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ABSTRACT

Initial value problems, i.e. differential equations with specific, initial conditions,
represent a classic problem within the field of ordinary differential equations
(ODEs). While the simplest types of ODEs may have closed-form solutions, most
interesting cases typically rely on iterative schemes for numerical integration such
as the family of Runge-Kutta methods. They are, however, sensitive to the strategy
the step size is adapted during integration, which has to be chosen by the exper-
imenter. Here, we show how the design of a step size controller can be cast as
a learning problem, allowing deep networks to learn to exploit structure in the
initial value problem at hand in an automatic way. The key ingredients for the
resulting Meta-Learning Runge-Kutta (MLRK) are the development of a good
performance measure and the identification of suitable input features. Traditional
approaches suggest the local error estimates as input to the controller. However,
by studying the characteristics of the local error function we show that including
the partial derivatives of the initial value problem is favorable. Our experiments
demonstrate considerable benefits over traditional approaches. In particular, MLRK
is able to mitigate sudden spikes in the local error function by a faster adaptation
of the step size. More importantly, the additional information in the form of
partial derivatives and function values leads to a substantial improvement in perfor-
mance. The source code can be found at https://www.dropbox.com/sh/
rkctdfhkosywnnx/AABKadysCR8-aHW_0kb6vCtSa?dl=0

1 INTRODUCTION

Differential equations in their general form cover an extremely wide variety of disciplines: While
many applications are rather intuitive, as for instance simple Newtonian physics and engineering, other
more exotic use cases include the governing of price evolution in economics (Black & Scholes, 1973),
the study of rates in chemical reactions (Scholz & Scholz, 2014), and the modeling of population
growths in biology (Lotka, 1925; Volterra, 1926). In medicine, differential equations may be used
to model cancer growth (Ilea et al., 2013), diabetes and the glucose metabolism (Esna-Ashari et al.,
2017) as well as for pharmaceutical drug design (Deuflhard, 2000). Recently, differential equations
have also been used as a way to design neural networks (Chen et al., 2018). Unfortunately, finding
an analytical solution in closed form is in many cases very difficult, if not impossible. Therefore, a
variety of numerical integration methods have been developed to obtain accurate, but approximate
solutions. Arguably, the most prominent ones are Runge-Kutta methods, a family of integration
methods for initial value problems. However, setting up Runge-Kutta involves several design choices,
one of which is the step size controller. Using an adaptive step size strategy instead of a constant
step size can often increase efficiency by several orders of magnitude, c.f . (Söderlind, 2006). Their
performance is hampered by the fact that they only make use of hand-designed features.

Contribution. We show how to cast the design of a step size controller for Runge-Kutta as a learning
problem, c.f . Fig. 1. The key ingredients of the resulting Meta-Learning Runge-Kutta (MLRK) are
the identification of a good performance measure and appropriate inputs.

Related Work. Various approaches to control the step sizes in Runge-Kutta methods have been
proposed. While some rely on signal processing principles where the goal is to produce a smooth
step size sequence in conjunction with acceptable local errors, others are based on the assumption
that step sizes should be adapted to a prescribed function of the solution, e.g. to preserve structure in
geometric integration (Söderlind, 2006). In this work we will focus on control theoretic approaches
which aim to keep the local error associated with a single step close to a tolerance parameter.
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Figure 1: Meta-Learning Runge-Kutta: The model represented by the blue block determines the
step size adjustment log rn−1 using a LSTM and a linear layer, c.f . Eq. (10). The Runge-Kutta
update then determines the new step size log hn = log hn−1 + log rn−1. The new step size is used
to perform the next Runge-Kutta step which computes the approximation yn+1 at time step tn+1 and
an error estimate errn+1 according to (12). Then the next input xn+1 for the model is computed.

Specifically, the design of the step size control algorithm is learned within MLRK. Indeed, casting
algorithm design as a learning problem is not new. Andrychowicz et al. (2016) learned a gradient-
based optimizer for nonlinear unconstrained optimization problems. Wichrowska et al. (2017)
extended this work by introducing a hierarchical RNN architecture which improves the generalization
ability of the optimizer. Schramowski et al. (2018) demonstrated the benefit of a learned projection-
free convex optimization algorithm, which relies on conditional gradients. Finally, Chen et al. (2017)
cast the design of gradient-free black-bock optimization as a learning problem.

Furthermore, other approaches to solve differential equations using neural networks have been
proposed, too. Lagaris et al. (1998) suggested to use a feed-forward neural network to approximate
the solution of an ordinary or partial differential equation with initial or boundary conditions. Inspired
by the Galerkin method, Sirignano & Spiliopoulos (2018) used a deep neural network to directly
approximate the solution of a high-dimensional partial differential equation. E & Yu (2018) proposed
the Deep Ritz method as a means to solve variational problems that arise from partial differential
equations. Han et al. (2018) cast the problem of solving semilinear parabolic partial differential
equations as a learning problem by using the reformulation of these differential equations as backward
stochastic differential equations. In all of the above approaches, a neural network is used to help
approximate the solution of the differential equation. The learning process corresponds to the
numerical computation of a solution of the differential equation. In contrast, MLRK learns to improve
the numerical integration process itself.

We proceed as follows. As the first step, i.e. identifying a good performance measure, we consider
the general objective of step size control as well as the simplified and more practical objective that
many controllers are based on. Then, we identify useful inputs by analyzing existing step size control
algorithms. Furthermore, we show how local information about the ODE can be used as additional
favorable inputs. Before concluding, we demonstrate empirically how our proposed controller can be
used to improve step size control and investigate the benefit of different inputs.

2 INITIAL VALUE PROBLEMS AND RUNGE-KUTTA METHODS

We give a brief introduction to initial value problems and Runge-Kutta methods, a numerical method
for solving these problems. Furthermore, we will recap standard step size controllers and point out
their underlying assumptions.

Basics of Initial Value Problems and Runge-Kutta Methods. An ordinary differential equation
describes a system that depends on one variable, often referred to as time. An initial value problem
additionally provides initial values: y′ = g(t, y) , y(t0) = y0 , with a function g : [a, b]× Rm →
Rm, m ∈ N. As closed-form solutions can be very hard to find, numerical methods such as Runge-
Kutta methods have been developed. Their mathematical underpinning is quite evolved (Butcher,
2008; Hairer et al., 2000; Hairer & Wanner, 2002). A brief recap can be found in the appendix.
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For iterative solvers, the local truncation error—the error committed in a single step using step size
h—constitutes an important tool to control the step size as it allows to access the fitness of a step size.

Definition 2.1. The local truncation error in step n+ 1 is defined as
errn+1(h) = ‖y(tn + h)− yn+1‖ = C(tn)hp+1 +O(hp+2) , (1)

where yn+1 = Φ(tn, yn, h) is a single Runge-Kutta step of a p-th order method using step size h. We
call C(tn) the principal error term.

We will also denote the local truncation error as local error and refer to the appendix for simple ways
to estimate it. We denote the error estimates as errn.

The Objective of Step Size Control. As numerical integration is used to approximate a solution,
high accuracy is a desired property. However, in practice, computational resources might be limited
and efficient use of these resources can be crucial in some applications. Hence, an efficient step
size controller should maximize the accuracy of the approximate solution while minimizing the
computational cost. These are competing goals and require a trade-off, which is achieved by
considering the Lagrangian of the error E(H) and the work cost W (H) produced by a sequence of
step sizes H = (hn)N−1n=0 , E(H) + λ ·W (H) . Butcher (2008) uses two integrals describing the
error E(H) and the work cost W (H). Under some assumptions one can show that optimal step sizes
w.r.t. this objective causes local errors equal to the Lagrange multiplier λ, which is often referred to
as the tolerance parameter. Namely, we need to assume that the global error is equal to the sum of
local errors and all step sizes are small enough so that the loss can be approximated by the integrals
suggested by Butcher. However, these are quite strong assumptions. The optimal step size depends
on the tolerance parameter, and hence, might be too large. Furthermore, the assumption that the
global error is equal to the sum of the local errors is not true in general.

Classical Step Size Control. Most common step size control mechanisms aim to keep the local errors
equal to a tolerance parameter so that a standard controller is based on the following idea: For a Runge-
Kutta method of order p, the local error for step size h at time t is approximately err ≈ C(t)hp+1 ,
and, accordingly, the desired optimal step size hopt is given by hopt ≈ h (tol/err)

1
p+1 . This formula

is then used to adapt the step size as

hn+1 = rnhn , rn = max

(
α,min

(
β, γ

(
tol

errn+1

) 1
p+1

))
, (2)

where a safety factor 0 < γ < 1 and a minimal and maximal factor α, β ∈ R≥0, α ≤ β are included
to avoid excessive step rejection and ensure a smooth step size control. Söderlind (2002) pointed
out that the underlying assumptions of Eq. (2) are rather strong. It assumes slow variations in C and
requires h to be sufficiently small so that it exhibits its theoretical asymptotic behavior. Both are not
true in general.

Control Theory on Step Size Control in Runge-Kutta Methods. Gustafsson et al. (1988) dis-
cussed step size control in the context of a proportional-integral-derivative (PID) controller. The
classical step size control mechanism in Eq. (2) can be regarded as an I-controller. They then demon-
strated the oscillatory behavior of this controller when applied to certain problems. They report the
poor stabilizing capability of an I-controller as the origin of these oscillations, which are further
accentuated by a large integration gain. To overcome this, they Gustafsson et al. (1988) suggested a
PI-controller, which in addition to the integral term used in a standard step size control, also includes
a proportional term and can be expressed as

hn+1 = rnhn , rn = max

(
α,min

(
β, γ

(
tol

errn+1

)n1
(

tol
errn

)n2
))

. (3)

A Predictive Controller. Both the classical step size controller, see Eq. (2), and the PI-controller in
Eq. (3) rely on the assumption that the local truncation error can be described as a function of h that
remains independent of t. This is certainly not true for all cases. Therefore, Gustafsson (1994), e.g.,
discussed a controller based on a prediction of the principal error term. A simple model that assumes
a constant linear trend in logC(t) was suggested. Implementing the predicted principal error leads to

hn+1 =
hn
hn−1

(
tol

errn+1

)n1
(

errn
errn+1

)n2

hn . (4)
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3 META-LEARNING RUNGE-KUTTA: NEURAL STEP-SIZE CONTROLLER

Step size controllers for Runge-Kutta are typically still designed by hand. Formulas such as Eq. (2),
(3) and (4) require parameter fine-tuning. In this work, we take a different tack and instead suggest
to replace these hand-designed update rules with a learned controller, hereinafter referred to as
optimizer. The key steps to cast the design of a controller as a learning problem is to determine a
good performance measure and appropriate inputs.

Performance measure. As the first step we need to identify an appropriate performance measure.
As discussed, a trade-off between numerical accuracy and computational cost of the solution must
be made, e.g. by considering the Lagrangian of error and work cost. The work cost is generally
correlated with the number of integration steps. It is crucial to take the length of the integration
interval tn − t0 into account as well, which leads to the following performance measure:

lLagrange(tn, yn, errn) =
‖y(tn)− yn‖+ tol · n

tn − t0
. (5)

In contrast, if we follow the concept of most step size controllers, an optimal step size is achieved if
the local error is equal to the tolerance, which suggests the performance measure

llocal(tn, yn, errn) = ‖errn − tol‖ . (6)

Both types of loss functions offer various strengths and weaknesses over one another.

The loss Eq. (5) incorporates the essential quantities that an efficient algorithm should minimize.
However, the true global error of numerical integration is generally unknown and can only be
approximated. In general this can be computationally demanding and as a result make the training
process very expensive. Furthermore, when the global error is employed, optimal step sizes may
depend on the integration interval as well, e.g. the choice of step size in the first few steps may have
different effects on the global error at different points in the integration interval.

Classic step size controllers are typically based on local errors alone without regards to global
strategies. The objective of these controllers is reflected by the loss Eq. (6). Although this objective
minimizes the Lagrangian of the global error and the number of steps only under strong assumptions
it does qualify as an appropriate practical objective for step size controllers.The advantage here is that
estimates of the local error associated with a step size are available and no additional computation to
determine the loss of a step size is required. This allows efficient training even when the analytical
solution of an initial value problem is unknown.

Input Features. Existing step size controllers rely on error estimates to update the step size. Specifi-
cally, tol

errn
is important, as evident in Eq. (2), (3) and (4). We intuitively expect a data driven approach

to be able to utilize these features. This gives rise to the first set of input features,

ψ (errn+1, ·) = log

(
tol

errn+1

)
. (7)

Here, ψ (errn+1, ·) denotes the input for the optimizer with optional variables. Next, we want to
investigate additional input features that may be beneficial. The principal error term as well as
higher order terms of the local errors can be expressed with elementary differentials of the ODE,
c.f . (Hairer et al., 2000, Section II.3). These elementary differentials are formed of function values
and partial derivatives of g and allow a Taylor approximation of the local error function errn+1(h) =
φ(tn, h)hk+1 +O(hk+2) , where φ(tn, h) is a polynomial in h with coefficients formed from partial
derivatives of g up to order k > p. The roots of the polynomial φ(tn, h)hk+1 − tol approximate the
optimal step size. Moreover, it is reasonable to assume that the local error takes values greater tol
for some h > 0, implying the existence of real roots. Since the complex roots of polynomials are
known to depend continuously on the coefficients of the polynomial, c.f . (Rahman & Schmeisser,
2002, Theorem 1.3.1), it is clear that the optimal step size, a real root of p(h), depends continuously
on the partial derivatives and function values of g as well as the tolerance tol. From the Universal
Approximation Theorem (Hornik, 1991), it then follows that the optimal step size function can be
approximated by a neural network with input

(
(∂αg(tn, yn))|α|=k , . . . , ∂g(tn, yn), g(tn, yn), tol

)
.

This suggests that the partial derivatives of g can also be an appropriate input for our controller,

ψ (errn+1, ·) =

(
log

(
tol

errn+1

)
, (∂αg(tn, yn))|α|=p , . . . , ∂g(tn, yn), g(tn, yn)

)
. (8)
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However, providing partial derivatives requires additional computation whereas the p function values
that were computed during the Runge-Kutta step are conveniently available. As a trade-off between
“perfect” information in the form of higher order partial derivatives and the computational effort to
compute them, we also propose to use the following input:

ψ (errn+1, ·) =

(
log

(
tol

errn+1

)
, g(1)n , . . . , g(p)n

)
, (9)

where g(1)n , . . . , g
(p)
n denotes p function values of the initial value problem.

In contrast to the traditional input (7), our novel inputs (8) and (9) both provide local information
about the structure of the problem at hand, which allows one to keep the local error close to the
tolerance parameter. Moreover, hand-designed controller and existing Runge-Kutta methods do not
make use of these information, and it is difficult—if not impossible—to do so. Training an optimizer
with input (8) or (9), as shown next, does so automatically and designs novel Runge-Kutta methods.

Meta-Learner. With a good performance measure and appropriate inputs at hand, we can now solve
the step-size control problem as a meta-learning problem as sketched already in Fig. 1. Let the
input for the optimizer be xn = ψ (errn, ·). We parameterize the optimizer c using φ and update the
step size as follows, log hn+1 = log hn + cn (ψ(errn+1, ·), φ) . An approach in log space has the
advantage that that we do not need to constrain the output of c to be positive. Since cn corresponds to
log rn, we will adjust the notation in a similar fashion. Due to their natural ability to handle sequential
tasks, an LSTM was chosen in our experiments as optimizer c, and its prediction determines the step
size which will be used in the next Runge-Kutta iteration. We denote the model of the optimizer,
represented by the blue block in Fig. 1, by m, its parameters by φ and the hidden state by ĥn. It can
be expressed by (

log rn−1
ĥn+1

)
= m

(
xn, ĥn, φ

)
. (10)

The subsequent Runge-Kutta update in the yellow block of Fig. 1 first updates the step size

log hn = log hn−1 + log rn−1 , (11)

and then uses it to execute the next Runge-Kutta step,

tn+1 = tn + hn ,

(
yn+1

errn+1

)
= Φ(tn, yn, hn) . (12)

Here, Φ denotes the Runge-Kutta step from yn to yn+1 as well as the error estimate errn+1 that is
computed during that step. Afterwards, the next input for the model will be computed.

Learning Objective. Different initial value problems can require very different step sizes. Using an
optimizer that is specialized for a certain class of problems allows to exploit the structure of these
problems. The behavior of an initial value problem is described by a function g, therefore we can
represent a class of initial value problems with a distribution over the functions g. Thus, an optimizer
can be considered optimal for a class of problems, if it minimizes the expected loss:

L(φ) = Eg
(∑N

n=1
l(tn, yn, errn)

)
, (13)

where tn, yn, errn were computed according to Eqs. (10), (11), (12). Here, l denotes the loss function
defined for an approximation yn at time point tn and the local error estimate errn. Note that our
training loss directly corresponds to the performance measure we are interested in. The model m can
then learn the behavior of the given class of problems and use this knowledge to generalize to new
examples of the same class and new, unseen classes. Specifically, since the provided performance
measure l is differentiable a.e., we can optimize the learning objective Eq. (13) using gradient descent
on the parameters φ. An estimate of the gradient ∂L(φ)∂φ can be computed by sampling a function
g from the distribution of the class of initial value problems and applying backpropagation, c.f .
(Rumelhart et al., 1986).

4 EXPERIMENTAL EVIDENCE

Our intention here is to investigate the benefits of Meta-Learning Runge-Kutta (MLRK). To this
end we conducted experiments with different classes of initial value problems. Specifically, we
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Table 1: On the test set of class (low-freq), MLRK was considerably faster (less many steps) than
the baseline controller on average, while causing only a mildly larger mean global error at the end
of the integration interval. Both the baseline controller and MLRK showed a gradually increasing
mean global error at the end of the integration interval over the test set consisting of 1500 harmonic
oscillators of class (med-freq).

(low-freq) (med-freq)
interval steps error steps error

Baseline MLRK Baseline MLRK Baseline MLRK Baseline MLRK

1 3.42 3.15 0.000004 0.000009 26.24 7.95 0.001588 0.008253
3 7.59 6.05 0.000017 0.000119 87.16 29.63 0.001686 0.011236
5 11.76 8.22 0.000032 0.000366 148.05 53.44 0.001739 0.012904
7 15.80 10.23 0.000048 0.000668 208.95 77.54 0.001735 0.014222

10 21.92 13.15 0.000073 0.001171 300.32 113.82 0.001816 0.016546

(high-freq)
interval steps error

Baseline MLRK Baseline MLRK

1 47.15 12.08 0.026415 0.085082
3 157.58 53.42 0.023223 0.081219
5 268.03 96.48 0.025230 0.091109
7 378.42 139.69 0.026177 0.094129
10 544.05 204.57 0.024858 0.094562

Table 2: The mean global er-
rors of the baseline stay ap-
proximately the same. The
optimizer trained on problem
instances of class (low-freq)
shows only a very gradual in-
crement in the global error on
instances of class (high-freq).

investigated our suggested loss functions and our theory that suggests that providing higher order
partial derivatives of g can be used as a means to anticipate the evolution of the local error and, hence,
may lead to an improved performance of the optimizer. For a class of initial value problems we
assume a parametric form of g with a distribution over the parameters; details can be found in the
appendix. Our datasets are obtained by sampling from these distributions. Finally, we compare our
method to the baseline controller given by Eq. (2).

Harmonic Oscillator. First, we started with a simple class of ODEs. We trained MLRK on low
varied harmonic oscillators. The corresponding results for training on high frequencies are similar
and can be found in the appendix. As inputs we only used the error estimates, Eq. (7). We started
with the dataset of harmonic oscillators with low frequencies (low-freq): the training set contained
30,000 instances, the validation set and test set each 1,500 instances. To measure the performance we
considered the L1-Lagrangian loss Eq. (5) as well as the number of steps needed for an integration
interval and the corresponding error separately. Since the Lagrangian represents a trade-off between
the two it is a particularly good measure.

Fig. 2(a) shows the mean loss during the integration of the test set, which consists of 1500 harmonic
oscillators of class (low-freq). The solid lines show the mean loss in step n, the colored areas mark
the standard deviation. MLRK achieves a smaller mean loss than the baseline, which confirms its
ability to generalize to new problem instances of the same class of problem. When we compare
the mean number of steps and the mean global error of MLRK and the baseline controller in Tab. 1,
the necessity for a trade-off between the two objectives becomes clear. While the baseline needs on
average more steps to complete the integration, it achieves a smaller error, the contrary is true for our
optimizer. This makes it hard to compare the two methods based on just these values.

Generalization Capability of Optimizer based on Low Frequency Harmonic Oscillators. By
evaluating the controller designed by MLRK on different test sets, we investigated its ability to
transfer knowledge to problem instances of other classes. Fig. 2(b) shows that MLRK maintains a
smaller mean loss on 1500 harmonic oscillators of class (med-freq). These oscillators are both higher
in frequency and amplitude than the problem instances contained in the training set. This indicates
that MLRK is able to generalize to these problems. Tab. 1 reveals that MLRK uses on average about
a third of the integration steps the baseline needs for the tested integration intervals. The resulting
mean global errors are indeed larger than those of the baseline controller, but still very reasonable.
Moreover, evaluating MLRK on 1500 harmonic oscillators of class (high-freq) showed a mean loss
similar to that of the baseline controller in Fig. 2(c). This suggests that MLRK generalizes to problem
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Figure 2: The mean L1-Lagrangian loss (5) of the approximation (tn, yn) in step n over three
different test sets. (a) MLRK achieved a smaller mean loss, thus, it generalizes well to new problem
instances of the same class of problems (low-freq) it was trained on. (b) MLRK achieves a lower
loss on instances with both higher amplitude and frequency than the problem instances used during
training. Thus, MLRK is able to generalize to different problems. (c) Even on higher frequencies
than the ones in (med-freq), MLRK shows a mean loss similar to that of the baseline controller.

n
10 40 70 100

−0.000500

0.000833

0.002167

0.003500

lo
ca

le
rr

or

Baseline

10 40 70 100

err

10 40 70 100

partial

10 40 70 100

grad

Figure 3: The mean local error over the test set of van der Pol ODEs for different methods is shown.
The optimizer err was trained with input (7), optimizer partial was trained with input (8) and grad
was trained with input (9). Providing local information such as those in input (8) and (9) results in
increased responsiveness of the optimizer.

instances of this class as well. In Tab. 2 we observe a similar situation as in the previous experiment.
The global error of the baseline controller stays approximately the same for different interval lengths,
while the global error of MLRK increases very gradually, while using only a fraction of iterations.

van der Pol. "I have a theory that whenever you want to get in trouble with a method, look for the
van der Pol equation" – P. Zadunaisky, 1982, c.f . (Hairer et al., 2000).
Next we conducted an experiment regarding the local L1 loss (6). Experiments with harmonic
oscillators revealed the optimizers ability to keep the local errors close to the tolerance parameter
(c.f . appendix). Keeping the local error equal to a constant tolerance is not a hard problem for
simple harmonic oscillators, therefore we turned towards van der Pol oscillators. We considered the
following dataset of van der Pol oscillators of class vdP(0, 1): The training set contained 50,000
instances, the validation set and the test set each 1,500 instances. The local errors of van der Pol
oscillators vary drastically (c.f . Fig. 5, appendix). High spikes occur when the solution changes from
being driven to being damped. As the behavior of van der Pol equations are more complex compared
to harmonic oscillators, we expect that providing additional information about the problem such
as partial derivatives or function values of g can be beneficial. To investigate this, we considered
MLRK with different inputs. One optimizer is only provided with the error estimate Eq. (7), another
is provided with the error estimate and all partial derivatives Eq. (8) and the last is provided with the
error estimate and the function evaluations that were computed during the Runge-Kutta step, Eq. (9).

The results are summarized in Fig. 3. Using err shows reoccurring high spikes similar to the baseline,
although the spikes of the optimizer are lower on average. In contrast, MLRK with additional
information on the partial derivatives (partial) shows a much smoother sequence of local errors. This
demonstrates that the additional information in the partial derivatives of g improves the ability of
MLRK to anticipate the variations of the local errors and respond with adequate step sizes. MLRK
with error estimates as well as function values of g (grad) produces a smooth step size sequence
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Figure 4: The mean local error over the test set of double pendulums for different methods is shown.
The optimizer err was trained with input (7), optimizer partial was trained with input (8) and grad
was trained with input (9). In all three cases MLRK is able to reduce the spikes in the local errors
drastically, the use of local information reduces the variance of the local errors even further.

similar to the optimizer partial. This shows that the optimizer with additional input-information from
g are actually outperforming the baseline. The reoccurring spikes in the local error seem to decrease
in amplitude with time. This is largely due to an averaging effect – for different values of σ these
spikes occur at different integration steps. All three methods reveal a reduction in both the mean
number of steps and the mean local errors, c.f . Tab. 3, appendix.

Double Pendulum. To demonstrate the benefit of MLRK in an application we conducted experiments
with double pendulum ODEs (c.f . appendix). The chaotic behaviour of the double pendulum leads
to sudden spikes in the local error, a particularly challenging problem for step size controllers. To
investigate the ability of MLRK to avoid these spikes by adjusting the step size appropriately, we
consider the L1 local loss as in the previous experiment and a dataset of double pendulums of
class (pendulum). The training set contained 50,000 instances, the validation set and the test set each
1,500 instances. Again, the different inputs Eqs. (7), (8) and (9) were examined.
The results are shown in Fig. 4 and reveal the baseline controllers inability to produce steady local
errors. Here, the benefit of a learned update rule over a static one becomes evident. The optimizer err
that is only provided with the local error estimates is able to reduce the spikes in the local errors to a
remarkable degree. Moreover, local information about the problem allows the optimizers partial and
grad to reduce the variance in the local errors even further.

5 CONCLUSION

We have shown how to cast the design Runge-Kutta methods for solving initial value problems as
a learning problem. We established appropriate performance measures and useful inputs for the
controller, which constitute the key ingredients of the resulting Meta-learning Runge-Kutta (MLRK),
which learns step size controllers that are specialized to a particular class of initial value problems.
Our experimental results demonstrate that MLRK can indeed learn to design novel Runge-Kutta
methods that perform better than a hand-designed Runge-Kutta approach. Furthermore, we observed
a remarkable degree of generalization to other classes of initial value problems. More importantly,
examining the effect of different inputs demonstrated that the additional information contained in the
function values and partial derivatives of g leads to a substantial improvement in performance of the
automatically designed solvers.

There are several interesting avenues for future work. While MLRK generalizes well to problem
instances of the same class and even to problems of similar classes, when confronted with a very
different type of problem, MLRK does not generalize well yet. Wichrowska et al. (2017) showed
how a carefully chosen network architecture and a diverse training set improves generalization of
their optimizer to many different classes of optimization problems. A similar approach may lead
to improved generalization of MLRK. Another common aspect of Runge-Kutta is the need for step
rejection in case the local error exceeds the tolerance. The problem here is that a single large error
can in general not be compensated for, even if subsequent step sizes are chosen very small. In this
case, a step is usually rejected and repeated using a smaller step size. Here the challenge is to choose
a step size small enough to meet the accuracy requirements but at the same time not too small, since
the choice of step size influences the entire step size sequence to come.
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A APPENDIX

RUNGE-KUTTA METHODS

The mathematical theory of Runge-Kutta methods is quite evolved. We will only recap a few basics
here, for further details see for example (Butcher, 2008; Hairer et al., 2000; Hairer & Wanner, 2002).

Definition A.1. Let s ∈ N, aij ∈ R for i, j ∈ {1, . . . , s}, ci ∈ R for i ∈ {1, . . . , s} and bi ∈ R for
i ∈ {1, . . . , s}. Let g : R × Rm → Rm be a function that describes an initial value problem. The
method defined by

yn+1 = yn + h

s∑
i=1

biki , (14)

ki = g(tn + hci, yn + h

s∑
j=1

aijkj) , (15)

for step size h is called an s-stage Runge-Kutta method. If aij = 0 for i ≤ j, the method is called
explicit, otherwise it is called implicit.

Definition A.2. A Runge-Kutta method is of order p if for sufficiently smooth initial value problems

‖y(t0 + h)− y1‖ ≤ Khp+1

holds.
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Note that a higher order method yields more accurate results, consequently a high order is a desired
characteristic of a Runge-Kutta method. However, higher orders can only be achieved by the use of
more stages. For an s-stage Runge-Kutta method the order p is bounded by the number of stages,
p ≤ s. Up to order 4 there exist methods with p = s, for order 5 and higher p is strictly smaller than
s, c.f . (Butcher, 2008, Theorem 324B). The order of an s-stage Runge-Kutta method depends on the
coefficients aij , bi, ci. Order conditions for these coefficients have been developed, which ensure a
certain order of the method.

The problem of step size control can be described in the following way: Based on some input values,
e.g. tn, yn, errn and possibly additional characteristics of g, we must choose a step size hn,which is
then used to evaluate g at p different points. These points are determined by hn, see Definition A.1.
The resulting stages in Eq. (15) are then used to compute the approximation yn+1 of y(tn + hn),
c.f . Eq. (14). The problem is to choose hn in a way such that the approximation yn+1 fulfills some
desired properties. For example we may require that the local error of yn+1 is close to some tolerance
parameter. In fact, this is the standard objective of most common step size controllers.

ERROR ESTIMATION

The local errors are of particular importance for step size control and can fortunately be estimated
very efficiently. To that end, we take a look at a simple idea as described in (Butcher, 2008, p. 198):
Suppose we have two approximations for y(tn) of order p̂ and p̃ respectively, that is

ŷn = y(tn) +O(hp̂+1) ,

ỹn = y(tn) +O(hp̃+1) ,

where y(t) is the solution of

y′(t) = g(t, y(t)) , y(tn−1) = yn−1 ,

and the step size h that was used to obtain both approximations is given by

h = tn − tn−1 .

If p̂ > p̃,

ŷn − ỹn = y(tn)− ỹn +O(hp̃+2)

can be used as an approximation for the local truncation error of the p̃-th order Runge-Kutta method:

errn(h) ≈ ‖ŷn − ỹn‖ .

To obtain error estimates each step has to be carried out with two methods of different orders. Here,
the easiest approach is to use two separate Runge-Kutta methods to compute ŷ and ỹ, however this is
quite costly, especially for implicit methods. A more efficient approach to obtain error estimates are
the embedded Runge-Kutta methods. Here both approximation use the same stages ki in Eq. (15) but
two different pairs of coefficients bi, b̂i in Eq. (14). By doing so, the stages can be reused and an
error estimate can be obtained with a cheap extra linear combination of the ki’s. We denote the error
estimates by

errn = ‖ŷn − ỹn‖ . (16)

CLASSES OF INITIAL VALUE PROBLEMS

For loss functions such as the one in Eq. (5) it is useful to consider initial value problems with known
solutions so that we can compare the numerical approximation to the true function values of the
solution. For this reason we considere simple harmonic oscillators and linear differential equations
with constant coefficients. If we employ loss functions as Eq. (6), local rather than global errors are
of interest. For these loss functions it is interesting to consider initial value problems for which the
local errors vary drastically during the integration such as van der Pol oscillators.
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SIMPLE HARMONIC OSCILLATOR

A simple harmonic oscillator is a harmonic oscillator that is neither driven nor damped and can be
characterized by

mx′′(t) = −k x(t),

where m is the mass of the oscillator, x the position and k describes the restoring force that is applied,
when displaced from its equilibrium position. It can be transformed to

y′1(t) = y2(t) ,

y′2(t) = −m
k
y1(t) .

The initial values provide the initial position x(t0) of x and the initial velocity x′(t0),
y1(t0) = x(t0),

y2(t0) = x′(t0).

The solution of the simple harmonic oscillator takes the form

x(t) = A cos(ωt+ ϕ), ω =

√
m

k
,

where A and ϕ are uniquely determined by the initial values. The frequency of the oscillations is
determined by ω, A is the magnitude of the oscillations and ϕ is a phase-shift.

A class of this kind of initial value problem can be described by a distribution over mk and the initial
values or alternatively a distribution over A, ω and ϕ. The following classes of initial value problems
were used in the experiments

A ∼ U(0, 5), ω ∼ U(0, 10), ϕ ∼ U(0, 1), (high-freq)
A ∼ U(0, 5), ω ∼ U(0, 20), ϕ ∼ U(0, 1), (higher-freq)
A ∼ U(0, 1), ω ∼ U(0, 1), ϕ ∼ U(0, 1), (low-freq)
A ∼ U(1, 5), ω ∼ U(1, 5), ϕ ∼ U(0, 1), (med-freq)

where U(a, b) denotes the uniform distribution over the interval [a, b].

LINEAR CONSTANT COEFFICIENT

A linear differential equation with constant coefficients can be described by
y′(t) = Ay(t) , y(t0) = y0 ,

where A ∈ Rm×m. The solution of this differential equation is known and can be expressed in terms
of the eigenvalues λ1, . . . , λm with corresponding eigenvectors v1, . . . , vm of the matrix A:

y(t) =

m∑
j=1

cj e
λjt vj ,

with coefficients cj ∈ R that are uniquely determined by the initial values y(t0) = y0. The initial
value problem is stable, if Re(λj) < 0 for all j ∈ {1, . . . ,m} and unstable if Re(λj) > 0 for some
j ∈ {1, . . . ,m}. The oscillatory behavior of the problem is determined by Im(λj). Note that
the simple harmonic oscillators are linear differential equations with constant coefficients, where
A ∈ R2×2, Re(λj) = 0 for j ∈ {1, 2} and Im(λ1) = −Im(λ2) =

√
m
k i.

For the experiments we used differential equations with A ∈ R3×3. The matrix A either has three
real eigenvalues λ1, λ2, λ3 ∈ R or one real eigenvalue λ1 ∈ R and two complex eigenvalues
λ2 = a + bi, λ3 = a − bi, with a, b ∈ R. In this case we choose c2 = c3 to obtain a real solution.
We can specify a class of linear constant coefficient differential equations by a distribution on the
eigenvalues of A and the coefficients cj . The classes that were used for the experiments were
described by the distributions

λ1 ∼ U(−2.5,−0.1), a ∼ U(−2.5,−0.1), b ∼ U(0, 5), (stable)
λ1 ∼ U(0, 1), a ∼ U(−2.5,−0.1), b ∼ U(0, 5), (unstable)
λ1 ∼ U(−1, 0), a ∼ U(0, 1), b ∼ U(1, 2), (osc-increasing)

where U(a, b) denotes the uniform distribution on the interval [a, b].
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Figure 5: The upper plot shows the numerically approximated solution y1(t) of a van der Pol oscillator
with σ = 2. The lower plot displays the local error estimates for h = 0.1. The error estimates show
high spikes whenever the solution switches from being driven to being damped.

VAN DER POL OSCILLATOR

Van der Pol oscillators arise in the study of limit cycles. A van der Pol oscillator can be described by
y′1(t) = y2, y1(0) = 2,

y′2(t) = σ(1− y21)y2 − y1, y2(0) = 0,

with σ > 0. For σ = 2 an approximate solution is displayed in Figure 5. Small oscillations are
amplifies and large oscillations damped, c.f . (Hairer et al., 2000, pp. 111). The local errors of a van
der Pol oscillator show high variations. For the experiments we used van der Pol oscillators with the
following distributions

σ ∼ U(0, 1), (vdP(0, 1))
σ ∼ U(1, 2). (vdP(1, 2))

DOUBLE PENDULUM

A double pendulum is a pendulum attached to another pendulum, c.f . Fig. 6. The length of the first
and second pendulum are given by L1 and L2, respectively, their masses by M1 and M2 and the
angle by θ1 and θ2. The equations of motion for the double pendulum can be written in different
forms, we chose the following formulation in terms of the angular acceleration:

θ̈1 =
M2L1θ̇

2
1 sin(θ2 − θ1) cos(θ2 − θ1) +M2g sin(θ2) cos(θ2 − θ1)

L1(M1 +M2 −M2 cos2(θ2 − θ1))

+
M2L2θ̇

2
2 sin(θ2 − θ1)− (M1 +M2)g sin(θ1)

L1(M1 +M2 −M2 cos2(θ2 − θ1))

θ̈2 =
(M1 +M2)

(
g sin(θ1) cos(θ2 − θ1)− L1θ̇

2
1 sin(θ2 − θ1)− g sin(θ2)

)
L2(M1 +M2 −M2 cos2(θ2 − θ1))

− M2L2θ̇
2
2 sin(θ2 − θ1) cos(θ2 − θ1)

L2(M1 +M2 −M2 cos2(θ2 − θ1))

The initial angular position and velocity θ1, θ2, θ̇1, θ̇2 determine the trajectory of the double pendulum.
For the experiments we used double pendulums with the following distribution

M1 ∼ U(0.5, 1),M2 ∼ U(0.5, 2), L1 ∼ U(0.5, 1), L2 ∼ U(0.5, 1). (pendulum)

ADDITIONAL EXPERIMENTS

ON VAN DER POL

Table 3 shows the mean number of steps, local error and wall clock time over 1500 van der Pol
equations of class (vdP(0, 1)).
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Figure 6: A double pendulum is one pendulum attached to another pendulum. The masses M1 and
M2 of these pendulums may vary as do the lengths L1 and L2. The initial configuration of angular
position and velocity determines the trajectory of the double pendulum.

HIGH FREQUENCY HARMONIC OSCILLATORS

In this experiment, we trained a controller specialized for simple harmonic oscillators of
class (high-freq) which were described in Sec. A. Thus we chose the following datasets:

Training set: 30000 Harmonic oscillators of class (high-freq).
Validation set: 1000 Harmonic oscillators of class (high-freq).

Test set: 1000 Harmonic oscillators of class (high-freq).

As loss we chose the L1-Lagrangian Eq. (5). As inputs we used only the error estimates, Eq. (7).
The loss of the learned controller and the baseline controller, averaged over the test dataset, is shown
in Fig. 7(a). Both controllers are used to execute 100 integration steps for each instance of the test
dataset. Subsequently, the loss Eq. (5) is computed for each approximation (tn, yn). The solid lines
show the mean loss in step n, the colored areas mark the standard deviation. Here, the loss of our
learned controller is on average smaller than the loss of the baseline controller, which demonstrates
the controllers generalization capability to new problems of the same class.

Tab. 4 summaizres the global error at the end of the integration interval and the number of steps
needed during the integration for different interval lengths in range 1 to 10. All values are averaged
over the test dataset. Here, the baseline controller needs much more steps than the learned controller,
but maintains a smaller error. In fact, the error caused by the baseline is approximately the same for
all shown interval lengths, while the error caused by the trained model increases with interval length.
This is due to the assumption that the global error is the sum of the local errors. In particular, the loss
Eq. (5) rates step size sequences with a higher global error better, if they can balance the higher error
by achieving a longer integration interval.

While the general assumption that the global error increases with the length of the integration interval
is often fulfilled, the specific assumption of a linear accumulation of the global error, as in our loss,
is usually not fulfilled. This is a good example for why the assumptions leading to the widely used
objective to keep the local errors constant are too strong.
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Table 3: The mean number of steps, local error and wall clock time over 1500 van der Pol equations
are shown for different lengths of the integration interval. Our method err is slightly faster and
uses less steps than the baseline while producing smaller local errors during the integration, see also
Figure 3. While partial and grad reduce the number of steps even further, wall time is increased.
However one can clearly see that partial and grad outperform both the baseline and err regarding the
local error.

int steps

baseline err partial grad

1 21.59 16.42 12.40 12.09
3 33.74 29.12 25.16 24.74
5 45.43 41.07 36.42 36.02
7 56.84 52.57 48.34 47.97
10 73.46 69.41 65.40 65.04

int mean local error

baseline err partial grad

1 7.17e− 4 6.58e− 4 4.01e− 4 3.74e− 4
3 6.40e− 4 5.45e− 4 2.49e− 4 2.28e− 4
5 5.18e− 4 4.47e− 4 1.95e− 4 1.75e− 4
7 4.97e− 4 4.16e− 4 1.57e− 4 1.39e− 4
10 4.59e− 4 3.82e− 4 1.32e− 4 1.18e− 4

int time

baseline err partial grad

1 0.0255 0.0263 0.0254 0.0221
3 0.0405 0.0375 0.0460 0.0403
5 0.0591 0.0517 0.0681 0.0596
7 0.0858 0.0742 0.1036 0.0897
10 0.0971 0.0825 0.1201 0.1065

interval steps error

Baseline Optimizer Baseline Optimizer

1 45.50 13.73 0.023092 0.030499
3 152.11 43.12 0.022266 0.040429
5 258.73 74.40 0.022731 0.049529
7 365.30 106.31 0.022011 0.055821

10 525.18 154.25 0.023353 0.070451

Table 4: The mean values over the test set consisting of 1000 harmonic oscillators of class (high-freq)
are shown. While the baseline needs much more steps than our trained model, it achieves a smaller
global error. The global error of the baseline stays approximately the same for all integration intervals.

It is also interesting to evaluate the learned controller on other classes of initial value problems.
Fig. 7(b) shows the mean loss of the learned controller and the baseline controller over a test set
consisting of 1500 harmonic oscillators of class (higher-freq). This class contains oscillators of
class (high-freq) but also includes higher frequency ones. The learned controller has a lower mean
loss than the baseline controller which indicates that it is able to transfer knowledge from problems
of class (high-freq) to problems of class (higher-freq).

When we compare the number of steps and the global error at the end of the integration interval, see
Tab. 5, we can observe a similar situation as in Tab. 4. The learned controller needs less steps than the
baseline controller. The global error however stays approximately the same for the baseline controller
while it increases with interval length for the learned controller.
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Figure 7: The red and blue line show the mean loss Eq. (5) of the approximation (tn, yn) in step n
over the test set. The red and blue area indicate the standard deviation. (a) The learned model LSTM
attains a smaller mean loss on new instances of the same class of problems (high-freq) it was trained
on, this is especially pronounced in the steps n ≥ 5. (b) The test set consists of 1500 harmonic
oscillators of class (higher-freq), which means that it also contains higher frequency oscillators. The
mean loss of our learned controller is lower than the mean loss of the baseline controller which
indicates that our method generalizes to these different problem instances.

interval steps error

Baseline Optimizer Baseline Optimizer

1 116.76 22.26 0.453698 0.511174
3 386.40 75.64 0.442521 0.620779
5 656.06 141.29 0.426773 0.770457
7 925.80 212.19 0.418467 0.925463

10 1330.31 319.85 0.413902 1.427778

Table 5: The mean number of steps and the mean global error at the end of the integration interval
was computed over a test set of 1500 harmonic oscillators of class (higher-freq). While the baseline
controller needs much more steps than our learned controller, it has on average a lower global error,
which stays approximately the same for different interval lengths.

HARMONIC OSCILLATOR

We learn a controller optimized for simple harmonic oscillators. We choose the following data sets:

Training set: 30000 Harmonic oscillators of class (low-freq).
Validation set: 1500 Harmonic oscillators of class (low-freq).

Test set: 1500 Harmonic oscillators of class (low-freq).

First, we evaluate our method on a test set consisting of the same class of initial value problems the
controller was trained on. Figure 8(a) shows the mean local error of the learned controller and the
baseline on this test set. Both controllers are capable to keep the local errors close to the tolerance.
Our method is slightly closer to the tolerance. Next, we evaluate our learned controller on different
test sets. When we test the learned controller on harmonic oscillators with higher frequencies and
higher amplitude, we find that our method generalizes to these problem instances as well. In fact,
both the learned and the baseline controller are able to keep the local errors close to the tolerance as
displayed in Figure 8(b). Similar results were found for harmonic oscillators of the class (med-freq).
Hence, our learned controller is able to transfer knowledge from oscillators with low frequencies to
oscillators with higher frequencies.
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Figure 8: The mean local error of our learned controller and the baseline controller is shown. (a)
Testing on 1500 harmonic oscillators of class (low-freq) shows that both the baseline and the learned
controller are able to keep the local errors close to the tolerance. The mean local error of the learned
controller is slightly closer to the tolerance. (b) For a test set consisting of 1500 harmonic oscillators
of class (high-freq) the two controllers show a similar performance, both are able to keep the local
error close to the tolerance. Testing the controllers on problem instances of class (med-freq) yields a
similar results.
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Figure 9: The mean local error over different test sets is shown. (a) The test set consists of 1500
linear differential equations with constant coefficients of class (osc-increasing). For these problem
instances the learned controller demonstrates its ability to keep the mean local error close to the
tolerance. In fact, the local errors of our controller appear to be closer to the tolerance than the local
errors of the baseline for some part of the integration. (b) Testing our controller on a set of 1500 van
der Pol oscillators of type (vdP(0, 1)) reveals a similar performance to that of the baseline controller.
Both controllers show high spikes in the local errors. These occur whenever the solution changes
from being driven to being damped, see Figure 5.
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We also want to evaluate the generalization capability of our method to problem instances of
different classes of initial value problems. Our method shows an acceptable performance on linear
differential equations with constant coefficients of the class (osc-increasing), see Figure 9(a). Here,
the performance of our controller is similar to the baseline controller. The learned controller obtains
local errors which are closer to the tolerance in some steps. Figure 9(b) shows a similar performance
of our controller to the baseline controller on van der Pol oscillators. Both methods show high spikes
in the local errors. These occur whenever the solution of a van der Pol oscillator changes from being
driven to being damped as demonstrated in Figure 5. Our controller does not react quickly to the
sudden changes in the local error of van der Pol equations. This behavior is very different from
harmonic oscillators, thus generalization can not be expected.
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