (1)

where sAl “ p rDlq´
1
2 rAlp rDlq´

1
2 is the normalized Laplacian matrix for rAl “ Al`ItN,Mu depending

on the graph is G1 or G2, and W piq, i “ t0, 1, 2u are hidden weighted matrices for each layer. Note

3

Under review as a conference paper at ICLR 2020

that the twin networks share the parameters of GCN when training on the pair of graphs pG1, G2q.
The number of GCN layers required depends on the real application graph data. To isolate the effect
of overtuning, we choose the three layers after some initial experiments on validation sets.

Graph-level Embedding Aggregation Layers. After we compute the resulting node embeddings
H l of each graph from GCN, we need to aggregate these node embeddings to formulate their corre-
sponding graph-level embeddings of each graph.

hl
G “ Aggregate

´

thl
iu
tN,Mu
i“1

¯

, l “ t1, 2u. (2)

We employ different aggregation functions such as element-wise max pooling (Max), element-
wise max pooling following a transformation by applying a fully connected layer on Hi (FCMax),
element-wise mean pooling (Avg), element-wise mean pooling following a transformation by ap-
plying a fully connected layer on Hi (FCAvg), and a sophisticated aggregator based on LSTM
architecture (Hochreiter & Schmidhuber, 1997a). Note that, among these aggregation functions, the
LSTM aggregator is not permutation invariant on a set of node embeddings although LSTM may
admit more expressive ability. We adapt LSTMs to operate on these node embeddings by simply
applying the LSTMs to a random permutation of the node embeddings.

Graph-Graph Matching and Prediction Layers. After the graph-level embeddings h1
G and h2

G
are computed for the graphs G1 and G2, we then use the resulting graph embeddings to compute
the graph similarity score of pG1, G2q. Depending on the specific tasks, we have slightly different
ways to calculate the final similarity score. For classification tasks, we simply compute the cosine
similarity of two graph-level embeddings,

ry “ spG1, G2q “ cosineph1
G,h

2
Gq (3)

where the similarity function s could also be other similarity metric such as Euclidean similarity and
dot-product similarity. We find that the cosine similarity function performs generally better across
different datasets.

For regression tasks, we first concatenate the two aggregated graph embeddings to rh1
G,h

2
Gs and

then employ four standard fully connected layers to gradually project the vector of dimension
rh1

G,h
2
Gs down to a scalar of the dimension 1. Since the expected similar score ry should be in

range of [0,1], we perform sigmoid function to enforce the final score in this range. We therefore
compute the similarity score for graph-graph regression task as following,

ry “ spG1, G2q “ sigmoid
´

MLP
´

rh1
G,h

2
Gs

¯¯

. (4)

For both tasks, we train the SGNN model using mean square error loss function to compare the
computed similarity score ry with the groud-truth similarity score y,

L “ 1

n

n
ÿ

i“1

´

ry ´ y
¯2

. (5)

3.2 MPNGMN FOR CROSS-LEVEL NODE-GRAPH INTERACTION LEARNING

Although global-level interaction learning could capture the important structural and feature infor-
mation of two graphs to some extent, it is not enough to capture all important information of two
graphs since they ignore other low-level interactions between parts of two graphs. In particular,
existing works have considered either global-level graph-graph interactions or low-level node-node
interactions, ignoring the rich cross-level interactions between parts of a graph and a whole graph.
Inspired by these observations, we propose a novel multi-perspective node-graph matching network
to effectively learn the cross-level interaction features. Our MPNGMN model consists of four parts:
1) node embedding layers; 2) node-graph matching layers; 3) aggregation layers; and 4) prediction
layers, as shown in Fig. 1. We will illustrate each part in details as follows.

Node Embedding Layers: Similar as described in Sec. 3.1, we choose to employ the three-layer
GCN to generate node embeddings H1 “ th1

i u
N
i“1 P RNˆd1

and H2 “ th2
i u

M
i“1 P RMˆd1

for
graphs G1 and G2. Conceptually, the node embedding layers of MPNGMN (graph encoder) could
be chosen to be an independent GCN or a shared GCN with SGNN. As shown in Fig. 1, our MP-
NGMN shares the same graph encoder with SGNN due to two reasons: i) the shared GCN parame-
ters reduce the number of parameters by half, which helps mitigate possible overfitting; ii) the shared

4

Under review as a conference paper at ICLR 2020

GCN maintains the consistency of resulting node embeddings for both MPNGMN and SGNN, po-
tentially leading to more aligned global-level interaction and cross-level interaction features. After
the node embeddings H1 and H2 have been computed, they will be fed into the following node-
graph matching layers.

Node-Graph Matching Layers: The node-graph matching layer is the key part of our MPNGMN,
which can effectively learn the cross-level interactions between parts of a graph and a whole graph.
There are generally two steps for this layer: i) calculate the graph-level embedding of a graph; ii)
compare the node embeddings of a graph with the associated graph-level embeddings of a whole
graph and then produce a similarity feature vector. A simple way to obtain the graph-level embed-
ding of a graph is to perform element-wise mean pooling or max pooling. However, it does not
consider any information from the node embedding that the resulting graph-level embedding will
compare with later. To build more tight interactions between the two, we calculate the cross-graph
attention coefficients between the node vi P V1 in graph G1 and all other nodes vj P V2 in graph
G2. Similarly, we calculate the cross-graph attention coefficients between the node vi P V2 in graph
G2 and all other nodes vj P V1 in graph G1. These two cross-graph attention coefficients can be
computed independently,

αi,j “ fsph
1
i ,h

2
j q, j P V2 and βi,j “ fsph

2
i ,h

1
j q, j P V1, (6)

where fs is the attention function for computing the similarity score. For simplicity, we use cosine
function in our experiments but other similarity metrics can be adopted as well. Then we compute
the attentive graph-level embeddings rh1

G or rh2
G P Rd1

using weighted average of node embeddings
of the other graph,

rh2
G “

ÿ

jPV2

αi,jh
2
j and rh1

G “
ÿ

jPV1

βi,jh
1
j . (7)

Next, we define our multi-perspective matching function fm to compute the similarity feature vector
by comparing two vectors as follows,

rhpiq “ fmpx1,x2,wiq “ fmpx1 dwi,x2 dwiq, i “ 1, . . . , rd (8)

where rh P R rd is a rd-dimension similarity feature vector, andWm “ twiu
rd
i“1 P Rd1

ˆ rd is a trainable
weight matrix and each wi represents a perspective with total rd number of perspectives. Notably,
fm could be any similarity function and we use cosine similarity metric in our experiments. It is
worth noting that the proposed multi-perspective matching function essentially shares similar spirit
with multi-head attention (Vaswani et al., 2017), with the difference that multi-head attention uses rd
number of weighted matrices instead of vectors.

Therefore, we can utilize our defined multi-perspective matching function fm to compare the j-th
node embeddings of a graph with the corresponding attentive graph-level embeddings to capture the
cross-level node-graph interactions. The resulting similarity feature vectors rh1

j or rh2
j P R

rd (w.r.t the
node vj in either graph G1 or G2) can thus be computed by

rh1
j “ fmph

1
j ,
rh2
G,Wmq, j P V1 and rh2

j “ fmph
2
j ,
rh1
G,Wmq, j P V2 (9)

After the node-graph matching layers, these newly produced interaction feature matrices rH1 “

trh1
i u

N
i“1 P RNˆ rd and rH2 “ trh2

i u
M
i“1 P RMˆ rd for graphs G1 and G2, are ready to feed them into

the aggregation layers.

Aggregation Layers: To aggregate these cross-level interaction feature matrix from the node-graph
matching layer, we employ the BiLSTM (Hochreiter & Schmidhuber, 1997b) model to aggregate
the unordered feature embeddings,

rhl
G “ BiLSTM

´

trhl
ju
tN,Mu
j“1

¯

, l “ t1, 2u. (10)

where rhl
G P R2 rd concatenate the last hidden vectors of two directions as the aggregated graph

embedding for each graph G1 and G2. Note that other commutative aggregators such as max,
average, or attention based aggregation (Veličković et al., 2017) can also be used. However, our
extensive experiments showed that BiLSTM aggregator achieved consistent better performance over

5

Under review as a conference paper at ICLR 2020

other aggregators. Similar LSTM-type aggregator has also been exploited in the previous works
(Hamilton et al., 2017; Zhang et al., 2019).

Prediction Layers: After the aggregated graph embeddings rh1
G and rh2

G are obtained, we then
use these two embeddings to compute the similarity score of pG1, G2q. As discussed in Sec.3.1
for graph-graph matching and prediction layers, we use the same prediction layers to predict the
similarity score. We also use the same mean square error loss function for the model training. In
this way, we can also easily compare the performance difference between SGNN and MPNGMN.

3.3 DISCUSSIONS ON HGMN MODEL

Our model jointly learns graph representations and a graph matching metric function for computing
graph similarity in an end-to-end fashion. Our HGMN model combines the advantages of both
SGNN and MPNGMN to capture both global-level graph-graph interaction features and novel cross-
level node-graph interaction features between two graphs. Therefore, for final prediction layers of
HGMN, we have total six aggregated graph embedding vectors where two of them are h1

G and h2
G

from SGNN, and another four are rh1
G and rh2

G from MPNGMN.

The computation complexity of SGNN is Opp|E1| ` |E2|qdd1q, where the most dominant compu-
tation is sparse matrix-matrix operations in equation 1. Similarly, the computational complexity of
MPNGMN is OpNMd` pN `Mqd1 ` pN `Mqdd1q, where the most computationally extensive
operations are in equations 7, 8, and 9. Compared to recently proposed works in (Bai et al., 2019;
Li et al., 2019), the computational complexity of them are comparable.

4 EXPERIMENTS

In this section, we systematically investigate the performance of our HGMN model compared with
other recently proposed graph matching models on four datasets for both classification and regres-
sion tasks.

Table 1: Summary statistics of datasets for both classification & regression tasks.

Tasks Datasets Sub-
datasets

of
Graphs

of
Functions

AVG #
of Nodes

AVG #
of Edges

AVG # of
AVG Degrees

Init Feature
Dimensions

classif-
ication

FFmpeg
[3, 200] 83008 10376 18.83 27.02 2.59

6[20, 200] 31696 7668 51.02 75.88 2.94
[50, 200] 10824 3178 90.93 136.83 3.00

OpenSSL
[3, 200] 73953 4249 15.73 21.97 2.44

6[20, 200] 15800 1073 44.89 67.15 2.95
[50, 200] 4308 338 83.68 /127.75 3.04

regre-
ssion

AIDS700 - 700 - 8.90 8.80 1.96) 29
LINUX1000 - 1000 - 7.58 6.94 1.81 1

4.1 DATASETS, EXPERIMENTS SETTINGS, AND BASELINES

4.1.1 DATASETS

Classification datasets: we evaluate our model on the problem of detecting similarity between two
binary functions, which is the heart of many binary security problems, such as software plagiarism,
malware detection, and vulnerability search (Feng et al., 2016; Xu et al., 2017; Ding et al., 2019).
In particular, two binary functions that are compiled from the same source code but under different
settings (architectures, compilers, optimization levels, etc) are semantically similar to each other.
To learn similarity from binary functions, we represent those binaries with control flow graphs, in
which the graph nodes represent the basic blocks (a basic block is a sequence of instructions without
jumps) and edges represent control flow paths between these basic blocks.

Thus, detecting similarity between two binary functions can be cast as the problem of learning the
similarity score spG1, G2q between two control flow graphs G1 and G2, where spG1, G2q “ `1
indicates G1 and G2 are similar; otherwise spG1, G2q “ ´1 indicates dissimilar. We prepare

6

Under review as a conference paper at ICLR 2020

two benchmark datasets generated from two pieces of popular open-source software: FFmpeg and
OpenSSL, with statistics shown in Table 1. For each graph in FFmpeg and OpenSSL, we initialize
every node with 6 block-level numeric features. More details about the dataset generation and node
features can be found in Appendix A.1.1 and Table 7.

Existing graph matching works do not consider the impact of the sizes of graphs on performance.
However, we find that the larger the graph size is, the worse the performance is. Therefore, it is
important to evaluate the robustness of any graph matching networks in this setting. We thus further
split these two datasets into three sub-datasets according to the size range of graph pairs.

Regression datasets: we evaluate our model on learning the graph edit distance (GED) (Zeng et al.,
2009; Gao et al., 2010; Riesen, 2015), which measures the structural similarity between two graphs.
Formally, GED is defined as the cost of the least expensive sequence of edit operations that transform
one graph into another, where an edit operation can be an insertion or a deletion of a node or an edge.

We evaluate our model on two benchmark datasets AIDS700 and LINUX1000 2. The statistic for
the datasets is shown in Table 1, and more details can be found in Appendix A.1.2 and Table 7.

4.1.2 EXPERIMENTAL SETUP

Model Settings. For SGNN, we use 3 GCN layers in node embedding layer and each of the GCNs
has an output dimension of 100. We use ReLU as the activation function along with a dropout layer
after each GCN layer with dropout rate being 0.1. In the graph-level embedding aggregation layer
of SGNN, we can employ different aggregation functions (i,e., Max, FCMax, Avg, FCAvg, BiL-
STM, etc.) as stated previously in Section 3.1. For MPNGMN, we exploited different aggregation
functions similar to SGNN and we found that BiLSTM aggregator consistently performs better than
other aggregation functions (see appendix A.4). Thus, for MPNGMN, we always use BiLSTM as
our default aggregation function and we make its hidden size equal to the dimension of node em-
beddings. For MPNGMN, we set the number of perspectives rd to 100, and use another aggregation
function BiLSTM to aggregate the output of node-graph matching layer. For each graph, we con-
catenate the last hidden vector of two directions of BiLSTM, which results in a 200 dimensions
vector as the graph embeddings.

Implementation Details. We implement our model using PyTorch 1.1 (Paszke et al., 2017), and
train the model using the Adam optimizer (Kingma & Ba, 2014). The learning rate is set to 0.5e-3
for classification tasks and 5e-3 for regression tasks. For classification tasks, we split each dataset
into three disjoint subsets of binary functions for training/validation/testing. We train our model by
running 100 epochs. At each epoch, we build the pairwise training data as follows. For each graph
G in training subset, we obtain one positive pair tpG,Gposq,`1u and a corresponding negative pair
tpG,Gnegq,´1u, where Gpos is randomly selected from all control flow graphs that compiled from
the same source function as G, and Gneg is selected from other graphs. By default, for each mini-
batch in one epoch, we train our model with 5 positive and 5 negative pairs. In regression tasks, we
first split graphs of each dataset into training, validation, and testing set, and then build the pairwise
training/validation/testing data as previous work Bai et al. (2019). We train our model by 10000
iterations with a mini-batch of 128 graph pairs. Each pair is a tuple of tpG1, G2q, su, where s is the
ground-truth GED between G1 and G2. Noted that all experiments are conducted on a computer
equipped with 2 Intel Xeon 2.2GHz CPU, 256 GB memory and one NVIDIA GTX 1080 Ti GPU.

Baselines. We compared our HGMN against the following baselines: i) SimGNN (Bai et al. (2019)):
SimGNN uses GCN to update node features and aggregates them using an attention mechanism.
The final pair representation consists of 2 components: One from the interaction between aggre-
gated pair graph features and the other from a pairwise node comparison. ii) GMN (Li et al. (2019)):
This method updates node features according to not only current states and messages aggregated
from neighborhoods but also information of attentive neighborhoods using cross-graph attention.
After updating node features, it aggregates node features in a way similar to that in Gated Graph
Neural Network (Li et al. (2016)) to get graph embedding. We have two variants of HGMN:
HGMN(FCMax) stands for HGMN model with SGNN(FCMax) and HGMN(BiLSTM) stands for
HGMN model with SGNN(BiLSTM).

2These two datasets are released by Bai et al. (2019) and publicly accessible.

7

Under review as a conference paper at ICLR 2020

Note that, we report the mean and standard deviation of the experimental results of both baseline
and our models by repeating the experiments five times.

4.2 COMPARISON ON GRAPH-GRAPH CLASSIFICATION TASK

Table 2: Summary of classification results in terms of AUC scores (%).

Model FFmpeg OpenSSL
[3, 200] [20, 200] [50, 200] [3, 200] [20, 200] [50, 200]

SimGNN 95.38˘0.76 94.31˘1.01 93.45˘0.54 95.96˘0.31 93.58˘0.82 94.25˘0.85
GMN 94.15˘0.62 95.92˘1.38 94.76˘0.45 96.43˘0.61 93.03˘3.81 93.91˘1.65

SGNN (Max) 93.92˘0.07 93.82˘0.28 85.15˘1.39 91.07˘0.10 88.94˘0.47 82.10˘0.51
MPNGMN 97.73˘0.11 98.29˘0.21 96.81˘0.96 96.56˘0.12 97.60˘0.29 92.89˘1.31

HGMN (FCMax) 98.07˘0.06 98.29˘0.10 97.83˘0.11 96.87˘0.24 97.59˘0.24 95.58˘1.13
HGMN (BiLSTM) 97.56˘0.38 98.12˘0.04 97.16˘0.53 96.90˘0.10 97.31˘1.07 95.87˘0.88

For the classification task of detecting whether two binary functions are similar or not, we measure
the Area Under the ROC Curve (AUC) (Bradley, 1997) of different models for classifying graph
pairs of the same test set, and summarize the results in Table 2.

The results show that our models clearly achieve state-of-the-art performance on all 6 sub-datasets
for both FFmpeg and OpenSSL datasets. Both MPNGMN and HGMN models show better and
more robust performance than the SimGNN and GMN baselines, particularly when the graph size
of the two graphs increases. Compared with the SGNN (Max), our models (both MPNGMN and
HGMN models) significantly outperform it, demonstrating the benefits of multi-perspective node-
graph matching mechanism that captures the cross-level interactions between node embeddings of
a graph and graph-level embeddings of another graph. More experiments compared with SGNN
models using other aggregation functions can be found in Appendix A.3.

4.3 COMPARISON ON GRAPH-GRAPH REGRESSION TASK

Table 3: Summary of regression results on AIDS700 and LINUX1000.
Datasets Model mse (10´3) ρ τ p@10 p@20

AIDS700

SimGNN 1.376˘0.066 0.824˘0.009 0.665˘0.011 0.400˘0.023 0.489˘0.024
GMN 4.610˘0.365 0.672˘0.036 0.497˘0.032 0.200˘0.018 0.263˘0.018

SGNN (Max) 2.822˘0.149 0.765˘0.005 0.588˘0.004 0.289˘0.016 0.373˘0.012
MPNGMN 1.191˘0.048 0.904˘0.003 0.749˘0.005 0.465˘0.011 0.538˘0.007

HGMN (FCMax) 1.205˘0.039 0.904˘0.002 0.749˘0.003 0.457˘0.014 0.532˘0.016
HGMN (BiLSTM) 1.169˘0.036 0.905˘0.002 0.751˘0.003 0.456˘0.019 0.539˘0.018

LINUX
1000

SimGNN 2.479˘1.038 0.912˘0.031 0.791˘0.046 0.635˘0.328 0.650˘0.283
GMN 2.571˘0.519 0.906˘0.023 0.763˘0.035 0.888˘0.036 0.856˘0.040

SGNN (Max) 11.832˘0.698 0.566˘0.022 0.404˘0.017 0.226˘0.106 0.492˘0.190
MPNGMN 1.561˘0.020 0.945˘0.002 0.814˘0.003 0.743˘0.085 0.741˘0.086

HGMN (FCMax) 1.575˘0.627 0.946˘0.019 0.817˘0.034 0.807˘0.117 0.784˘0.108
HGMN (BiLSTM) 0.439˘0.143 0.985˘0.005 0.919˘0.016 0.955˘0.011 0.943˘0.014

For the regression task of computing the graph edit distance between two graphs, we evaluate the
models using Mean Square Error (mse), Spearmans Rank Correlation Coefficient (ρ) (Spearman,
1904), Kendalls Rank Correlation Coefficient (τ) (Kendall, 1938), and precision at k (p@k). All
results of both AIDS700 and LINUX1000 datasets are summarized in Table 3. In terms of all eval-
uation metrics, our models consistently outperform both SimGNN and GMN baseline models by
a significant margin on both AIDS700 and LINUX1000 datasets. On the other hand, compared
with SGNN (Max), our models achieve much better performance (see Appendix A.3 for more ex-
periments compared with other SGNN models). The results highlight the importance of our multi-
perspective node-graph matching mechanism which could effectively capture cross-level node-graph
interactions between parts of a graph and a whole graph.

8

Under review as a conference paper at ICLR 2020

Table 4: Classification results of Multi-Perspectives versus Multi-Heads in terms of AUC scores(%).

Model FFmpeg OpenSSL
[3, 200] [20, 200] [50, 200] [3, 200] [20, 200] [50, 200]

Multi-Perspectives (rd “ 100) 97.73˘0.11 98.29˘0.21 96.81˘0.96 96.56˘0.12 97.60˘0.29 92.89˘1.31
Multi-Heads (K “ 6) 91.18˘5.91 77.49˘5.21 68.15˘6.97 92.81˘5.21 85.43˘5.76 56.87˘7.53

4.4 FURTHER STUDY ON THE IMPACT OF DIFFERENT ATTENTION FUNCTIONS

We perform a further study on the impact of different attention functions for our proposed MP-
NGMN model. In particular, as we discussed in Sec. 3.2, the proposed multi-perspective matching
function shares similar spirits with multi-head attention (Vaswani et al., 2017). Therefore, it is in-
teresting to compare both attention functions in terms of AUC scores for graph-graph classification
tasks. Interestingly, our proposed multi-perspective attention mechanism consistently outperforms
these results of multi-head attention mechanism by quite a large margin. We suspect that our pro-
posed multi-perspective attention uses vectors attention weights which may significantly reduce the
potential overfitting. We also performed a study on the impact of the number of the perspectives on
the performance and our model is not sensitive with this hyperparameter (see the appendix A.5).

4.5 FURTHER STUDY ON THE IMPACT OF DIFFERENT GNNS

Table 5: Classification results of different GNNs in terms of AUC scores (%).

Model FFmpeg OpenSSL
[3, 200] [20, 200] [50, 200] [3, 200] [20, 200] [50, 200]

MPNGMN-GCN (Our) 97.73˘0.11 98.29˘0.21 96.81˘0.96 96.56˘0.12 97.60˘0.29 92.89˘1.31
MPNGMN-GraphSAGE 97.31˘0.56 98.21˘0.13 97.88˘0.15 96.13˘0.30 97.30˘0.72 93.66˘3.87

MPNGMN-GIN 97.97˘0.08 98.06˘0.22 94.66˘4.01 96.98˘0.20 97.42˘0.48 92.29˘2.23
MPNGMN-GGNN 98.42˘0.41 99.77˘0.07 97.93˘1.18 99.35˘0.06 98.51˘1.04 94.17˘7.74

Table 6: Regression results of different GNNs on AIDS700 and LINUX1000.
Datasets Model mse (10´3) ρ τ p@10 p@20

AIDS
700

MPNGMN-GCN (Our) 1.191˘0.048 0.904˘0.003 0.749˘0.005 0.465˘0.011 0.538˘0.007
MPNGMN-(GraphSAGE) 1.275˘0.054 0.901˘0.006 0.745˘0.008 0.448˘0.016 0.533˘0.014

MPNGMN-(GIN) 1.367˘0.085 0.889˘0.008 0.729˘0.010 0.400˘0.022 0.492˘0.021
MPNGMN-(GGNN) 1.870˘0.082 0.871˘0.004 0.706˘0.005 0.388˘0.015 0.457˘0.017

LINUX
1000

MPNGMN-GCN (Our) 1.561˘0.020 0.945˘0.002 0.814˘0.003 0.743˘0.085 0.741˘0.086
MPNGMN-GraphSAGE 2.784˘0.705 0.915˘0.019 0.767˘0.028 0.682˘0.183 0.693˘0.167

MPNGMN-GIN 1.126˘0.164 0.963˘0.006 0.858˘0.015 0.792˘0.068 0.821˘0.035
MPNGMN-GGNN 2.068˘0.991 0.938˘0.028 0.815˘0.055 0.628˘0.189 0.654˘0.176

We finally investigate the impact of different GNNs adopted by node embedding layers of our MP-
NGMN model for both classification and regression tasks. Following the same settings of our pre-
vious experiments, we only replace GCN with three variants: GraphSAGE (Hamilton et al., 2017),
GIN (Xu et al., 2018a), and GGNN (Li et al., 2016), whose output dimensions are kept the same with
GCN (i.e, 100) in our experiments. Note that, we do not fine-tune any hyper-parameter of the three
GNN models, and their default hyper-parameters of these three GNNs are listed in Appendix A.2.2.

Table 5 and Table 6 present the results of GCN versus GraphSAGE/GIN/GGNN in MPNGMN for
the classification and regression tasks, respectively. For all datasets of classification and regression
tasks, the performance of different GNNs is quite similar. It indicates that our model is not sensitive
to the choice of GNN models in node embedding layers. Moreover, we can see from Table 5 that
MPNGMN models using GGNN perform even better than our default MPNGMN using GCN on
both FFmpeg and OpenSSL datasets for the classification task. It is also observed from Table 6
that MPNGMN models using GIN also outperform our default model using GCN on LINUX1000
dataset for the regression task. These observations show that our model can be further improved by
adopting more advanced GNN models or choosing the most appropriate GNN models according to
different application tasks.

9

Under review as a conference paper at ICLR 2020

5 RELATED WORKS

Graph Neural Networks. Recently graph neural networks have been proven to be extremely effec-
tive and achieved promising results on various graph-structured based prediction tasks (Gao et al.,
2019; Chen et al., 2019a). The main goal of graph neural networks is to learn node-level repre-
sentations or (sub)graph-level representations for graph-structured data. There is a large body of
GNN models (Scarselli et al., 2008; Li et al., 2016; Kipf & Welling, 2016; Hamilton et al., 2017;
Veličković et al., 2017; Xu et al., 2018a) that have been proposed to learn node representations. With
the learned node representations, various tasks on graphs can be performed such as node classifica-
tion and link prediction (Veličković et al., 2017; Zhang & Chen, 2018). In addition to learning node
representation, some studies try to extend pooling operations to GNNs (Ying et al., 2018; Gao & Ji,
2019; Lee et al., 2019; Ma et al., 2019). These pooling operations are expected to learn scaled-down
graph representations from node representations, and can be trained in an end-to-end fashion. Recent
works also exploit extending sequence-to-sequence model using bidirectional GNN for developing
graph-to-sequence models in order to cope with graph inputs and show promising performance im-
provement (Xu et al., 2018b;c; Chen et al., 2019b) in various natural language processing tasks.

Conventional Graph Matching. In general, graph matching can be categorized into exact graph
matching and error-tolerant graph matching. Exact graph matching aims to find a strict corre-
spondence between two (in large parts) identical graphs being matched, while error-tolerant graph
matching allows matching between completely nonidentical graphs (Riesen, 2015). In real-world
applications, the constraint of exact graph matching is too rigid, and thus a large number of work
has been proposed to solve the error-tolerant graph matching problem, which is usually quantified
by a specific similarity metric. In fact, the matching similarity metrics can be defined by some mea-
sure of structure similarity like Graph Edit Distance (GED) (Gao et al., 2010), Maximum Common
Subgraph (MCS) (Bunke, 1997), or even more coarse binary similarity, according to different appli-
cation backgrounds. For GED and MCS, both of them are well-studies NP-hard problems (Bunke,
1997; McGregor, 1982), and thus suffer from exponential computational complexity and huge mem-
ory requirements for exact solutions in practice (Zeng et al., 2009; Blumenthal & Gamper, 2018).

Graph Similarity Computation and Graph Matching Networks. A popular line of research of
graph matching focuses on developing approximations for graph similarity computations, in which
most of them focus on improvements for better efficiency in computation (Gao et al., 2010; Zeng
et al., 2009; Riesen, 2015; Wu et al., 2019; Yoshida et al., 2019). However, our solution is a learnable
model based on GNN to approximate graph similarity in terms of GED and binary similarity for
pairwise graph-based data.

The closely relevant work to our solution are two GNN based models: GMN (Li et al., 2019) and
SimGNN (Bai et al., 2019). GMN directly updates the node representations of one graph by adding
artificial attention-based connections for another graph. SimGNN considers the graph-level rep-
resentation similarity as well as the histogram features from a pairwise node-level comparison to
learn the graph similarity. However, these two models fail to capture different perspectives of graph-
structured data between the pairs of graphs.

6 CONCLUSION AND FUTURE WORK

In this paper, we presented a novel Hierarchical Graph Matching Network (HGMN) for comput-
ing the graph similarity between any pair of graph-structured objects. Our model jointly learned
graph embeddings and a data-driven graph matching metric for computing graph similarity in an
end-to-end fashion. We further proposed a new multi-perspective node-graph matching network for
effectively learning cross-level interactions between two graphs beyond low-level node-node and
global-level graph-graph interactions. Our extensive experimental results correlated the superior
performance compared with state-of-the-art baselines on both graph-graph classification and regres-
sion tasks.

One interesting future direction is to adapt our proposed HGMN model for solving different real-
world applications such as unknown malware detection, text matching and entailment, and knowl-
edge graph question answering.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang. Simgnn: A neu-
ral network approach to fast graph similarity computation. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining, pp. 384–392. ACM, 2019.

Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi, and Philip HS Torr. Fully-
convolutional siamese networks for object tracking. In European conference on computer vision,
pp. 850–865. Springer, 2016.

David B Blumenthal and Johann Gamper. On the exact computation of the graph edit distance.
Pattern Recognition Letters, 2018.

Andrew P Bradley. The use of the area under the roc curve in the evaluation of machine learning
algorithms. Pattern Recognition, 1997.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. Signature verifi-
cation using a” siamese” time delay neural network. In Advances in neural information processing
systems, pp. 737–744, 1994.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geomet-
ric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

Horst Bunke. On a relation between graph edit distance and maximum common subgraph. Pattern
Recognition Letters, 18(8):689–694, 1997.

Horst Bunke and Gudrun Allermann. Inexact graph matching for structural pattern recognition.
Pattern Recognition Letters, 1(4):245–253, 1983.

Tibério S Caetano, Julian J McAuley, Li Cheng, Quoc V Le, and Alex J Smola. Learning graph
matching. IEEE transactions on pattern analysis and machine intelligence, 31(6):1048–1058,
2009.

Ushasi Chaudhuri, Biplab Banerjee, and Avik Bhattacharya. Siamese graph convolutional network
for content based remote sensing image retrieval. Computer Vision and Image Understanding,
184:22–30, 2019.

Yu Chen, Lingfei Wu, and Mohammed J Zaki. Graphflow: Exploiting conversation flow with graph
neural networks for conversational machine comprehension. arXiv preprint arXiv:1908.00059,
2019a.

Yu Chen, Lingfei Wu, and Mohammed J Zaki. Reinforcement learning based graph-to-sequence
model for natural question generation. arXiv preprint arXiv:1908.04942, 2019b.

Steven HH Ding, Benjamin CM Fung, and Philippe Charland. Asm2vec: Boosting static represen-
tation robustness for binary clone search against code obfuscation and compiler optimization. In
IEEE Symposium on Security and Privacy (S&P) 2019, 2019.

Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng Yin. Scalable
graph-based bug search for firmware images. In Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2016.

Hongyang Gao and Shuiwang Ji. Graph u-nets. arXiv preprint arXiv:1905.05178, 2019.

Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph edit distance. Pattern
Analysis and applications, 13(1):113–129, 2010.

Yuyang Gao, Lingfei Wu, Houman Homayoun, and Liang Zhao. Dyngraph2seq: Dynamic-graph-to-
sequence interpretable learning for health stage prediction in online health forums. arXiv preprint
arXiv:1908.08497, 2019.

Michelle Guo, Edward Chou, De-An Huang, Shuran Song, Serena Yeung, and Li Fei-Fei. Neural
graph matching networks for fewshot 3d action recognition. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 653–669, 2018.

11

Under review as a conference paper at ICLR 2020

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, 2017.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107,
1968.

Hua He, Kevin Gimpel, and Jimmy Lin. Multi-perspective sentence similarity modeling with con-
volutional neural networks. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pp. 1576–1586, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997a.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 1997b.

Maurice G Kendall. A new measure of rank correlation. Biometrika, 1938.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. arXiv preprint
arXiv:1904.08082, 2019.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. International Conference on Learning Representations, 2016.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative
models of graphs. arXiv preprint arXiv:1803.03324, 2018.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching net-
works for learning the similarity of graph structured objects. ICML, 2019.

Yao Ma, Suhang Wang, Charu C Aggarwal, and Jiliang Tang. Graph convolutional networks with
eigenpooling. arXiv preprint arXiv:1904.13107, 2019.

James J McGregor. Backtrack search algorithms and the maximal common subgraph problem.
Software: Practice and Experience, 12(1):23–34, 1982.

Jonas Mueller and Aditya Thyagarajan. Siamese recurrent architectures for learning sentence simi-
larity. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch, 2017.

Kaspar Riesen. Structural pattern recognition with graph edit distance. In Advances in computer
vision and pattern recognition. Springer, 2015.

Kaspar Riesen, Xiaoyi Jiang, and Horst Bunke. Exact and inexact graph matching: Methodology
and applications. In Managing and Mining Graph Data, pp. 217–247. Springer, 2010.

Kaspar Riesen, Sandro Emmenegger, and Horst Bunke. A novel software toolkit for graph edit
distance computation. In International Workshop on Graph-Based Representations in Pattern
Recognition, pp. 142–151. Springer, 2013.

Bidisha Samanta, Abir De, Niloy Ganguly, and Manuel Gomez-Rodriguez. Designing random
graph models using variational autoencoders with applications to chemical design. arXiv preprint
arXiv:1802.05283, 2018.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

12

Under review as a conference paper at ICLR 2020

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. arXiv preprint arXiv:1802.03480, 2018.

C Spearman. The proof and measurement of association between two things. American Journal of
Psychology, 1904.

Julian R Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM (JACM), 23(1):
31–42, 1976.

Rahul Rama Varior, Mrinal Haloi, and Gang Wang. Gated siamese convolutional neural network
architecture for human re-identification. In European conference on computer vision, pp. 791–
808. Springer, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. Premise selection for theorem proving by
deep graph embedding. In Advances in Neural Information Processing Systems, pp. 2786–2796,
2017.

Shen Wang, Zhengzhang Chen, Xiao Yu, Ding Li, Jingchao Ni, Lu-An Tang, Jiaping Gui, Zhichun
Li, Haifeng Chen, and Philip S Yu. Heterogeneous graph matching networks for unknown mal-
ware detection. In Proceedings of International Joint Conference on Artificial Intelligence, 2019.

Xiaoli Wang, Xiaofeng Ding, Anthony KH Tung, Shanshan Ying, and Hai Jin. An efficient graph
indexing method. In 2012 IEEE 28th International Conference on Data Engineering, 2012.

Lingfei Wu, Ian En-Hsu Yen, Zhen Zhang, Kun Xu, Liang Zhao, Xi Peng, Yinglong Xia, and Charu
Aggarwal. Scalable global alignment graph kernel using random features: From node embedding
to graph embedding. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1418–1428, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018a.

Kun Xu, Lingfei Wu, Zhiguo Wang, and Vadim Sheinin. Graph2seq: Graph to sequence learning
with attention-based neural networks. arXiv preprint arXiv:1804.00823, 2018b.

Kun Xu, Lingfei Wu, Zhiguo Wang, Mo Yu, Liwei Chen, and Vadim Sheinin. Exploiting
rich syntactic information for semantic parsing with graph-to-sequence model. arXiv preprint
arXiv:1808.07624, 2018c.

Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. Neural network-based
graph embedding for cross-platform binary code similarity detection. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, 2017.

Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern mining. In Proceedings of
IEEE International Conference on Data Mining, pp. 721–724. IEEE, 2002.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hi-
erarchical graph representation learning with differentiable pooling. In Advances in Neural Infor-
mation Processing Systems, pp. 4800–4810, 2018.

Tomoki Yoshida, Ichiro Takeuchi, and Masayuki Karasuyama. Learning interpretable metric be-
tween graphs: Convex formulation and computation with graph mining. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
1026–1036. ACM, 2019.

Jiaxuan You, Rex Ying, Xiang Ren, William L Hamilton, and Jure Leskovec. Graphrnn: Generating
realistic graphs with deep auto-regressive models. arXiv preprint arXiv:1802.08773, 2018.

13

Under review as a conference paper at ICLR 2020

Zhiping Zeng, Anthony KH Tung, Jianyong Wang, Jianhua Feng, and Lizhu Zhou. Comparing stars:
On approximating graph edit distance. Proceedings of the VLDB Endowment, 2(1):25–36, 2009.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V. Chawla. Heteroge-
neous graph neural network. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2019.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Advances in
Neural Information Processing Systems, pp. 5165–5175, 2018.

A APPENDIX

A.1 DATASETS

A.1.1 CLASSIFICATION DATASETS

It is noted that one source code function, after compiled with different settings (architectures, com-
pilers, optimization levels, etc), can generate various binary functions with different control flow
graphs.

For FFmpeg dataset, we prepare the corresponding control flow graphs dataset as the benchmark
dataset to detect binary function similarity. First, we compile FFmpeg 4.1.4 using 2 different com-
pilers gcc 5.4.0 and clang 3.8.0, and 4 different compiler optimization levels (O0-O3), and generate
8 different binaries files. Second, these 8 generated binaries are disassembled using IDA Pro,3 which
can produce CFGs for all disassembled functions. Finally, for each basic block in CFGs, we extract 6
block-level numeric features as the initial node representation based on IDAPython (a python-based
plugin in IDA Pro).

OpenSSL is built from OpenSSL (v1.0.1f and v1.0.1u) using gcc 5.4 in 3 different architectures
(x86, MIPS, and ARM), and 4 different optimization levels (O0-O3). The OpenSSL dataset we
evaluate is previously released by (Xu et al., 2017) and public available4 with prepared 6 block-level
numeric features.

Overall, for both FFmpeg and OpenSSL, each node in the control flow graphs are initialized with
6 block-level numeric features: # of string constants, # of numeric constants, # of total instructions,
of transfer instructions, # of call instructions, and # of arithmetic instructions.

A.1.2 REGRESSION DATASETS

Instead of directly computing the GED between two graphs G1 and G2, we try to learn a similarity
score spG1, G2q, which is the normalized exponential of GED in the range of p0, 1s. To be specific,
spG1, G2q “ exp´normGEDpG1,G2

q, normGEDpG1, G2q “
GEDpG1,G2

q

p|G1|`|G2|q{2 , where |G1| or |G2|

denotes the number of nodes of G1 or G2, and normGEDpG1, G2q or GEDpG1, G2q denotes the
normalized/un-normalized GED between G1 and G2.

We employ both AIDS700 and LINUX1000 released by (Bai et al., 2019), which are public avail-
able.5 Each dataset contains a set of graph pairs as well as their ground-truth GED scores, which
are computed by exponential-time exact GED computation algorithm A˚ (Hart et al., 1968; Riesen
et al., 2013). As the ground-truth GEDs of another dataset IMDB-MULTI is provided with in-exact
approximation, we thus do not consider this dataset in our experiments.

AIDS700 is a subset of AIDS dataset, a collection of AIDS antiviral screen chemical compounds
from Development Therapeutics Program (DTP) in the National Cancer Institute (NCI).6 Originally,
AIDS dataset contains 42687 chemical compounds, where each of them can be represented as a graph
with atoms as node and bonds as edges. To avoid calculating the ground-truth GED between two
graphs with a large number of nodes, Bai et al. (2019) create the AIDS700 dataset that contains 700

3IDA Pro disassembler, https://www.hex-rays.com/products/ida/index.shtml.
4https://github.com/xiaojunxu/dnn-binary-code-similarity.
5https://github.com/yunshengb/SimGNN.
6https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data

14

https://www.hex-rays.com/products/ida/index.shtml
https://github.com/xiaojunxu/dnn-binary-code-similarity
https://github.com/yunshengb/SimGNN
https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data

Under review as a conference paper at ICLR 2020

graphs with 10 or fewer nodes. For each graph in AIDS700, every node is labeled with the element
type of its atom and every edge is unlabeled (i.e., bonds features are ignored).

LINUX1000 is also a subset dataset of Linux that introduced in Wang et al. (2012). The original
Linux dataset is a collection of 48747 program dependence graphs generated from Linux kernel. In
this case, each graph is a static representation of data flow and control dependency within one func-
tion, with each node assigned to one statement and each edge describing the dependency between
two statements. For the same reason as above that avoiding calculating the ground-truth GED be-
tween two graphs with a large number of nodes, the LINUX1000 dataset used in Bai et al. (2019) is
randomly selected and contains 1000 graphs with 10 or fewer nodes. For each graph in LINUX1000,
both nodes and edges are unlabeled.

For both classification and regression datasets, Table 7 provides more detailed statistics.

Table 7: Summary statistics of datasets for both classification & regression tasks.

Tasks Datasets Sub-
datasets

of
Graphs

of
Functions

of Nodes
(Min/Max/AVG)

of Edges
(Min/Max/AVG)

AVG # of Degrees
(Min/Max/AVG)

classif-
ication

FFmpeg
[3, 200] 83008 10376 (3/200/18.83) (2/332/27.02) (1.25/4.33/2.59)
[20, 200] 31696 7668 (20/200/51.02) (20/352/75.88) (1.90/4.33/2.94)
[50, 200] 10824 3178 (50/200/90.93) (52/352/136.83) (2.00/4.33/3.00)

OpenSSL
[3, 200] 73953 4249 (3/200/15.73) (1/376/21.97) (0.12/3.95/2.44)
[20, 200] 15800 1073 (20/200/44.89) (2/376/67.15) (0.12/3.95/2.95)
[50, 200] 4308 338 (50/200/83.68) (52/376/127.75) (2.00/3.95/3.04)

regre-
ssion

AIDS700 - 700 - (2/10/8.90) (1/14/8.80) (1.00/2.80/1.96)
LINUX1000 - 1000 - (4/10/7.58) (3/13/6.94) (1.50/2.60/1.81)

A.2 MORE EXPERIMENTAL SETUP FOR MODELS

A.2.1 MORE EXPERIMENTAL SETUP FOR BASELINE METHODS

We modified some experimental settings in baselines to fit specific tasks. Detailed settings are given
in the following.

SimGNN: For regression task, we set batch size to 128 and trained the model for 10000 iterations.
We used MSE loss as the training loss and set learning rate to 1.0 ˆ 10´3. Validation starts at the
9000-th iteration and is performed every 50 iterations. The best model among all the validation
runs is used for the testing phase. As for the model structure, we used 3 GCNs in the first place
to propagate node features, whose output dimension is set to 64, 64, and 32 respectively. Then
we applied an ANPM layer implemented by author of SimGNN to perform graph-level interaction.
The pair feature vector generated by this layer then passes 4 fully-connected layers and finally a
1-D scalar, which is the predicted similarity score. For classification task, we modified the training
settings so now the model is trained in epoches with the same learning rate and the batch size
becomes 5. Validation is carried out every iteration and the best model is saved at this time. For
training loss, we used Cross-Entropy loss and applied the same learning rate as that in regression
task. The model structure is the same as that in regression task except that the final output dimension
of fully-connected layers is 2, the softmax of which is the predicted label and is compared with
ground truth label in one-hot encoding to get the Cross-Entropy loss.

GMN: For classification task, we trained the model for 100 epoches where validation is carried out
per epoch. We set batch size to 10 and learning rate to 1.0ˆ10´3. We set node feature dimension to
32 and graph representation dimension to 128. As for mode structure, we used 1-layer MLP as node
encoder which encodes the initial node features to node states hp0qi . Then there are 5 propagation
layers with the same structure as mentioned in the original paper (Li et al. (2019)). Besides, in this
task we applied the pairwise loss based on hamming similarity defined by the author in paper. For
regression task, we concatenated representation vectors of 2 graphs in the pair and passed it to a
4-layer MLP to get similarity score. As for training, we set batch size to 128 and used the same
training strategy as that in the regression task of SimGNN. MSE loss is applied in this task for
learning. Other settings remain the same as in classification task.

15

Under review as a conference paper at ICLR 2020

A.2.2 MORE EXPERIMENTAL SETUP FOR DIFFERENT GNNS

When performing experiments to see how different GNNs affect performance of MPNGMN model,
we only replace GCN with GraphSAGE, GIN, and GGNN using the geometric deep learning library
- PyTorch Geometric7. More specifically, for GraphSAGE, we used a 3-layer GraphSAGE GNN
with their output dimensions all set to 100. For GIN, we used 3 GIN modules with a 1-layer MLP
with output dimension 100 as the learnable function. For GGNN, we used 3 one-layer propagation
models to replace the 3 GCNs in our original setting and also set their output dimensions to 100.

A.3 MORE EXPERIMENTS OF THE SGNN MODEL WITH DIFFERENT AGGREGATION
FUNCTIONS FOR BOTH CLASSIFICATION & REGRESSION TASKS

To further compare our models with SGNN models, we train and evaluate several SGNN models
with different aggregation functions, such as Max, FCMax, Avg, FCAvg, and BiLSTM. Both classi-
fication results and regression results are summarized in Table 8 and Table 9. For both classification
and regression tasks, our models show statistically significantly improvement over all SGNN models
with different aggregation functions, which indicates the advantage of multi-perspective node-graph
matching network that adopted in our model.

Table 8: Classification results of SGNN models with different aggregation functions VS. our MP-
NGMN and HGMN models in term of AUC scores (%).

Model FFmpeg OpenSSL
[3, 200] [20, 200] [50, 200] [3, 200] [20, 200] [50, 200]

SGNN (BiLSTM) 96.92˘0.13 97.62˘0.13 96.35˘0.33 95.24˘0.06 96.30˘0.27 93.99˘0.62
SGNN (Max) 93.92˘0.07 93.82˘0.28 85.15˘1.39 91.07˘0.10 88.94˘0.47 82.10˘0.51

SGNN (FCMax) 95.37˘0.04 96.29˘0.14 95.98˘0.32 92.64˘0.15 93.79˘0.17 93.21˘0.82
SGNN (Avg) 95.61˘0.05 96.09˘0.05 96.70˘0.13 92.89˘0.09 93.90˘0.24 94.12˘0.35

SGNN (FCAvg) 95.18˘0.03 95.74˘0.15 96.43˘0.16 92.70˘0.09 93.72˘0.19 93.49˘0.30
MPNGMN 97.73˘0.11 98.29˘0.21 96.81˘0.96 96.56˘0.12 97.60˘0.29 92.89˘1.31

HGMN (Max) 97.44˘0.32 97.84˘0.40 97.22˘0.36 94.77˘1.80 97.44˘0.26 94.06˘1.60
HGMN (FCMax) 98.07˘0.06 98.29˘0.10 97.83˘0.11 96.87˘0.24 97.59˘0.24 95.58˘1.13

HGMN (BiLSTM) 97.56˘0.38 98.12˘0.04 97.16˘0.53 96.90˘0.10 97.31˘1.07 95.87˘0.88

Table 9: Results of SGNN models with different aggregation functions VS. our MPNGMN and
HGMN models on AIDS700 and LINUX1000.

Datasets Model mse (10´3) ρ τ p@10 p@20

AIDS700

SGNN (BiLSTM) 1.422˘0.044 0.881˘0.005 0.718˘0.006 0.376˘0.020 0.472˘0.014
SGNN (Max) 2.822˘0.149 0.765˘0.005 0.588˘0.004 0.289˘0.016 0.373˘0.012

SGNN (FCMax) 3.114˘0.114 0.735˘0.009 0.554˘0.008 0.278˘0.021 0.364˘0.017
SGNN (Avg) 1.453˘0.015 0.876˘0.002 0.712˘0.002 0.353˘0.007 0.444˘0.012

SGNN (FCAvg) 1.658˘0.067 0.857˘0.007 0.689˘0.008 0.305˘0.018 0.399˘0.021
MPNGMN 1.191˘0.048 0.904˘0.003 0.749˘0.005 0.465˘0.011 0.538˘0.007

HGMN (Max) 1.210˘0.020 0.900˘0.002 0.743˘0.003 0.461˘0.012 0.534˘0.009
HGMN (FCMax) 1.205˘0.039 0.904˘0.002 0.749˘0.003 0.457˘0.014 0.532˘0.016

HGMN (BiLSTM) 1.169˘0.036 0.905˘0.002 0.751˘0.003 0.456˘0.019 0.539˘0.018

LINUX
1000

SGNN (BiLSTM) 2.140˘1.668 0.935˘0.050 0.825˘0.100 0.978˘0.012 0.965˘0.007
SGNN (Max) 11.832˘0.698 0.566˘0.022 0.404˘0.017 0.226˘0.106 0.492˘0.190

SGNN (FCMax) 17.795˘0.406 0.362˘0.021 0.252˘0.015 0.239˘0.000 0.241˘0.000
SGNN (Avg) 2.343˘0.453 0.933˘0.012 0.790˘0.017 0.778˘0.048 0.811˘0.050

SGNN (FCAvg) 3.211˘0.318 0.909˘0.004 0.757˘0.008 0.831˘0.163 0.813˘0.159
MPNGMN 1.561˘0.020 0.945˘0.002 0.814˘0.003 0.743˘0.085 0.741˘0.086

HGMN (Max) 1.054˘0.086 0.962˘0.003 0.850˘0.008 0.877˘0.054 0.883˘0.047
HGMN (FCMax) 1.575˘0.627 0.946˘0.019 0.817˘0.034 0.807˘0.117 0.784˘0.108

HGMN (BiLSTM) 0.439˘0.143 0.985˘0.005 0.919˘0.016 0.955˘0.011 0.943˘0.014

7https://pytorch-geometric.readthedocs.io/.

16

https://pytorch-geometric.readthedocs.io/

Under review as a conference paper at ICLR 2020

A.4 MORE EXPERIMENTS OF THE MPNGMN MODEL WITH DIFFERENT AGGREGATION
FUNCTIONS FOR BOTH CLASSIFICATION & REGRESSION TASKS

We investigate the impact of different aggregation functions adopted by Aggregation Layers of the
MPNGMN model for both classification and regression tasks. Following the default and same set-
tings of previous experiments, we only change the aggregation layer of MPNGMN and use five
possible aggregation functions: Max, FCMax, Avg, FCAvg, LSTM, and BiLSTM. As can be ob-
served from Table 10 and Table 11, BiLSTM offers superior performance over all datasets of both
classification and regression tasks in terms of most evaluation metrics. Therefore, we take BiLSTM
as the default aggregation function for MPNGMN, and fix it for the MPNGMN part in HGMN
models.

Table 10: Classification results of MPNGMN models with different aggregation functions in term
of AUC scores (%).

Model FFmpeg OpenSSL
[3, 200] [20, 200] [50, 200] [3, 200] [20, 200] [50, 200]

MPNGMN (Max) 73.74˘8.30 73.85˘1.76 77.72˘2.07 67.14˘2.70 63.31˘3.29 63.02˘2.77
MPNGMN (FCMax) 97.28˘0.08 96.61˘0.17 96.65˘0.30 95.37˘0.19 96.08˘0.48 95.90˘0.73

MPNGMN (Avg) 85.92˘1.07 83.29˘4.49 85.52˘1.42 80.10˘4.59 70.81˘3.41 66.94˘4.33
MPNGMN (FCAvg) 95.93˘0.21 73.90˘0.70 94.22˘0.06 93.38˘0.80 94.52˘1.16 94.71˘0.86
MPNGMN (LSTM) 97.16˘0.42 97.02˘0.99 84.65˘6.73 96.30˘0.69 97.51˘0.82 89.41˘8.40

MPNGMN (BiLSTM) 97.73˘0.11 98.29˘0.21 96.81˘0.96 96.56˘0.12 97.60˘0.29 92.89˘1.31

Table 11: Regression results of MPNGMN models with different aggregation functions on AIDS700
and LINUX1000.
Datasets Model mse (10´3) ρ τ p@10 p@20

AIDS
700

MPNGMN (Max) 2.378˘0.244 0.813˘0.015 0.642˘0.013 0.578˘0.199 0.583˘0.169
MPNGMN (FCMax) 2.220˘1.547 0.808˘0.145 0.656˘0.122 0.425˘0.078 0.504˘0.064

MPNGMN (Avg) 1.524˘0.161 0.880˘0.010 0.717˘0.012 0.408˘0.044 0.474˘0.027
MPNGMN (FCAvg) 1.281˘0.075 0.895˘0.006 0.737˘0.008 0.453˘0.015 0.527˘0.016
MPNGMN (LSTM) 1.290˘0.037 0.895˘0.004 0.737˘0.005 0.448˘0.007 0.520˘0.012

MPNGMN(BiLSTM) 1.191˘0.048 0.904˘0.003 0.749˘0.005 0.465˘0.011 0.538˘0.007

LINUX
1000

MPNGMN (Max)* 16.921˘0.000 - - - -
MPNGMN (FCMax) 4.793˘0.262 0.829˘0.006 0.665˘0.011 0.764˘0.170 0.767˘0.166

MPNGMN (Avg) 4.050˘0.594 0.888˘0.008 0.719˘0.012 0.501˘0.093 0.536˘0.112
MPNGMN (FCAvg) 6.953˘0.195 0.897˘0.004 0.736˘0.005 0.499˘0.126 0.509˘0.129
MPNGMN (LSTM) 1.535˘0.096 0.945˘0.004 0.813˘0.007 0.695˘0.064 0.698˘0.081

MPNGMN(BiLSTM) 1.561˘0.020 0.945˘0.002 0.814˘0.003 0.743˘0.085 0.741˘0.086
* As all duplicated experiments running on this setting do not converge in their training processes, their

corresponding result metrics cannot be calculated.

A.5 MORE EXPERIMENTS OF THE MPNGMN MODEL WITH DIFFERENT NUMBER OF
PERSPECTIVES FOR THE CLASSIFICATION TASK

We further investigate the impact of different number of perspectives adopted by the Node-
Graph Matching Layer of the MPNGMN model for classification tasks. Following the default
and same settings of previous experiments, we only change the number of perspectives (i.e.,
rd “ 50{75{100{125{150) of MPNGMN. As shown in Figure 2 and Table 12, when the graph
size is [3, 200] and [20, 200] (more training samples), our model performance is not sensitive to the
number of perspectives (from 50 to 150). When the graph size is [50,200] (fewer training samples),
the variance of the model becomes relatively larger than these on [3, 200] and [20, 200]. However,
when we used more perspectives (like 150), the variance of the model reduced significantly.

17

Under review as a conference paper at ICLR 2020

50 75 100 125 150
90

95

100

number of perspectives

A
U

C
 (%

)

FFmpeg [50, 200]

FFmpeg [3, 200]

FFmpeg [20, 200]

50 75 100 125 150
90

95

100

number of perspectives
A

U
C

 (%
)

OpenSSL [3, 200]
OpenSSL [20, 200]
OpenSSL [50, 200]

(a) classification performance of FFmpeg (b) classification performance of OpenSSL

Figure 2: (a) and (b) show the impact of the number of perspectives on classification performance
of FFmpeg and OpenSSL respectively.

Table 12: Classification results of different number of perspectives in terms of AUC scores(%).

Model FFmpeg OpenSSL
[3, 200] [20, 200] [50, 200] [3, 200] [20, 200] [50, 200]

MPNGMN (rd “ 50) 98.11˘0.14 97.76˘0.14 96.93˘0.52 97.38˘0.11 97.03˘0.84 93.38˘3.03
MPNGMN (rd “ 75) 97.99˘0.09 97.94˘0.14 97.41˘0.05 97.09˘0.25 98.66˘0.11 92.10˘4.37

MPNGMN (rd “ 100) 97.73˘0.11 98.29˘0.21 96.81˘0.96 96.56˘0.12 97.60˘0.29 92.89˘1.31
MPNGMN (rd “ 125) 98.10˘0.03 98.06˘0.08 97.26˘0.36 96.73˘0.33 98.67˘0.11 96.03˘2.08
MPNGMN (rd “ 150) 98.32˘0.05 98.11˘0.07 97.92˘0.09 96.50˘0.31 98.04˘0.03 97.13˘0.36

18

	Introduction
	Problem Formulation
	Hierarchical Graph Matching Networks Architecture
	SGNN for Global-level interaction learning
	MPNGMN for Cross-level node-graph interaction learning
	Discussions on HGMN model

	Experiments
	Datasets, Experiments Settings, and Baselines
	Datasets
	Experimental setup

	Comparison on graph-graph classification task
	Comparison on graph-graph regression task
	Further Study on the Impact of Different Attention Functions
	Further Study on the impact of different GNNs

	Related Works
	Conclusion and Future Work
	Appendix
	Datasets
	Classification Datasets
	Regression Datasets

	More Experimental Setup for Models
	More experimental setup for baseline methods
	More experimental setup for different GNNs

	More experiments of the SGNN model with different aggregation functions for both classification & regression tasks
	More experiments of the MPNGMN model with different aggregation functions for both classification & regression tasks
	More experiments of the MPNGMN model with different number of perspectives for the classification task

