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ABSTRACT

The correct interpretation of quantifier statements in the context of a visual scene
requires non-trivial inference mechanisms. For the example of “most”, we dis-
cuss two strategies which rely on fundamentally different cognitive concepts. Our
aim is to identify what strategy deep learning models for visual question answer-
ing learn when trained on such questions. To this end, we carefully design data
to replicate experiments from psycholinguistics where the same question was in-
vestigated for humans. Focusing on the FiLM visual question answering model,
our experiments indicate that a form of approximate number system emerges
whose performance declines with more difficult scenes as predicted by Weber’s
law. Moreover, we identify confounding factors, like spatial arrangement of the
scene, which impede the effectiveness of this system.

1 INTRODUCTION

Deep learning methods have been very successful in many natural language processing tasks, rang-
ing from syntactic parsing to machine translation to image captioning. However, despite signifi-
cantly raised performance scores on benchmark datasets, researchers increasingly worry about in-
terpretability and indeed quality of model decisions. We see two distinct research endeavors here,
one being more pragmatic, forward-oriented, and guided by the question “Can a system solve this
task?”, the other being more analytic, reflective, and motivated by the question “How does a system
solve this task?”. In other words, the former aspires to improve performance, while the latter aims
to increase our understanding of deep learning models.

By ‘understanding’ here we mean observing a reasoning mechanism that, if not resembling human
behavior, at least is cognitively plausible. This is by no means necessary for practically solving a
task, however, we highlight two reasons why being able to explain model behavior is nonetheless
important: On the one hand, cognitive plausibility increases confidence in the abilities of a system
– one is generally more willing to rely on a reasonable than an incomprehensible mechanism. On
the other hand, pointing out systematic shortcomings inspires systematic improvements and hence
can guide progress. Moreover, particularly in the case of a human-centered domain like natural
language, ultimately, some degree of comparability to human performance is indispensable.

In this paper we are inspired by experimental practice in psycholinguistics to shed light on the ques-
tion of how deep learning models for visual question answering (VQA) learn to interpret statements
involving the quantifier “most”. We follow Pietroski et al. (2009) in designing abstract visual scenes
where we control the ratio of the objects quantified over and their spatial arrangement, to identify
whether VQA models exhibit a preferred strategy of verifying whether “most” applies. Figure 1
illustrates how visual scenes can be configured to favor one over another mechanism.

We want to emphasize the experimental approach and its difference to mainstream machine learning
practice. For different interpretation strategies, conditions are identified that should or should not
affect their performance, and test instances are designed accordingly. By comparing the accuracy
of subjects on various instance types, predictions about a subject’s performance for these mecha-
nisms can be verified and the most likely explanation identified. Note that our advocated evaluation
methodology is entirely extrinsic and does not constrain the system in any way (like requiring atten-
tion maps) or require a specific framework (like being probabilistic).
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paired random partitioned

“More than half the shapes are red shapes?”

Figure 1: Three spatial arrangements of objects which may or may not affect the performance of a
mechanism for interpreting “most” statements. Going from left to right, a strategy based on pairing
entities of each set and identifying the remainder gets more difficult, while a strategy based on
comparing cardinalities does not.

Psychology as a discipline has focused entirely on questions around how humans process situations
and arrive at decisions, and consequently has the potential to inspire a lot of experiments (like ours)
for investigating the same questions in the context of machine learning. Similar to psychology,
we advocate the preference of an artificial experimentation environment which can be controlled in
detail, over the importance of data originating from the real world, to arrive at more convincing and
thus meaningful results.

Artificial data has a history in deep learning of establishing new techniques – most prominently,
LSTMs were introduced by showing their ability to handle various formal grammars (Gers &
Schmidhuber, 2001) – and our higher-level goal with this paper is to demonstrate the potential for
more informative evaluation of machine learning models in general. This is motivated by our belief
that, in the long term, true progress can only be made if we do not just rely on the narrative of neural
networks “learning to understand/solve” a task, but can actually confirm our theories experimen-
tally. Taking inspiration from psychology seems particularly appropriate in the context of powerful
deep learning models, which recently are not infrequently described by anthropomorphizing words
like “understanding”, and compared to “human-level” performance.

2 THE MEANING OF “MOST”

In this section we will introduce the two mechanisms of interpreting “most”, discuss cognitive
differences and implications, and introduce relevant cognitive concepts.

2.1 GENERALIZED QUANTIFIERS AND “MOST”

“Most” has a special status in linguistics due to the fact that it is the most prominent example of
a quantifier whose semantics cannot be expressed in first-order logic, while other simple natural
language quantifiers like “some”, “every” or “no” directly correspond to the quantifier primitives
∃ and ∀ (plus logical operators ∧, ∨ and ¬). This situation is not just a matter of introducing further
appropriate primitives, but requires a fundamental extension of the logic system and its expressivity.

In the following, by x we denote an entity, A and B denote predicates (“square”, “red”), A(x) is
true if and only if x satisfies A, and SA = {x : A(x)} is the corresponding set of entities satisfying
this predicate (“squares”). Thus we can define the semantics of “some” and “every”:

some/every(A,B)⇔ ∃/∀x : A(x)⇒ B(x) (1)
Importantly, these definitions do not involve the concept of set cardinality and indeed can be formu-
lated without involving sets. This is not possible for “most”, which is commonly defined in one of
the following ways:

most(A,B)⇔ |SA∧B| > 1/2 · |A|
⇔ |SA∧B| > |SA∧¬B| (2)

This makes “most” an example of a generalized quantifier, and in fact all generalized quantifiers
can be defined in terms of cardinalities, indicating the apparent importance of a cardinality concept
to human cognition.
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2.2 ALTERNATIVE CHARACTERIZATION

There is another way to define “most” which uses the fact that whether two sets are equinumerous
can be determined without a concept of cardinality, based on the idea of a bijection:

A↔ B :⇔ ∀x : [A(x)⇔ B(x)] (3)
⇔ |SA| = |SB| (4)

The definition of equinumerosity can be generalized to “more than” (and, correspondingly, “less
than”), which lets us define “most” as follows:

most(A,B)⇔ ∃S ( SA∧B : S↔ SA∧¬B (5)

Although, at a first glance, this definition looks similar to the one above, it can be seen as suggesting
a different algorithmic approach to interpreting “most”, as we will discuss below.

2.3 TWO INTERPRETATION STRATEGIES

The two characterizations of “most” are of course truth-conditionally equivalent, that is, every sit-
uation in which one of them holds, the other holds, and vice versa. In particular, if we are just
interested in solving a task involving “most” statements, we can be agnostic about which definition
our system prefers. Nevertheless, the subtle differences between these two characterizations suggest
different algorithmic mechanisms of verifying or falsifying such statements, meaning that a system
processes a visual scene differently to come to the (same) conclusion about a statement’s truth.

Characterization (2) represents the cardinality-based strategy of interpreting “most”:

1. Estimate the number of entities satisfying both predicates (“red squares”) and the number
satisfying one predicate but not the other (“non-red squares”).

2. Compare these number estimates and check whether the former is greater than the latter.

We want to add that, actually, the two definitions in (2) already suggest a minor variation of this
mechanism – see Hackl (2009) for a discussion on “most” versus “more than half”. However,
we do not focus on this detail here, and assume the second variant in (2) to be ‘strictly’ simpler in
the sense that both involve estimating and comparing cardinalities, but the first variant additionally
involves the rather complex operation of halving one number estimate.

Characterization (5) utilizes the concept of a bijection, which is a comparatively simple pairing
mechanism and as such could be imagined to be a primitive cognitive operation. This gives us the
pairing-based strategy of interpreting “most”:

1. Successively match entities satisfying both predicates (“red squares”) uniquely with enti-
ties satisfying one predicate but not the other (“non-red squares”).

2. The remaining entities are all of one type, so pick one and check whether it is of the first
type (“red square”).

2.4 COGNITIVE IMPLICATIONS

Finding evidence for one strategy over the other has substantial implications with respect to the ‘cog-
nitive abilities’ of a neural network model. In particular, evidence for a cardinality-based processing
of “most” suggests the existence of an approximate number system (ANS), which is able to si-
multaneously estimate the number of objects in two sets, and perform higher-level operations on the
resulting number representations themselves, like the comparison operation here. Explicit counting
would be an even more accurate mechanism here, but neither available to the subjects in the experi-
ments of Pietroski et al. (2009) due to very short scene display time, nor likely to be learned by the
‘one-glance’ feed-forward-style neural network we evaluate in this work1.

1By “one-glance feed-forward-style networks” we refer to the predominant type of network architecture
which, by design, consists of a fixed sequence of computation steps before arriving at a decision. In particular,
such models do not have the ability to interact with their input dynamically depending on the complexity of an
instance, or perform more general recursive computations beyond the fixed recurrent modules built into their
design. Important for the discussion here is the fact that precise – in contrast to approximate or subitizing-style
– counting is by definition a recursive ability, thus impossible to learn for such models.
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The ANS (see appendix in Lidz et al. (2011) for a summary) is an evolutionary comparatively old
mechanism which is shared between many different species throughout the animal world. It emerges
without explicit training and produces approximate representations of the number of objects of some
type. They are approximate in the sense that their number judgment is not ‘sharp’, but resulting
behavior exhibits variance – like interpreting “most” statements with a cardinality-based strategy,
as described above. This variance follows Weber’s law which states that the discriminability of
two quantities is a function of their ratio2. The precision of the ANS is thus usually indicated
by a characteristic value called Weber fraction which relates quantity and variance. The ANS
of a typical adult human is often reported to have a Weber fraction of 1.14 or, more tangibly, it
can distinguish a ratio of 7:8 with 75% accuracy. Finding evidence for the emergence of a similar
system in deep neural networks indicates that these models can indeed learn and utilize more abstract
concepts (approximate numbers) than mere superficial pattern matching (“red squares” etc).

Both mechanisms to interpret “most” suggest conditions in which they should perform well or badly.
For the cardinality-based one, the difference in numbers of the two sets in question is expected to
be essential: smaller differences, or greater numbers for the same absolute difference, require more
accurate number estimations and hence make this comparison harder, according to Weber’s law.
The pairing-based mechanism, on the other hand, is likely affected by the spatial arrangement of
the objects in question: if the objects are more clustered within one set, pairing them with objects
from the other set becomes harder. Importantly, these conditions are orthogonal, so each mechanism
should not substantially be affected by the other condition, respectively. By constructing (artificial)
scenes where one of the conditions dominates the configuration, and measuring the accuracy of being
able to correctly interpret propositions involving “most”, the expected difficulties can be confirmed
(or refuted) and thus indicate which mechanism is actually at work.

Using this methodology, Pietroski et al. (2009) show that humans exhibit a default strategy of in-
terpreting “most”, at least when only given 200ms to look at the scene and hence having to rely
on an immediate subconscious judgment. This strategy is based on the approximate number system
and the cardinality-based mechanism. Moreover, the behavior is shown to be sub-optimal in some
situations where humans would, in principle, be able to perform better if deviating from their default
strategy. Since machine learning models are trained by optimizing parameters for the task at hand,
it is far from obvious whether they learn a similarly stable default mechanism, or instead follow
a potentially superior adaptive strategy depending on the situation. While the latter is likely more
efficient in solving at least a narrowly defined task, the former would instead suggest that the system
is able to acquire and utilize core concepts like an approximate number system.

We may speculate about the innate preference of modern network architectures for either of the
strategies: Most of the visual processing is based on convolutions which, being an inherently local
computation, we assume would favor the pairing-based strategy via locally matching and ‘cancelling
out’ entities of the two predicates. On the other hand, the tensors resulting from the sequence of con-
volution operations are globally fused into a final embedding vector, which in turn would support
the more globally aggregating cardinality-based strategy. However, the type of computations and
representations learned by deep neural networks are poorly understood, making such speculations
fallacious. We thus emphasize again that the higher-level motivation for this paper is to demon-
strate how we need not rely on such speculative ‘narratives’, but can experimentally substantiate our
claims.

3 EXPERIMENTAL SETUP

The setup in this paper closely resembles the psychological experiments conducted by Pietroski
et al. (2009), but aimed at a state-of-the-art VQA model and its interpretation of “most”.

2We want to emphasize that there is evidence for Weber’s Law in a range of other approximate systems,
some of them non-discrete and thus rendering a pairing-based strategy impossible. While this does not rule
out such a strategy when observing performance decline as predicted by Weber’s Law (which is probably
not possible based on extrinsic evaluation alone), it strongly suggests that similar and thus non-pairing-based
mechanisms are at work in all of these situations.
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• Exactly two squares are yellow.
• Exactly no square is red.
• More than half the red shapes

are squares.
• More than a third of the shapes

are cyan.

• Less than half the shapes are
green.

• Exactly all magenta shapes are
squares.

• At most five shapes are magenta.
• At least one triangle is gray.

Figure 2: Two example images with four in-/correct captions each, taken from the Q-full dataset (all
quantifier and number captions).

3.1 TRAINING AND EVALUATION DATA

We use the ShapeWorld framework (Kuhnle & Copestake, 2017) as starting point to generate ap-
propriate data. ShapeWorld is a configurable generation system for abstract, visually grounded
language data. A data point consists of an image, an accompanying caption, and an agreement
value indicating whether the caption is true given the image. The underlying task, image caption
agreement, essentially corresponds to yes/no questions and as such is a type of visual question an-
swering. Internally, the system samples an abstract world description from which a semantic caption
representation is extracted. Both are then turned into ‘natural’ (but still abstract) representations as
image and natural language statement, respectively. The latter transformation is based on a semantic
grammar formalism (see their paper for details).

We use the pre-implemented quantifier captioner component, both in its unrestricted version and
one with available quantifiers restricted to “more than half” and “less than half”3. The former
contains various additional (generalized) quantifiers (“no”, “a/three quarter(s)”, “a/two third(s)”,
“all”) and numbers (ranging from “zero” to “five”), each in combination with a comparing modifier
(“less than”, “at most”, “exactly”, “at least”, “more than”, “not”). We refer to the unrestricted
version as Q-full, the other one as Q-half. Figure 2 shows two images together with potential Q-full
captions.

We also use the default world generator to produce training data (up to 15 randomly positioned
objects, as seen in figure 2). However, all of the pre-implemented generator modules are too generic
for our evaluation purposes, since they do not allow to control attributes and positioning of objects
to the desired degree. We thus implemented our own custom generator module with the following
functionality to produce test data.

Attribute contrast: For each instance, either the attribute ‘shape’ or ‘color’ is picked4, and subse-
quently two values for this attribute and one value for the other is randomly chosen. This
means that the only relevant difference between objects in every image is either one of two
shape or color values (for instance, red vs blue squares, or red squares vs circles).

Contrast ratios: A list of valid ratios between the contrasted attributes can be specified, from which
one will randomly be chosen per instance. For instance, a ratio of 2:3 means that there are
50% more objects with the second than the first attribute. We look at values close to 1:1,
that is, 1:2, 2:3, 3:4, 4:5, etc. The increasing difficulty (for humans) resulting from closer
ratios is illustrated in figure 3. Multiples of the smaller-valued ratios are also generated
(e.g., 2:4 or 6:9), within the limit of up to 15 objects overall.

Area-controlled: If this option is set, object sizes are not chosen uniformly across the entire valid
range, but size ranges for the two contrasting object types are adapted to the given contrast
ratio and size of the chosen shape(s), so that both attributes cover the same image area
on average. This means that the more numerous attribute will generally be represented
by smaller objects, and the difference in covered area between, for instance, squares and
triangles is taken into account.

3We use these two instead of “most” since ShapeWorld generates them by default. The VQA model is
trained from scratch on this data, so we do not expect any of the differences between “most” and “more than
half” one observes with humans to matter (Hackl, 2009).

4Note that we chose the examples in figures to always vary in color only.
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Figure 3: From left to right, the ratio between the two attributes is increasingly balanced.

While objects are still positioned randomly in the basic version of this new generator module, we
define two modes which control this aspect as well. Figure 1 in the introduction illustrates the
different modes.

Partitioned positioning: An angle is randomly chosen for each image, and objects of the contrast-
ing attributes are consistently placed either on one side or the other.

Paired positioning: If there are objects of the contrasted attribute which are not yet paired, one of
them is randomly chosen and the new object is placed next to it.

The captions of these evaluation instances are always of the form “More/less than half the shapes
are X”. with “X” being the attribute in question, for instance, “squares” or “red”. Note that this is
an even more constrained captioner than the one used for Q-half, since the subject is always fully
underspecified as “shape”. We also emphasize that, in contrast to this new evaluation generator
module, the default generator configuration of the ‘quantification’ dataset pre-specified in Shape-
World is used to generate the training instances in Q-half and Q-full. So these images generally
contain many more than just two contrasted attributes, and ratios between attributes tend to be ac-
cordingly smaller. The examples in figure 2 are chosen to illustrate this fact: the second example
contains a “half” statement with ratio 7:8, and the first contains one about a 0:4 ratio, while the
image would also allow for a more ‘interesting’ 3:4 ratio (color of semicircles).

While we generally try to stay close to the experimental setup of Pietroski et al. (2009), in the
following we point out some differences. Most importantly, instead of just using yellow and blue
dots, we use all eight shapes and seven colors that ShapeWorld provides. This increases the visual
variety of the instances and thus encourages the system to actually learn the fact that shape and
color are attributes that can be combined in any way, instead of just straightforward binary pattern
matching. Note that the humans in the psychological experiments have learned language in even
more complex situations, which we cannot hope to approximate here. Moreover, our data does not
contain yes/no questions but true/false captions, and “most”-equivalent phrasings “more/less than
half”. Since the model is trained from scratch on such data, this should not affect results.

We do not implement their ‘column pairs mixed/sorted’ modes since they would require compar-
atively big and mostly empty images, hence require bigger networks and might cause practical
learning problems due to sparseness, which we do not want to address here. In contrast, our ‘par-
titioned’ mode is more difficult than the ones investigated by Pietroski et al. (2009), at least for a
pairing-based mechanism.

We will publish the generator configurations and custom generator modules required to reproduce
the datasets we used here on acceptance of the paper.

3.2 MODEL

We focus on the FiLM model (Perez et al., 2018) here since it exhibited close-to-perfect accuracy
on the CLEVR dataset (Johnson et al., 2017a), a diagnostic dataset for VQA which also consists
of abstract images. We interpret the ShapeWorld captions and agreement values as questions and
answer, respectively. The image is processed using either a pre-trained CNN or a four-layer CNN
trained from scratch on the task. The question is processed by a GRU. In a sequence of four residual
blocks, the image information is processed with its features linearly modulated (scale, offset) con-
ditioned on the processed question embedding. Finally, the classifier module produces the answer,
true or false. We use the code made available by the authors of the FiLM model, without changing
any parameters. The only aspect we adapt is the trainable four-layer CNN, which uses a kernel size
of 3, batch normalization and a stride of 2 in the second and fourth layer.
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Figure 4: Training performance (iterations in 1000).

We considered investigating other models as well: The PG+EE model (Johnson et al., 2017b) is
openly available and achieved very good performance on CLEVR, however, it relies on the ‘program
tree’ provided by CLEVR, and while there exists a basic conversion of ShapeWorld caption models
to CLEVR program trees, first, the CLEVR-specific modules do not cover quantifiers like “most”
and, second, these program trees encode the interpretation strategy, which would defeat the purpose
of our investigation to analyze precisely this mechanism as learned from data. The RelationNet
architecture (Santoro et al., 2017) explicitly implements a pairing-based mechanism and hence we
considered its evaluation less interesting than FiLM. For similar reasons, we did not focus on the
VQA model of Zhang et al. (2018), whose architecture includes an explicit counting component.
While our aim is to investigate the strategy for understanding “most” learned from data, it would be
interesting to examine in both cases whether their architectural prior does indeed have the expected
effect. Finally, we only learned about the MAC model (Hudson & Manning, 2018) after we started
this project and so decided to leave it for future work, but we definitely consider it one of the
most interesting candidate models to evaluate, since its architecture does not suggest an obvious
preference for either strategy.

3.3 TRAINING DETAILS

The training set for both Q-full and Q-half consists of around 100k (25x 4096) images with 5 cap-
tions per image, so overall around 500k instances. The model is trained for 100k iterations with
a batch size of 64. Training performance is measured on an additional validation set of 20k in-
stances. Moreover, we produced 1024 instances for each of the overall 48 evaluation configurations,
to investigate the trained model in more detail.

4 RESULTS

Training. We train two versions of the FiLM model, with CNN trained from scratch on the task:
one on the Q-full dataset which contains all available quantifier and number caption types, the other
on the Q-half dataset which is restricted to captions involving the quantifier “half” only. Perfor-
mance of the system over the course of the 100k training iterations is shown in figure 4. The two
models, referred to by Q-full and Q-half below, learn to solve the task quasi-perfectly, with a final
accuracy of 98.9% and 99.4% respectively. Not surprisingly, the system trained on the more diverse
Q-full training set takes longer to reach this level of performance, but nevertheless plateaus after
around 70k iterations.

For the sake of completeness, we also include the performance of other models in this figure, which
failed to show clear improvement over the first 50k iterations. This includes the FiLM model with
pre-trained instead of trainable CNN module (Q-full-pre, Q-half-pre), and an earlier trial on Q-half
(Q-half-coll) where we did not constrain the data generation to not produce object collisions (the
default in ShapeWorld is to allow up to 25% area overlap). We note, however, that we have not done
any hyperparameter search which might alleviate these learning problems.
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Figure 5: Accuracy (in %) of model trained on Q-full and Q-half for the various evaluation setups.

train mode size-controlled area-controlled
all 1:2 2:3 3:4 4:5 5:6 6:7 7:8 all 1:2 2:3 3:4 4:5 5:6 6:7 7:8

Q-full
random 92 100 99 97 94 91 88 85 93 100 99 97 93 91 86 82
paired 93 99 99 96 93 90 88 82 93 99 99 96 91 87 84 80
part. 89 100 99 92 90 81 77 72 89 99 98 92 88 82 78 72

Q-half
random 92 100 100 98 93 88 88 87 93 100 100 97 92 86 85 82
paired 92 100 100 96 90 86 84 79 92 100 99 96 87 84 79 76
part. 91 100 99 96 86 83 83 80 91 100 99 94 89 83 83 80

Evaluation. Table 5 presents a detailed breakdown of system performance on the evaluation set-
tings. Before discussing the results in detail, we want to reiterate three key differences between the
evaluation data and the training data:

• The visual scenes here do all exhibit close-to-balanced contrast ratios, while this is not the
case for the training instances.

• The evaluation scenes only contain objects of two different attribute pairs, and consequently
the numbers to compare are generally greater than in the training instances, where more
attributes are likely present in a scene.

• Q-full contains not just statements involving “half” – in fact, a random sample of 100
images / 500 captions suggests that they constitute only around 8% of the dataset (and this
includes combinations with modifiers beyond “more/less than”).

Considering that, the relatively high accuracy on test instances throughout indicates a remarkable
degree of generalization.

More balanced ratios. The most consistent effect is that more balanced ratios of contrasted at-
tributes cause performance to decrease. This is certainly affected by the tendency of the training
data to not include many examples of almost balanced ratios. However, if this were the only reason,
one would expect a much more sudden and less uniformly linear decrease. More importantly, since
Q-full generally contains fewer “half” statements, the decline should be more pronounced here.
We do not observe either of these effects, and thus conclude that both models may actually have
developed an approximate number system. This is further discussed at the end of this section.

Random vs paired vs partitioned. There is definitely a clear negative effect of the partitioned
configuration on performance for the model trained on Q-full, which indicates that the learned mech-
anism is not robust to a high degree of per-attribute clustering. This does not indicate a preference
for the pairing-based strategy, though, since both models perform best on the random configuration.
While this suggests that there is neither a preference for the perfectly clustered partitioned nor for the
perfectly mixed paired arrangement, we note that the effect is not strong, and that these instances are
most similar to the random placement of objects in the training data, which might cause this effect.

Size- vs area-controlled. The performance in both cases is comparable, showing that the models
do not (solely) learn to rely on comparing the overall covered area, which would only work well
in the size-controlled mode. Nevertheless, we note a tendency for area-controlled instances to be
somewhat more difficult in random and paired mode, more so for Q-half, which suggests that the
model(s) learn to use covered area as a feature to inform a correct decision in some cases.

Q-full vs Q-half. There seems to be a tendency of the system trained on Q-full to perform
marginally better, except for the partitioned mode discussed before. The fact that this model per-
forms at least on a par with the one trained on Q-half, while only seeing a fraction of directly relevant
training captions, indicates that the learning process is not ‘distracted’ by the variety of captions, and
indeed might profit from it.

Ratios and Weber fraction. We generated evaluation sets of even more balanced ratios (8:9, 9:10,
10:11, increasing the overall number of objects accordingly to 17/19/21), and in figure 6 plotted the
accuracy of the Q-full model on increasingly balanced sets for all three spatial configuration modes,
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Figure 6: (Left) Q-full model performance for increasingly balanced ratios (x-axis: ratio as n:n+1).
(Right) Performance as a function of actual ratio fraction n+1/n, with Weber fractions (75%) high-
lighted and the corresponding idealized model Weber curves indicated.

not controlling for area (which for greater numbers only has a negligible effect anyway). The figure
also contains a diagram with accuracy plotted against ratio fraction, which is more common in the
context of Weber’s law. The characteristic Weber fraction can be read off directly as the ratio at
which a subject is able to distinguish two values with 75% accuracy. We observe around 1.11 for
random/paired and 1.16 for partitioned, which corresponds to 9:10 and 6:7 as closest integer ratios.
These values are in the same region as the average human Weber fraction, which is often reported
as being 1.14, or 7:8.

We emphasize that these curves align well with the trend predicted by Weber’s law, even for the
ratios with more than 15 objects overall, where such situations have never been encountered during
training. All this strongly suggests that the model learns a mechanism similar to an ANS, which is
able to produce representations that can (at least) be utilized for identifying the more numerous set.
It can in particular be concluded that the system does not actually learn to explicitly count, since we
would then not expect to observe such fuzziness characteristic to an ANS.

Moreover, since performance is affected somewhat by the partitioned and the area-controlled modes,
the interpretation of “most” seems to be informed by other features as well. As we noted earlier,
since the model is trained to optimize this task, an adaptive strategy is not unexpected. On the
contrary, more surprising is the fact that an ANS-like system emerges as a dominating ‘backbone’
mechanism, with additional factors acting as less influential ‘secondary’ features.

5 RELATED WORK

Visual question answering (VQA) is the general task of answering questions about visual scenes.
Since the introduction of the VQA Dataset (Antol et al., 2015), this dataset was widely used as eval-
uation benchmark for multimodal deep learning. It provides a shallow categorization of questions,
including basic count questions, however, these categories are far too coarse for our purposes.

Motivated by various problems with the VQA Dataset (Goyal et al., 2017; Agrawal et al., 2016), a
range of artificial abstract datasets have been introduced recently. CLEVR (Johnson et al., 2017a)
consists of rendered images of geometric objects and questions generated based on templates, cov-
ering some abilities like number or attribute comparison in more detail, but still in a fixed catego-
rization. NLVR (Suhr et al., 2017) contains crowdsourced statements about abstract images, but
does not sort them according to some criteria. Recently, the COG dataset (Yang et al., 2018) was
introduced, which most explicitly focuses on replicating psychological experiments for deep learn-
ing models, hence most related to our work. However, their dataset does not contain any number or
quantifier statements.

There is some work on investigating deep neural networks which look at numerosity from a more
psychologically inspired viewpoint. Stoianov & Zorzi (2012) find that visual numerosity emerges
from unsupervised learning on abstract image data. Zhang et al. (2015) look at salient object subitiz-
ing in real-world images, formulated as a classification task over five classes ranging from ‘0’
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to ‘4 or more’. In a more general number-per-category classification setup, Chattopadhyay et al.
(2017) investigate different methods of obtaining counts per object category, one of them inspired
by subitizing. Moving beyond explicit number classification, Zhang et al. (2018) recently introduced
a dedicated counting module for visual question answering.

Other work looks at a similar classification task, but for proper quantifiers like “no”, “few”, “most”,
“all”, first on abstract images of circles (Sorodoc et al., 2016), then on natural scenes (Sorodoc et al.,
2018). Recently, Pezzelle et al. (2018) investigated a hierarchy of quantifier-related classification
abilities, from comparatives via quantifiers like the ones above to fine-grained proportions. Wu
et al. (2018), besides investigating precise numerosity via number classification as above, also look
at approximate numerosity as binary greater/smaller decision, which closely corresponds to our
experiments. However, their focus is on the subitizing ability, not the approximate number system,
and their experiments follow a different methodology in that they already train models on specifically
designed datasets, while we deliberately leverage such targeted data only for evaluation.

On a methodological level, our proposal of inspiring experimental setup and evaluation practice for
deep learning by cognitive psychology is in line with that of Ritter et al. (2017) and their shape bias
investigation for modern vision architectures.

6 CONCLUSION

We identify two strategies of algorithmically interpreting “most” in a visual context, with different
implications on cognitive concepts. Following experimental practice of similar investigations with
humans in psycholinguistics, we design experiments and data to shed light on the question whether
the state-of-the-art FiLM VQA model shows preference for one strategy over the other. Performance
on various specifically designed instances does indeed indicate that a form of approximate number
system is learned, which generalizes to more difficult scenes as predicted by Weber’s law. The re-
sults further suggest that additional features influence the interpretation process, which are affected
by the spatial arrangement and relative size of objects in a scene. There are many opportunities
for future work from here, from strengthening the finding of an approximate number system and
further analyzing confounding factors, to investigating the relation to more explicit counting tasks,
to extending the evaluation to other visual question answering models which also exhibit good per-
formance on related tasks (Hudson & Manning, 2018; Zhang et al., 2018; Santoro et al., 2017).
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Ionut Sorodoc, Sandro Pezzelle, Aurélie Herbelot, Mariella Dimiccoli, and Raffaella Bernardi.
Learning quantification from images: A structured neural architecture. Natural Language En-
gineering, pp. 130, 2018.

Ivilin Stoianov and Marco Zorzi. Emergence of a ‘visual number sense’ in hierarchical generative
models. Nature Neuroscience, 15(194):194–196, 2012.

Alane Suhr, Mike Lewis, James Yeh, and Yoav Artzi. A corpus of natural language for visual
reasoning. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics, ACL 2017, 2017.

Xiaolin Wu, Xi Zhang, and Xiao Shu. On numerosity of deep convolutional neural networks. ArXiv
e-prints 1802.05160, 2018.

Guangyu Robert Yang, Igor Ganichev, Xiao-Jing Wang, Jonathon Shlens, and David Sussillo. A
dataset and architecture for visual reasoning with a working memory. ArXiv e-prints 1803.06092,
2018.

Jianming Zhang, Shuga Ma, Mehrnoosh Sameki, Stan Sclaroff, Margrit Betke, Zhe Lin, Xiaohui
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