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ABSTRACT

We propose Dynamically Pruned Message Passing Networks (DPMPN) for large-
scale knowledge graph reasoning. In contrast to existing models, embedding-
based or path-based, we learn an input-dependent subgraph to explicitly model
reasoning process. Subgraphs are dynamically constructed and expanded by ap-
plying graphical attention mechanism conditioned on input queries. In this way,
we not only construct graph-structured explanations but also enable message pass-
ing designed in Graph Neural Networks (GNNs) to scale with graph sizes. We
take the inspiration from the consciousness prior proposed by Bengio| (2017) and
develop a two-GNN framework to encode input-agnostic full structure represen-
tation and learn input-dependent local one coordinated by an attention module.
Experiments show the reasoning capability of our model to provide clear graph-
ical explanations as well as predict results accurately, outperforming most state-
of-the-art methods in knowledge base completion tasks.

1 INTRODUCTION

Modern deep learning systems should bring in explicit reasoning modeling to complement their
black-box models, where reasoning takes a step-by-step form about organizing facts to yield new
knowledge and finally draw a conclusion. Particularly, we rely on graph-structured representation
to model reasoning by manipulating nodes and edges where semantic entities or relations can be
explicitly represented (Battaglia et al., 2018). Here, we choose knowledge graph scenarios to study
reasoning where semantics have been defined on nodes and edges. For example, in knowledge base
completion tasks, each edge is represented by a triple (head, rel, tail) that contains two entities and
their relation. The goal is to predict which entity might be a tail given query (head, rel, 7).

Existing models can be categorized into embedding-based and path-based model families. The
embedding-based (Bordes et al., 2013} |Sun et al., |2018}; [Lacroix et al., [2018)) often achieves a high
score by fitting data using various neural network techniques but lacks interpretability. The path-
based (Xiong et al., [2017; Das et al., [2018; |Shen et al., 2018 |Wang| 2018)) attempts to construct an
explanatory path to model an iterative decision-making process using reinforcement learning and
recurrent networks. A question is: can we construct structured explanations other than a path to
better explain reasoning in graph context. To this end, we propose to learn a dynamically induced
subgraph which starts with a head node and ends with a predicted tail node as shown in Figure[I]

Graph reasoning can be powered by Graph Neural Networks. Graph reasoning needs to learn
about entities, relations, and their composing rules to manipulate structured knowledge and produce
structured explanations. Graph Neural Networks (GNNs) provide such structured computation and
also inherit powerful data-fitting capacity from deep neural networks (Scarselli et al.,[2009; Battaglia
et al.,[2018). Specifically, GNNs follow a neighborhood aggregation scheme to recursively aggregate
information from neighbors to update node states. After T iterations, each node can carry structure
information from its 7T-hop neighborhood (Gilmer et al.|[2017; Xu et al.,[2018a)).

GNNs need graphical attention expression to interpret. Neighborhood attention operation is a
popular way to implement attention mechanism on graphs (Velickovic et al.,[2018;|Hoshen, [2017) by
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(a) The AthletePlaysForTeam task. (b) The OrganizationHiredPerson task.

Figure 1: Subgraph visualization on two examples from NELL995’s test data. Each task has ten
thousands of nodes and edges. The big yellow represents a given head and the big red represents a
predicted tail. Color indicates attention gained along 7'-step reasoning. Yellow means more attention
during early steps while red means more attention at the end. Grey means less attention.

focusing on specific interactions with neighbors. Here, we propose a new graphical attention mech-
anism not only for computation but also for interpretation. We present three considerations when
constructing attention-induced subgraphs: (1) given a subgraph, we first attend within it to select a
few nodes and then attend over those nodes’ neighborhood for next expansion; (2) we propagate at-
tention across steps to capture long-term dependency; (3) our attention mechanism models reasoning
process explicitly through pipeline disentangled from underlying representation computing.

GNNs need input-dependent pruning to scale. GNNs are notorious for their poor scalability.
Consider one message passing iteration on a graph with |V | nodes and |E| edges. Even if the graph
is sparse, the complexity of O(|E]) is still problematic on large graphs with millions of nodes and
edges. Besides, mini-batch based training with batch size B and high dimensions D would lead to
O(BD|E|) making things worse. However, we can avoid this situation by learning input-dependent
pruning to run computation on dynamical graphs, as an input query often triggers a small fraction
of the entire graph so that it is wasteful to perform computation over the full graph for each input.

Cognitive intuition of the consciousness prior. Bengio (2017)) brought the notion of attentive
awareness from cognitive science into deep learning in his consciousness prior proposal. He pointed
out a process of disentangling high-level factors from full underlying representation to form a low-
dimensional combination through attention mechanism. He proposed to use two recurrent neural
networks (RNN5s) to encode two types of state: unconscious state represented by a high-dimensional
vector before attention and conscious state by a derived low-dimensional vector after attention.

We use two GNNis instead to encode such states on nodes. We construct input-dependent subgraphs
to run message passing efficiently, and also run full message passing over the entire graph to acquire
features beyond a local view constrained by subgraphs. We apply attention mechanism between
the two GNNs, where the bottom runs before attention, called Inattentive GNN (IGNN), and the
above runs on each attention-induced subgraph, called Attentive GNN (AGNN). IGNN provides
representation computed on the full graph for AGNN. AGNN reinforces representation within a
cohesive group of nodes to produce sharp semantics. Experimental results show that our model
attains very competitive scores on HITS@1,3 and the mean reciprocal rank (MRR) compared to the
best embedding-based method so far. More importantly, we provide explanations while they do not.

2 ADDRESSING THE SCALE-UP PROBLEM

Notation. We denote training data by {(z;,v;)}~.,. We denote a full graph by G = (V, &)
with relations R and an input-dependent subgraph by G(z) = (Vi(s), Eg(z)) Which is an in-
duced subgraph of G. We denote boundary of a graph by G where Vo = N(Vg) — Vi and
N (V) means neighbors of nodes in V. We also denote high-order boundaries such as G where
Va2g = N(N(Vg)) U N(Vi) — V. Trainable parameters include node embeddings {e, },ecv,
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relation embeddings {e; },cr, and weights used in two GNNs and an attention module. When per-
forming full or pruned message passing, node and relation embeddings will be indexed according to
the operated graph, denoted by 8g or 0(,). For IGNN, we use H' of size |V| x D to denote node
hidden states at step ¢; for AGNN, we use H(x) of size |[V(,)| x D to denote. The objective is

written as Zivzl I(xi,Yi; 0c(x,), 0g), where G(x;) is dynamically constructed.
The scale-up problem in GNNs. First, we write the full message passing in IGNN as
H' = fienn(H'™16g), (1)

where fignn represents all involved operations in one message passing iteration over G, including:
(1) computing messages along each edge with the complexit)ﬁ of O(BD|£]), (2) aggregating mes-
sages received at each node with O(BD|E|), and (3) updating node states with O(BD|V|). For
T-step propagation, the per-batch complexity is O(BDT'(|€] + |V|)). Considering that backpropa-
gation requires intermediate computation results to be saved during one pass, this complexity counts
for both time and space. However, since IGNN is input-agnostic, node representations can be shared
across inputs in one batch so that we can remove B to get O(DT(|E] + |V|)). If we use a sampled

edge set £ from &€ such that |€| ~ k|V|, the complexity can be further reduced to O(DT|V|).

The pruned message passing in AGNN can be written as
H'(z) = faean(H' "N (z), H'; 06()). )

Its complexity can be computed similarly as above. However, we cannot remove B. Fortunately,
subgraph G (z) is not G. If we let z be a node v, G() grows from a single node, i.e., G°(x) = {v},
and expands itself each step, leading to a sequence of (G°(x),G(x),...,GT(x)). Here, we de-
scribe the expansion behavior as consecutive expansion, which means no jumping across neighbor-
hood allowed, so that we can ensure that

Gi(z) C G H2)UIG  (z) C G2 (x) UG (). 3)

Many real-world graphs follow the small-world pattern, and the six degrees of separation implies
G°(x) U 95GO(z) ~ G. The upper bound of G*(x) can grow exponentially in ¢, and there is no
guarantee that G*(z) will not explode.

Proposition. Given a graph G (undirected or directed in both directions), we assume the probability
of the degree of an arbitrary node being less than or equal to d is larger than p, i.e., P(deg(v) <
d) > p,Yv € V. Considering a sequence of consecutively expanding subgraphs (G°,G*, ... GT),
starting with G = {v}, for all t > 1, we can ensure

d(d— 1)t —2
~a-z )

d(d—1)t—1_2
d—2

P(|Vg| < 4)

The proposition implies the guarantee of upper-bounding |V (.| becomes exponentially looser and
weaker as t gets larger even if the given assumption has a small d and a large p (close to 1). We
define graph increment at step ¢ as AG®(x) such that G*(z) = G'~'(z) U AG!(x). To prevent
G*(z) from explosion, we need to constrain AG*(z).

Sampling strategies. A simple but effective way to handle the large scale is to do sampling.

—

AG'1(z), where we sample nodes from the boundary of G*~*(x).
OGt—1(z), where we take the boundary of sampled nodes from G*~1(z).
) )

—

8Gt/—% , where we sample nodes twice from G*~!(z) and from 9G*~1(x).

E——

4. AG!(z) = OG'=1(xz), where we sample nodes three times with the last from 5Gt/:1?1:)

e — — — —
t—1 t—1

Obviously, we have dG*—1(z) C Gt (x) C Gt~ (x) and G~ (z) UGt (z) C G~ (z) U
OG'~1(x). Further, we let N7 and N3 be the maximum number of sampled nodes in G*~1(x) and

the last sampling of 56‘@) respectively and let N be per-node maximum sampled neighbors in
OG'~1(x), and then we can obtain much tighter guarantee as follow:

"We assume per-example per-edge per-dimension time cost as a unit time.
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Figure 2: Model architecture used in knowledge graph reasoning.

P(|Vagt (@] < Ni(d — 1)) > p™ for 9GT (z).
P(|Vage (@) < N1No) = Land P(|Vage(w)| < Ny-min(d—1, N3)) > pNt for 0GT (z).

P(|VAGt(1)| < min(N1N27N3)) =1 for éGt/f%)

Attention strategies. Although we guarantee |Vr (,)| < 1+ T min(N; N2, N3) by OGt=1(z) and
constrain the growth of G*~!(z) by decreasing either N; Ny or N3, smaller sampling size means
less area explored and less chance to hit target nodes. To make efficient selection rather than ran-
dom sampling, we apply attention mechanism to do the top-K selection where K can be small. We

change 3Gm) to G!1 () where ~ represents the operation of attending over nodes and pick-
ing the top-K. There are two types of attention operations, one applied to G*~!(z) and the other

applied to G (z). Note that the size of JG*~(z) might be much larger if we intend to sample
more nodes with larger N, to sufficiently explore the boundary. Nevertheless, we can address this
problem by using smaller dimensions to compute attention, since attention on each node is a scalar
requiring a smaller capacity compared to node representation vectors computed in message passing.

3 DPMPN MODEL

3.1 ARCHITECTURE DESIGN FOR KNOWLEDGE GRAPH REASONING
Our model architecture as shown in Figure 2] consists of:

e IGNN module: performs full message passing to compute full-graph node representations.

e AGNN module: performs a batch of pruned message passing to compute input-dependent node
representations which also make use of underlying representations from IGNN.

o Artention Module: performs a flow-style attention transition process, conditioned on node repre-
sentations from both IGNN and AGNN but only affecting AGNN.

IGNN module. We implement it using standard message passing mechanism (Gilmer et al.} 2017).
If the full graph has an extremely large number of edges, we sample a subset of edges, £ C &,
randomly each step. For a batch of input queries, we let node representations from IGNN be shared
across queries, containing no batch dimension. Thus, its complexity does not scale with batch size
and the saved resources can be allocated to sampling more edges. Each node v has a state ‘H.;, . at
step 7, where the initial ’HO = e,. Each edge (v/, r, v) produces a message, denoted by M
at step 7. The computation components include:

(v, ),



Published as a conference paper at ICLR 2020

e Message function: M7, .. .y . = Yiann(Hyy ., e, Hy ), where (v, 7,v) € E7.

o Message aggregation: M M, .» where (v, r,v) € £7.
ge aggreg WZU P M) {vf,r,0)
e Node state update function: HT" = H] . + 51GNN(7'17T),»H;:, e,), where v € V.

We compute messages only for sampled edges, (v',r,v) € E7, each step. Functions gy and
d1eNN are implemented by a two-layer MLP (using leakyReLu for the first layer and tanh for the
second) with input arguments concatenated respectively. Messages are aggregated by dividing the
sum by the square root of N7 (v), the number of neighbors that send messages to v, preserving the
scale of variance. We use a residual adding to update each node state instead of a GRU or a LSTM.

After running for 7 steps, we output a pooling result or simply the last, denoted by ‘H = H, to
feed into downstream modules.

AGNN module. AGNN is input-dependent, which means node states depend on input query
x = (head, rel,?), denoted by HY (x). We implement pruned message passing, running on small
subgraphs each conditioned on an input query. We leverage the sparsity and only save HY .(z) for
visited nodes v € Vgi(,). When t = 0, we start from node head with Vgo(,) = {vhead}y. When
computing messages, denoted by M (0! ) .(z), we use an attending-sampling-attending procedure,

explained in Section[3.2] to constrain the number of computed edges. The computation components
include:

e Message function: M<U oy (@) = Yaenn(H), (2), ¢ (x), H (x)), where (v,r,v) €
EGt(m)ﬂ and ¢, (z) = [er, Qhead; Grel] TEPrEsents a context vector.

e Message aggregation: Mi (x) = \/%() Do Mf vy (@), where (0, 7,v) € Egr(y).
It t (o T v’ ),

e Node state attending function: H} "' (z) = a"'WH,, ., where a;"! is an attention score.

e Node state update function: H/1'(z) = H/ (x) —|—5AGNN(H57:(Z‘),MZ):($), cttl(x)), where

cttl(z) = [ﬁf,“ (%), Qhead; Grel] also represents a context vector.

Query context is defined by its head and relation embeddings, i.e., Qhead = €head AN Grej = €41¢j.
We introduce a node state attending function to pass node representation information from IGNN
to AGNN weighted by a scalar attention score al"! and projected by a learnable matrix W. We
initialize HY) .(x) = . for node v € Vgo(,), letting unseen nodes hold zero states.

Attention module. Attention over T steps is represented by a sequence of node probability dis-
tributions, denoted by a’ (t = 1,2...,T). The initial distribution a® is a one-hot vector with
a [Vhead] = 1. To spread attention, we need to compute transition matrices T each step. Since
it is conditioned on both IGNN and AGNN, we capture two types of interaction between v’ and v:
H!, (z) ~ H} (z),and H!, (z) ~ H,.. The former favors visited nodes, while the latter is used
to attend to unseen neighboring nodes.

va, = softmaxveNt(v/)(Z al(Ht,).(x), c (), Hfj(x)) + ozg(H£,7:(a:)7 cr(ac),’Hv,:))
a1(+) :MLP(Hf),V:(x) (T ))TW1MLP(Ht (z), er(z)) (5)
as(-) = MLP(H}, (), ¢,(z)) WoMLP(H,,., ¢, (x))

where W and W, are two learnable matrices. Each MLP uses one single layer with the leakyReLu
activation. To reduce the complexity for computing 1", we use nodes v’ € V- — which contains

X
nodes with the k-largest attention scores at step ¢, and use nodes v sampled from v’’s neighbors
to compute attention transition for the next step. Due to the fact that nodes v’ result from the
top-k pruning, the loss of attention may occur to diminish the total amount. Therefore, we use a
renormalized version, a‘*t! = T'a!/||T*a!||, to compute new attention scores. We use attention
scores at the final step as the probability to predict the tail node.

’In practice, we can use a smaller set of edges than Eqt () to pass messages as discussed in Section
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Figure 3: Iterative attending-sampling-attending procedure balancing coverage and complexity.

3.2 COMPLEXITY REDUCTION BY ITERATIVE ATTENDING, SAMPLING AND ATTENDING

AGNN deals with each subgraph relying on input x and keeps a few selected nodes in Vg (), called
visited nodes. Initially, Vgo ;) contains only one node vpeqq, and then Ve () is enlarged by adding
new nodes each step. When propagating messages, we can just consider the one-hop neighborhood
each step. However, the expansion goes so rapidly that it covers almost all nodes after a few steps.
The key to address the problem is to constrain the scope of nodes we can expand the boundary from,
i.e., the core nodes which determine where we can go next. We call it the attending-from horizon,

—~——

G'(z), selected according to attention scores a’. Given this horizon, we may still need node sam-

pling over the neighborhood N (G*(x)) in some cases where a hub node of extremely high degree
exists to cause an extremely large neighborhood. We introduce an attending-to horizon, denoted by

N(G*(z)), inside the sampling horizon, denoted by N(G*(x)). The attention module runs within
the sampling horizon with smaller dimensions exchanged for sampling more neighbors for a larger
coverage. In one word, we face a trade-off between coverage and complexity, and our strategy is
to sample more but attend less plus using small dimensions to compute attention. We obtain the
attending-to horizon according to newly computed attention scores a’*!. Then, message passing

iteration at step ¢ in AGNN can be further constrained on edges between m and N (Et\(;) ), a
smaller set than Fg: ;). We illustrate this procedure in Figure

4 EXPERIMENTS

Datasets. We use six large KG datasets: FB15K, FB15K-237, WN18, WN18RR, NELL995, and
YAGO3-10. FB15K-237 (Toutanova & Chen, |[2015) is sampled from FB15K (Bordes et al. [2013)
with redundant relations removed, and WN18RR (Dettmers et al., 2018)) is a subset of WN18 (Bor-
des et al.l 2013) removing triples that cause test leakage. Thus, they are both considered more
challenging. NELL995 (Xiong et al.,[2017) has separate datasets for 12 query relations each corre-
sponding to a single-query-relation KBC task. YAGO3-10 (Mahdisoltani et al., [2014)) contains the
largest KG with millions of edges. Their statistics are shown in Table [l] We find some statistical
differences between train and validation (or test). In a KG with all training triples as its edges, a
triple (head, rel, tail) is considered as a multi-edge triple if the KG contains other triples that also
connect head and tail ignoring the direction. We notice that FB15K-237 is a special case compared
to the others, as there are no edges in its KG directly linking any pair of head and tail in valida-
tion (or test). Therefore, when using training triples as queries to train our model, given a batch,
for FB15K-237, we cut off from the KG all triples connecting the head-tail pairs in the given batch,
ignoring relation types and edge directions, forcing the model to learn a composite reasoning pattern
rather than a single-hop pattern, and for the rest datasets, we only remove the triples of this batch
and their inverse from the KG to avoid information leakage before training on this batch. This can
be regarded as a hyperparameter tuning whether to force a multi-hop reasoning or not, leading to a
performance boost of about 2% in HITS@ 1 on FB15-237.

Experimental settings. We use the same data split protocol as in many papers (Dettmers et al.,
2018 Xiong et al., [2017; Das et al., |2018). We create a KG, a directed graph, consisting of all
train triples and their inverse added for each dataset except NELL995, since it already includes
reciprocal relations. Besides, every node in KGs has a self-loop edge to itself. We also add inverse
relations into the validation and test set to evaluate the two directions. For evaluation metrics, we use
HITS@1,3,10 and the mean reciprocal rank (MRR) in the filtered setting for FB15K-237, WN18RR,
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Table 1: Statistics of the six KG datasets. PME (tr) means the proportion of multi-edge triples in
train; PME (va) means the proportion of multi-edge triples in validation; AL (va) means the average
length of shortest paths connecting each head-tail pair in validation.

Dataset #Entities  #Rels #Train #Valid #Test | PME (tr) PME (va) AL (va)
FB15K 14,951 1,345 483,142 50,000 59,071 81.2% 80.6% 1.22
FB15K-237 14,541 237 272,115 17,535 20,466 38.0% 0% 2.25
WNI18 40,943 18 141,442 5,000 5,000 93.1% 94.0% 1.18

WN18RR 40,943 11 86,835 3,034 3,134 34.5% 35.5% 2.84
NELL995 74,536 200 149,678 543 2,818 100% 31.1% 2.00
YAGO3-10 | 123,188 37 1,079,040 5,000 5,000 56.4% 56.0% 1.75

Table 2: Comparison results on the FB15K-237 and WN18RR datasets. Results of [#] are taken
from (Nguyen et al,[2018), [&] from (Dettmers et al., 2018)), [O] from (Shen et al., 2018)), [{] from
(Sun et al.l 2018), [A] from (Das et al., 2018)), and ["X] from (Lacroix et al., 2018). Some collected
results only have a metric score while some including ours take the form of “mean (std)”.

FB15K-237 WN18RR
Metric (%) He@l H@3 H@l0 MRR | H@l H@3 H@10 MRR
TransE [#] - - 465 204 - - 50.1 22.6
DistMult [] 15.5 26.3 419 241 39 a4 49 43
DistMult [¥] 20.6 (4) 31.8(2) - 29.0(.2) | 38.4(4) 42.4(3) - 41.3(.3)
ComplEX [é] 15.8 275 28 247 a1 46 51 a4
ComplEx [Q] 20.8 (2) 32.6(.5) - 29.6(.2) | 38.5(3) 43.9(.3) - 422(2)
ConvE [] 237 35.6 50.1 325 40 44 52 43
ConvE [9] 233 (4) 33.8(3) - 30.8(2) | 39.6 (3) 44.7(2) - 433 (.2)
RotatE [$] 241 375 533  33.8 423 492 571 476
ComplEx-N3[X] - - 56 37 - - 57 48
NeuralLP [O] 182(.6) 27.2(3) - 249(2) [ 372(1) 43401 - 435 (1)
MINERVA [Q] | 14.1(2) 232 (4) - 20.5(3) | 35.1 (1) 445 (4) - 409 (.1)
MINERVA [A] - - 45.6 - 413 45.6 51.3 -
M-Walk [V] 165 (3) 243(2) - 232(2) | 414 (1) 445(2) - 437 (.0)
DPMPN [28.6(1) 403(1) 53.0(3) 369(1)[44.4(4) 49.7(8) 558(5) 48.2(5)

FB15K, WN18, and YAGO3-10, and use the mean average precision (MAP) for NELL995’s single-
query-relation KBC tasks. For NELL995, we follow the same evaluation procedure as in (Xiong
et al., 2017} [Das et al., 2018}, [Shen et al., [2018), ranking the answer entities against the negative
examples given in their experiments. We run our experiments using a 12G-memory GPU, TITAN
X (Pascal), with Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz. Our code is written in Python
based on TensorFlow 2.0 and NumPy 1.16 and can be found by the lin below. We run three
times for each hyperparameter setting per dataset to report the means and standard deviations. See
hyperparameter details in the appendix.

Baselines. We compare our model against embedding-based approaches, including TransE (Bordes
et al.l [2013)), TransR (Lin et al., 2015b)), DistMult (Yang et al., 2015), ConvE (Dettmers et al.,
2018)), ComplE (Trouillon et al.l [2016), HolE (Nickel et al., |2016)), RotatE (Sun et al., 2018), and
ComplEx-N3 (Lacroix et al) 2018)), and path-based approaches that use RL methods, including
DeepPath (Xiong et al.l [2017), MINERVA (Das et al., [2018), and M-Walk (Shen et al.| 2018)), and
also that uses learned neural logic, NeuralLP (Yang et al.,[2017).

Comparison results and analysis. We report comparison on FB15K-23 and WN18RR in Table 2]
Our model DPMPN significantly outperforms all the baselines in HITS@1,3 and MRR. Compared
to the best baseline, we only lose a few points in HITS@10 but gain a lot in HITS@1,3. We
speculate that it is the reasoning capability that helps DPMPN make a sharp prediction by exploiting
graph-structured composition locally and conditionally. When a target becomes too vague to predict,
reasoning may lose its advantage against embedding-based models. However, path-based baselines,
with a certain ability to do reasoning, perform worse than we expect. We argue that it might be
inappropriate to think of reasoning, a sequential decision process, equivalent to a sequence of nodes.
The average lengths of the shortest paths between heads and tails as shown in Table|l|suggests a very
short path, which makes the motivation of using a path almost useless. The reasoning pattern should
be modeled in the form of dynamical local graph-structured pattern with nodes densely connected

3https://github.com/anonymousauthor123/DPMPN
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Figure 4: Experimental analysis on WN18RR. (A) Convergence analysis: we pick six model snap-
shots during training and evaluate them on test. (B) IGNN component analysis: w/o IGNN uses zero
step to run message passing, while with IGNN uses two; (C)-(F) Sampling, attending-to, attending-
from and searching horizon analysis. The charts on FB15K-237 can be found in the appendix.

with each other to produce a decision collectively. We also run our model on FB15K, WNIS8,
and YAGO3-10, and the comparison results in the appendix show that DPMPN achieves a very
competitive position against the best state of the art. We summarize the comparison on NELL995’s
tasks in the appendix. DPMPN performs the best on five tasks, also being competitive on the rest.

Convergence analysis. Our model converges very fast during training. We may use half of train-
ing queries to train model to generalize as shown in Figure {A). Compared to less expensive
embedding-based models, our model need to traverse a number of edges when training on one
input, consuming much time per batch, but it does not need to pass a second epoch, thus saving a lot
of training time. The reason may be that training queries also belong to the KG’s edges and some
might be exploited to construct subgraphs during training on other queries.

Component analysis. Given the stacked GNN architecture, we want to examine how much each
GNN component contributes to the performance. Since IGNN is input-agnostic, we cannot rely
on its node representations only to predict a tail given an input query. However, AGNN is input-
dependent, which means it can be carried out to complete the task without taking underlying node
representations from IGNN. Therefore, we can arrange two sets of experiments: (1) AGNN + IGNN,
and (2) AGNN-only. In AGNN-only, we do not run message passing in IGNN to compute H,, .
but instead use node embeddings as #, ., and then we run pruned message passing in AGNN as
usual. We want to be sure whether IGNN is actually useful. In this setting, we compare the first
set which runs IGNN for two steps against the second one which totally shuts IGNN down. The
results in Figure f{B) (and Figure[7{B) in Appendix) show that IGNN brings an amount of gains in
each metric on WNI18RR (and FB15K-23), indicating that representations computed by full-graph
message passing indeed help subgraph-based message passing.

Horizon analysis. The sampling, attending-to, attending-from and searching (i.e., propagation
steps) horizons determine how large area a subgraph can expand over. These factors affect com-
putation complexity as well as prediction performance. Intuitively, enlarging the exploring area by
sampling more, attending more, and searching longer, may increase the chance of hitting a target
to gain some performance. However, the experimental results in Figure @(C)(D) show that it is not
always the case. In Figure {E), we can see that increasing the maximum number of attending-
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Figure 5: Analysis of attention flow on NELL995 tasks. (A) The average entropy of attention
distributions changing along steps for each single-query-relation KBC task. (B)(C)(D) The changing
of the proportion of attention concentrated at the top-1,3,5 nodes per step for each task.
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Figure 6: Analysis of time cost on WN18RR: (A)-(D) measure the one-epoch training time on dif-
ferent horizon settings corresponding to Figure EKC)-(F); (E) measures on different batch sizes us-
ing horizon setting Max-sampling-per-node=20, Max-attending-to-per-step=20, Max-attending-from-per-
step=20, and #Steps-in-AGNN=8. The charts on FB15K-237 can be found in the appendix.

0

from nodes per step is useful. That also explains why we call nodes in the attending-from horizon
the core nodes, as they determine where subgraphs can be expanded and how attention will be
propagated to affect the final probability distribution on the tail prediction. However, GPUs with
a limited memory do not allow for a too large number of sampled or attended nodes especially for
Max-attending-from-per-step. The detailed explanations can be found in attention strategies in Section
|2| where the upper bound is controlled by N1 N2 and N3 (Max-attending-from-per-step corresponding
to N1, Max-sampling-per-node to N, and Max-attending-to-per-step to N3). In N1.N3, Section [3.2]sug-
gests that we should sample more by a large N, but attend less by a small N;. Figure [F) suggests
that the propagation steps of AGNN should not go below four.

Attention flow analysis. If the flow-style attention really captures the way we reason about the
world, its process should be conducted in a diverging-converging thinking pattern. Intuitively, first,
for the diverging thinking phase, we search and collect ideas as much as we can; then, for the
converging thinking phase, we try to concentrate our thoughts on one point. To check whether the
attention flow has such a pattern, we measure the average entropy of attention distributions changing
along steps and also the proportion of attention concentrated at the top-1,3,5 nodes. As we expect,
attention is more focused at the final step and the beginning.

Time cost analysis. The time cost is affected not only by the scale of a dataset but also by the horizon
setting. For each dataset, we list the training time for one epoch corresponding to our standard
hyperparameter settings in the appendix. Note that there is always a trade-off between complexity
and performance. We thus study whether we can reduce time cost a lot at the price of sacrificing a
little performance. We plot the one-epoch training time in Figure [ A)-(D), using the same settings
as we do in the horizon analysis. We can see that Max-attending-from-per-step and #Steps-in-AGNN
affect the training time significantly while Max-sampling-per-node and Max-attending-to-per-step affect
very slightly. Therefore, we can use smaller Max-sampling-per-node and Max-attending-to-per-step in
order to gain a larger batch size, making the computation more efficiency as shown in Figure [6[E).

Visualization. To further demonstrate the reasoning capability, we show visualization results of
some pruned subgraphs on NELL995’s test data for 12 separate tasks. We avoid using the training
data in order to show generalization of the learned reasoning capability. We show the visualization
results in Figure[I] See the appendix for detailed analysis and more visualization results.
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Discussion of the limitation. Although DPMPN shows a promising way to harness the scalability
on large-scale graph data, current GPU-based machine learning platforms, such as TensorFlow and
PyTorch, seem not ready to fully leverage sparse tensor computation which acts as building blocks
to support dynamical computation graphs which varies from one input to another. Extra overhead
caused by extensive sparse operations will neutralize the benefits of exploiting sparsity.

5 RELATED WORK

Knowledge graph reasoning. Early work, including TransE (Bordes et al.l[2013) and its analogues
(Wang et al., 2014;|Lin et al.,|2015b; J1 et al., [2015), DistMult (Yang et al.,|2015)), ConvE (Dettmers
et al., [2018) and ComplEx (Trouillon et al.,[2016)), focuses on learning embeddings of entities and
relations. Some recent works of this line (Sun et al., 2018}; Lacroix et al.,|2018) achieve high accu-
racy. Another line aims to learn inference paths (Lao et al.,2011;|Guu et al.,2015; Lin et al., [2015aj
Toutanova et al.| 2016 |Chen et al.| 2018} [Lin et al., 2018)) for knowledge graph reasoning, especially
DeepPath (Xiong et al., 2017), MINERVA (Das et al.,|2018)), and M-Walk (Shen et al.,2018), which
use RL to learn multi-hop relational paths. However, these approaches, based on policy gradients
or Monte Carlo tree search, often suffer from low sample efficiency and sparse rewards, requiring
a large number of rollouts and sophisticated reward function design. Other efforts include learning
soft logical rules (Cohen, 2016} |Yang et al.,2017) or compostional programs (Liang et al.,[2016).

Relational reasoning in Graph Neural Networks. Relational reasoning is regarded as the key for
combinatorial generalization, taking the form of entity- and relation-centric organization to reason
about the composition structure of the world (Craikl (1952 [Lake et al.,[2017). A multitude of recent
implementations (Battaglia et al.l 2018)) encode relational inductive biases into neural networks to
exploit graph-structured representation, including graph convolution networks (GCNs) (Bruna et al.,
2014;Henaff et al., 2015} [Duvenaud et al.,[2015; [Kearnes et al., 2016} Defferrard et al.,[2016; Niepert
et al.| 2016} Kipf & Welling, 2017;|Bronstein et al.,2017) and graph neural networks (Scarselli et al.,
2009; Li et al.l 2016} [Santoro et al., 2017} Battaglia et al., [2016; |Gilmer et al., [2017). Variants of
GNN architectures have been developed. Relation networks (Santoro et al.l 2017) use a simple
but effective neural module to model relational reasoning, and its recurrent versions (Santoro et al.}
2018 |Palm et al., 2018 do multi-step relational inference for long periods; Interaction networks
(Battaglia et al.||[2016) provide a general-purpose learnable physics engine, and two of its variants are
visual interaction networks (Watters et al.,|2017) and vertex attention interaction networks (Hoshen,
2017); Message passing neural networks (Gilmer et al., [2017) unify various GCNs and GNNs into
a general message passing formalism by analogy to the one in graphical models.

Attention mechanism on graphs. Neighborhood attention operation can enhance GNNs’ repre-
sentation power (Velickovic et al., 2018} [Hoshen, [2017; Wang et al.l 2018} |Kool, [2018)). These
approaches often use multi-head self-attention to focus on specific interactions with neighbors when
aggregating messages, inspired by (Bahdanau et al., |2015; [Lin et al., 2017} Vaswani et al., |2017).
Most graph-based attention mechanisms attend over neighborhood in a single-hop fashion, and
(Hoshen, 2017) claims that the multi-hop architecture does not help to model high-order interac-
tion in experiments. However, a flow-style design of attention in (Xu et al., 2018b)) shows a way to
model long-range attention, stringing isolated attention operations by transition matrices.

6 CONCLUSION

We introduce Dynamically Pruned Message Passing Networks (DPMPN) and apply it to large-scale
knowledge graph reasoning tasks. We propose to learn an input-dependent local subgraph which
is progressively and selectively constructed to model a sequential reasoning process in knowledge
graphs. We use graphical attention expression, a flow-style attention mechanism, to guide and prune
the underlying message passing, making it scalable for large-scale graphs and also providing clear
graphical interpretations. We also take the inspiration from the consciousness prior to develop a
two-GNN framework to boost experimental performances.

10
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Appendix

7 PROOF

Proposition. Given a graph G (undirected or directed in both directions), we assume the probability
of the degree of an arbitrary node being less than or equal to d is larger than p, i.e., P(deg(v) <
d) > p,Yv € V. Considering a sequence of consecutively expanding subgraphs (G°,G*, ..., GT),
starting with G° = {v}, for all t > 1, we can ensure

d(d— 1)t —2
~a-z )

d(d—1)t—1_2
d—2

P(|Ver| < ©)

Proof. We consider the extreme case of greedy consecutive expansion, where Gt = G'"1 U AG? =
G~ UG, since if this case satisfies the inequality, any case of consecutive expansion can also
satisfy it. By definition, all the subgraphs G* are a connected graph. Here, we use AV to denote
Vage for short. In the extreme case, we can ensure that the newly added nodes AV at step ¢ only
belong to the neighborhood of the last added nodes AV*~!. Since for t > 2 each node in AV*~!
already has at least one edge within G*~! due to the definition of connected graphs, we can have

P(IAV! < |AVIY(d = 1)) > plaVTL (7)

For t = 1, we have P(|AV?!| < d) > p and thus
P(|[Var| <1+d) > p. ®)
Fort > 2,based on |[Vg:| = 1 + |AV| + ... + |AV?

, We obtain

P([Var| <1+d+d(d—1)+ ... +d(d— 1)) > plardd=Dt+dd-1D"2 = ()

which is

dd—1)t -2 —nt—1o
P(Ver| < WD Z2) 5 prespi=s. (10)
We can find that ¢ = 1 also satisfies this inequality. O

14



Published as a conference paper at ICLR 2020

8 HYPERPARAMETER SETTINGS

Table 3: Our standard hyperparameter settings we use for each dataset plus their one-epoch training
time. For experimental analysis, we only adjust one hyperparameter and keep the remaining fixed
as the standard setting. For NELL995, the one-epoch training time means the average time cost of

the 12 single-query-relation tasks.

Hyperparameter FB15K-237 FBISK WNI8RR WNI18 YAGO3-10 NELL995
batch_size 80 80 100 100 100 10
n_dims_att 50 50 50 50 50 200
n_dims 100 100 100 100 100 200
max_sampling _per_step (in IGNN) 10000 10000 10000 10000 10000 10000
max_attending_from_per_step 20 20 20 20 20 100
max_sampling_per_node (in AGNN) 200 200 200 200 200 1000
max_attending_to_per_step 200 200 200 200 200 1000
n_steps_in_IGNN 2 1 2 1 1 1
n_steps_in . AGNN 6 6 8 8 6 5
learning _rate 0.001 0.001 0.001 0.001 0.0001 0.001
optimizer Adam Adam Adam Adam Adam Adam
grad_clipnorm 1 1 1 1 1 1
n_epochs 1 1 1 1 1 3
One-epoch training time (h) 25.7 63.7 4.3 8.5 185.0 0.12

The hyperparameters can be categorized into three groups:

e Normal hyperparameters, including barch_size, n_dims_ait, n_dims, learning_rate, grad_clipnorm, and
n_epochs. We set smaller dimensions, n_dims_att, for computation in the attention module, as it
uses more edges than the message passing uses in AGNN, and also intuitively, it does not need to
propagate high-dimensional messages but only compute scalar scores over a sampled neighbor-
hood, in concert with the idea in the key-value mechanism (Bengio, 2017). We set n_epochs = 1
in most cases, indicating that our model can be trained well by one epoch only due to its fast
convergence.

e The hyperparameters in charge of the sampling-attending horizon, including
max_sampling_per_step that controls the maximum number to sample edges per step in IGNN, and
max_sampling_per_node, max_attending_from_per_step and max_attending_to_per_step that control the
maximum number to sample neighbors of each selected node per step per input, the maximum
number of selected nodes for attending-from per step per input, and the maximum number of
selected nodes in a sampled neighborhood for attending-to per step per input in AGNN.

e The hyperparameters in charge of the searching horizon, including n_steps_in_IGNN representing
the number of propagation steps to run standard message passing in IGNN, and n_steps_in AGNN
representing the number of propagation steps to run pruned message passing in AGNN.

Note that we tune these hyperparameters according to not only their performances but also the
computation resources available to us. In some cases, to deal with a very large knowledge graph with
limited resources, we need to make a trade-off between efficiency and effectiveness. For example,
each of NELL995’s single-query-relation tasks has a small training set, though still with a large
graph, so we can reduce the batch size in favor of affording larger dimensions and a larger sampling-
attending horizon without any concern for waiting too long to finish one epoch.
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9 MORE EXPERIMENTAL RESULTS

Table 4: Comparison results on the FB15K and WN18 datasets. Results of [#] are taken from
(Nickel et al.| 2016)), [&] from (Dettmers et al., [2018)), [{] from (Sun et al.,[2018)), [] from (Yang
et al.,[2017)), and PX] from (Lacroix et al., 2018). Our results take the form of ”mean (std)”.

FBI5K WNIS

Metric (%) H@l H@3 He@I0 MRR | H@l H@3 H@I0 MRR
TransE (@] 29.7 57.8 74.9 16.3 1.3 338 943 495
HolE [#] 402 61.3 73.9 524 93.0 945 94.9 93.8
DistMult [o] 54.6 73.3 824 654 72.8 914 93.6 822
ComplEX [oh] 59.9 75.9 84.0 69.2 93.6 93.6 94.7 941
ConvE o] 55.8 723 33.1 65.7 93.5 94.6 95.6 943
RotatE [$] 74.6 83.0 384 79.7 94.4 952 95.9 94.9
ComplEx-N3 DX N N 91 36 - N 96 95
NeuralLP [U] N N 83.7 76 N N 945 Y
DPMPN [72.6 (&) 784(4 834(5 764(4)[91.6(8) 93.6(4 949(4 928(6)

Table 5: Comparison results on the YAGO3-10 dataset. Results of [#] are taken from (Dettmers
et al.,[2018)), [&] from (Lacroix et al.,[2018)), and ] from (Lacroix et al,[2018).

YAGO3-10
Metric (%) H@l H@3 H@10 MRR
DistMult [é] 24 38 54 34
ComplEx [é] 26 40 55 36
ConvE [#] 35 49 62 44
ComplEx-N3 K] - - 71 58
DPMPN [ 484 595 679 553

Table 6: Comparison results of MAP scores (%) on NELL995’s single-query-relation KBC tasks.
We take our baselines’ results from (Shen et al.,2018])). No reports found on the last two in the paper.

Tasks NeuCFlow | M-Walk MINERVA DeepPath TransE TransR
AthletePlaysForTeam 83.9(0.5) [84.7(1.3) 82.7(0.8) 72.1(1.2) 627 67.3
AthletePlaysInLeague 97.5(0.1) | 97.8(0.2) 95.2(0.8) 92.7(5.3) 773 91.2
AthleteHomeStadium 93.6 (0.1) | 91.9(0.1) 92.8(0.1) 84.6(0.8) 71.8 72.2
AthletePlaysSport 98.6 (0.0) | 98.3(0.1) 98.6(0.1) 91.7(4.1) 87.6 96.3
TeamPlayssport 90.4 (0.4) | 88.4(1.8) 87.5(0.5) 69.6(6.7) 76.1 81.4
OrgHeadQuarteredInCity 94.7 (0.3) | 95.0 (0.7) 94.5(0.3) 79.0(0.0) 62.0 65.7
WorksFor 86.8 (0.0) | 84.2(0.6) 82.7(0.5) 69.9(0.3) 67.7 69.2
PersonBornInLocation 84.1 (0.5) | 81.2(0.0) 78.2(0.0) 755(0.5) 71.2 81.2
PersonLeadsOrg 88.4(0.1) | 88.8(0.5) 83.0(2.6) 79.0(1.0) 75.1 77.2
OrgHiredPerson 84.7(0.8) | 88.8(0.6) 87.0(0.3) 73.8(1.9) 71.9 73.7
AgentBelongsToOrg 89.3 (1.2) - - - - -
TeamPlaysInLeague 97.2 (0.3) - - - - -
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Figure 7: Experimental analysis on FB15K-237. (A) Convergence analysis: we pick six model
snapshots at time points of 0.3, 0.5, 0.7, 1, 2, and 3 epochs during training and evaluate them on test;
(B) IGNN component analysis: w/o IGNN uses zero step to run message passing, while with IGNN
uses two steps; (C)-(F) Sampling, attending-to, attending-from and searching horizon analysis.
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Figure 8: Analysis of time cost on FB15K-237: (A)-(D) measure the one-epoch training time on dif-
ferent horizon settings corresponding to Figure[7C)-(F); (E) measures on different batch sizes using
horizon setting Max-sampled-edges-per-node=20, Max-seen-nodes-per-step=20, Max-attended-nodes-per-
step=20, and #Steps-of-AGNN=6.

10 MORE VISUALIZATION RESUTLS

10.1 CASE STUDY ON THE ATHLETEPLAYSFORTEAM TASK

In the case shown in Figure O] the query is (conceptpersonnorthamerica_michael turner,
concept:athleteplays-forteam, 7) and a true answer is concept_sportsteam_falcons. From Figure |§|, we
can see our model learns that (concept_personnorthamerica_michael_turner, concept:athletehomestadium,
concept_stadiumoreventvenue_georgia_dome) and  (concept_stadiumoreventvenue_georgia_dome,  con-
cept:teamhomestadium_inv, concept_sportsteam_falcons) are two important facts to support the an-
swer of concept_sportsteam falcons. Besides, other facts, such as (concept.athlete_joey_harrington,
concept:athletehomestadium, concept_stadiumoreventvenue_georgia_dome) and (concept_athlete-
_joey_harrington, concept:athleteplaysforteam, concept_sportsteam falcons), provide a vivid example
that a person or an athlete with concept_stadiumoreventvenue_georgia_dome as his or her home
stadium might play for the team concept_sportsteam_falcons. We have such examples more than
one, like concept_athlete_roddy white’s and concept_athlete_quarterback_matt_ryan’s. The entity con-
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cept_sportsleague_nfl cannot help us differentiate the true answer from other NFL teams, but it can

at least exclude those non-NFL teams. In a word,

our subgraph-structured representation can well

capture the relational and compositional reasoning pattern.
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Figure 9: AthletePlaysForTeam. The head is concept_personnorthamerica_michael_turner, the query
relation is concept:athleteplaysforteam, and the tail is concept_sportsteam falcons. The left is a full sub-

graph derived with max_attending_from_per_step=20,

and the right is a further pruned subgraph from

the left based on attention. The big yellow node represents the head, and the big red node represents
the tail. Color on the rest indicates attention scores over a 7T'-step reasoning process, where grey
means less attention, yellow means more attention gained during early steps, and red means gaining

more attention when getting closer to the final step.

For the AthletePlaysForTeam task
Query:

Selected key edges:

concept_personnorthamerica.michael_turner, concept:agentbelongstoorganization,

(concept_personnorthamerica_michael_turner, concept:athleteplaysforteam,

concept_sportsteam_falcons)

concept.-sportsleague_nfl

concept_personnorthamerica.michael_turner, concept:athletehomestadium, concept_stadiumoreventvenue_georgia_dome

concept-sportsleague_nfl, concept:agentcompeteswithagent,
concept-sportsleague-nfl,
concept-sportsleague_nfl, concept:teamplaysinleague.inv,

concept:agentcompeteswithagent.

concept_sportsleague_nfl
inv, concept.sportsleague_nfl
concept.-sportsteam.sd_chargers

concept-sportsleague_nfl, concept:leaguestadiums, concept-stadiumoreventvenue_georgia_-dome

concept-sportsleague_nfl, concept:teamplaysinleague.inv,

concept_sportsteam_falcons

concept-sportsleague-nfl,

concept:

agentbelongstoorganization.inv ,

concept-personnorthamerica-michael_turner

concept-stadiumoreventvenue_georgia-dome ,
concept_stadiumoreventvenue_georgia-dome ,
concept_stadiumoreventvenue_georgia-dome ,
concept_stadiumoreventvenue_georgia_.dome,
concept_stadiumoreventvenue_georgia_.dome ,
concept_stadiumoreventvenue_georgia_-dome ,

concept
concept

concept:
concept:
concept:
concept:

:leaguestadiums.inv ,
:teamhomestadium.inv ,

concept-sportsleague-nfl
concept_sportsteam_falcons

athletehomestadium.inv ,
athletehomestadium_inv ,
athletehomestadium_inv ,
athletehomestadium_inv,

concept-athlete_joey_harrington
concept.athlete_roddy_white
concept_.coach_deangelo_hall
concept_personnorthamerica.michael_turner

concept_sportsleague_nfl, concept:subpartoforganization_inv, concept_sportsteam_oakland_raiders

concept_sportsteam_sd_chargers, concept:teamplaysinleague,

concept.-sportsleague_nfl

concept_sportsteam_sd._chargers, concept:teamplaysagainstteam, concept.sportsteam_falcons

concept_sportsteam_sd_chargers, concept:teamplaysagainstteam.inv,

concept.sportsteam_falcons

concept.sportsteam_sd._chargers, concept:teamplaysagainstteam, concept_-sportsteam_oakland.raiders

concept-sportsteam_sd_chargers, concept:teamplaysagainstteam.inv,

concept-sportsteam_falcons, concept
concept-sportsteam_falcons, concept
concept-sportsteam_falcons, concept
concept-sportsteam_falcons, concept
concept-sportsteam_falcons, concept
concept-sportsteam_falcons, concept
concept-sportsteam_falcons , concept

concept-athlete_joey_harrington ,
concept_athlete_joey_harrington ,
concept_athlete_joey_harrington ,
concept_athlete_.roddy_white ,

concept:athletehomestadium ,
concept:athleteledsportsteam,
concept:athleteplaysforteam,
concept:athletehomestadium ,
concept.athlete_.roddy_white , concept:athleteplaysforteam,

:teamplaysinleague , concept_sportsleague_nfl
:teamplaysagainstteam, concept.-sportsteam._sd_chargers
:teamplaysagainstteam.inv, concept-sportsteam.sd_chargers
:teamhomestadium, concept-stadiumoreventvenue_georgia-dome
:teamplaysagainstteam, concept.sportsteam_oakland_raiders
:teamplaysagainstteam.inv, concept_-sportsteam_oakland.raiders
:athleteledsportsteam.inv, concept-athlete_joey_harrington

concept_sportsteam_falcons
concept_sportsteam_falcons
concept_stadiumoreventvenue_georgia_.dome

concept_sportsteam_falcons

concept.coach_deangelo_hall, concept:athletehomestadium, concept.stadiumoreventvenue_georgia_.dome
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concept-coach_deangelo_hall, concept:athleteplaysforteam, concept-sportsteam_oakland-raiders
concept-sportsleague_nfl, concept:teamplaysinleague.inv, concept_-sportsteam_-new_.york_-giants
concept-sportsteam_sd_chargers, concept:teamplaysagainstteam.inv, concept-sportsteam_new_york_giants
concept-sportsteam_falcons, concept:teamplaysagainstteam, concept-sportsteam_new_york.giants
concept_sportsteam_falcons, concept:teamplaysagainstteam.inv, concept_sportsteam_new_york_giants
concept_sportsteam_oakland_raiders, concept:teamplaysagainstteam_inv, concept.sportsteam_new_york_giants
concept_sportsteam_oakland_raiders, concept:teamplaysagainstteam, concept_.sportsteam_sd_chargers
concept_sportsteam_oakland_raiders, concept:teamplaysagainstteam_.inv, concept.sportsteam_sd_chargers
concept_sportsteam_oakland_raiders, concept:teamplaysagainstteam, concept.sportsteam_falcons
concept_sportsteam_oakland_raiders, concept:teamplaysagainstteam_inv, concept_sportsteam_falcons
concept_sportsteam_oakland_raiders, concept:agentcompeteswithagent, concept.sportsteam_oakland_raiders
concept_sportsteam_oakland_raiders, concept:agentcompeteswithagent.inv, concept.sportsteam.oakland_raiders
concept.sportsteam_new_york_giants, concept:teamplaysagainstteam, concept_sportsteam_sd_chargers
concept-sportsteam_new_york_giants, concept:teamplaysagainstteam, concept.sportsteam_falcons
concept-sportsteam_new_york_giants, concept:teamplaysagainstteam.inv, concept_sportsteam_falcons
concept-sportsteam_new_york_giants, concept:teamplaysagainstteam, concept_sportsteam_oakland.raiders

10.2 MORE RESULTS
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Figure 10: AthletePlaysInl.eague. The head is concept_personnorthamerica_matt_treanor, the query
relation is concept:athleteplaysinleague, and the tail is concept_sportsleague_mlb. The left is a full sub-
graph derived with max_attending_from_per_step=20, and the right is a further pruned subgraph from
the left based on attention. The big yellow node represents the head, and the big red node represents
the tail. Color on the rest indicates attention scores over a T'-step reasoning process, where grey
means less attention, yellow means more attention gained during early steps, and red means gaining
more attention when getting closer to the final step.

For the AthletePlaysInLeague task

Query: (concept-personnorthamerica_-matt_treanor, concept:athleteplaysinleague, concept_sportsleague_-mlb)

Selected key edges:

concept_personnorthamerica-matt_treanor, concept:athleteflyouttosportsteamposition, concept_.sportsteamposition_center
concept_personnorthamerica-matt_treanor, concept:athleteplayssport, concept-sport_baseball
concept_-sportsteamposition_center, concept:athleteflyouttosportsteamposition_inv, concept_-personus_orlando_-hudson
concept_sportsteamposition_center, concept:athleteflyouttosportsteamposition_inv, concept_athlete_ben_hendrickson
concept_sportsteamposition_center, concept:athleteflyouttosportsteamposition_inv, concept_coach_j_j__hardy
concept_sportsteamposition_center, concept:athleteflyouttosportsteamposition_inv, concept_athlete_hunter_pence
concept_-sport_baseball, concept:athleteplayssport_inv, concept_personus.orlando_hudson

concept_sport_baseball, concept:athleteplayssport_inv, concept.athlete_ben_hendrickson

concept_sport_baseball, concept:athleteplayssport_inv, concept_.coach_j_j__hardy

concept_sport_baseball, concept:athleteplayssport_inv, concept_athlete_hunter_pence
concept_personus_orlando_hudson, concept:athleteplaysinleague , concept_sportsleague_mlb
concept_personus_orlando_hudson, concept:athleteplayssport, concept_sport_.baseball
concept_athlete_ben_hendrickson, concept:coachesinleague, concept_sportsleague_mlb
concept_athlete_ben_hendrickson, concept:athleteplayssport, concept_sport_baseball
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Figure 11: AthleteHomeStadium. The head is concept_athlete_eli_manning, the query relation is
concept:athletehomestadium, and the tail is concept_stadiumoreventvenue_giants_stadium. The left is a full
subgraph derived with max_attending from_per_step=20, and the right is a further pruned subgraph
from the left based on attention. The big yellow node represents the head, and the big red node
represents the tail. Color on the rest indicates attention scores over a 7'-step reasoning process,
where grey means less attention, yellow means more attention gained during early steps, and red
means gaining more attention when getting closer to the final step.

For the AthleteHomeStadium task

Query: (concept.athlete_eli_manning, concept:athletehomestadium, concept_.stadiumoreventvenue_giants_stadium)

Selected key edges:

concept_athlete_eli_manning, concept:personbelongstoorganization, concept-sportsteam_new_york_giants
concept_athlete_eli_manning, concept:athleteplaysforteam, concept_sportsteam_new_york_giants
concept_athlete_eli_manning , concept:athleteledsportsteam , concept_sportsteam_new_york_giants
concept-athlete_eli_-manning, concept:athleteplaysinleague, concept_sportsleague_nfl
concept-athlete_eli_-manning, concept:fatherofperson_inv, concept-male_archie_manning
concept-sportsteam_new_york_giants, concept:teamplaysinleague, concept_sportsieague_nfl
concept_sportsteam_new_york_giants, concept:teamhomestadium, concept_stadiumoreventvenue_giants_stadium
concept_sportsteam_new_york_giants, concept:personbelongstoorganization_inv, concept_athlete_eli_manning
concept_sportsteam_new_york_giants, concept:athleteplaysforteam_inv, concept.-athlete_eli_manning
concept_sportsteam_new_york_giants, concept:athleteledsportsteam_inv, concept-athlete_eli_-manning
concept_sportsleague_nfl, concept:teamplaysinleague_inv, concept_sportsteam_new_york_giants
concept_sportsleague_nfl, concept:agentcompeteswithagent, concept_sportsieague_nfl
concept_sportsleague_nfl, concept:agentcompeteswithagent_.inv, concept.sportsleague._nfl
concept_sportsleague_nfl, concept:leaguestadiums, concept_stadiumoreventvenue_giants_stadium
concept-sportsleague_nfl, concept:athleteplaysinleague_inv, concept-athlete_eli_manning
concept_male_archie_manning, concept:fatherofperson, concept_athlete_eli_manning
concept_sportsleague_nfl , concept:leaguestadiums, concept_stadiumoreventvenue_paul_brown_stadium
concept_stadiumoreventvenue_giants_stadium, concept:teamhomestadium_inv, concept_sportsteam_new_york_giants
concept_stadiumoreventvenue_giants_stadium , concept:leaguestadiums_inv, concept_sportsleague_nfl
concept-stadiumoreventvenue_giants_stadium, concept:proxyfor_inv, concept-city_east_-rutherford
concept_city_east_rutherford , concept:proxyfor, concept_stadiumoreventvenue_giants_stadium
concept_stadiumoreventvenue_paul_brown_stadium, concept:leaguestadiums_inv, concept_sportsleague_nfl

For the AthletePlaysSport task
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Figure 12: AthletePlaysSport. The head is concept_athlete_vernon_wells, the query relation is con-
cept:athleteplayssport, and the tail is concept_sport_baseball. The left is a full subgraph derived with
max_attending _from_per_step=20, and the right is a further pruned subgraph from the left based on at-
tention. The big yellow node represents the head, and the big red node represents the tail. Color on
the rest indicates attention scores over a T’-step reasoning process, where grey means less attention,
yellow means more attention gained during early steps, and red means gaining more attention when
getting closer to the final step.

Query: (concept_athlete_.vernon_wells, concept:athleteplayssport, concept.sport_baseball)

Selected key edges:
concept_athlete_vernon_wells , concept:athleteplaysinleague, concept._sportsleague_mlb
concept._athlete_.vernon_wells , concept:coachwontrophy, concept.awardtrophytournament_world_series
concept-athlete_.vernon_wells, concept:agentcollaborateswithagent_inv, concept_sportsteam_blue_jays
concept-athlete_vernon_wells , concept:personbelongstoorganization, concept_sportsteam_blue_jays
concept_athlete_vernon_wells , concept:athleteplaysforteam , concept_sportsteam_blue_jays
concept._athlete_.vernon_wells, concept:athleteledsportsteam , concept_sportsteam_blue_jays
concept_-sportsleague_mlb, concept:teamplaysinleague_.inv, concept_sportsteam_dodgers
concept-sportsleague_-mlb, concept:teamplaysinleague.inv, concept_sportsteam_yankees
concept_sportsleague_mlb, concept:teamplaysinleague_inv, concept_sportsteam_pittsburgh_pirates
concept_awardtrophytournament_world_series , concept:teamwontrophy_inv, concept_sportsteam_dodgers
concept_awardtrophytournament_world_series , concept:teamwontrophy_inv, concept_sportsteam_yankees
concept-awardtrophytournament_world_series , concept:awardtrophytournamentisthechampionshipgameofthenationalsport,
concept_sport_baseball
concept_awardtrophytournament_world_series, concept:teamwontrophy_inv, concept_sportsteam_pittsburgh_pirates
concept_sportsteam_blue_jays , concept:teamplaysinleague, concept_sportsleague_mlb
concept_sportsteam_blue_jays, concept:teamplaysagainstteam, concept.sportsteam._yankees
concept_sportsteam_blue_jays, concept:teamplayssport, concept_sport_baseball
concept_sportsteam_dodgers, concept:teamplaysagainstteam, concept_sportsteam._yankees
concept_sportsteam_dodgers, concept:teamplaysagainstteam_inv, concept_sportsteam_yankees
concept_sportsteam_dodgers , concept:teamwontrophy, concept_awardtrophytournament_world_series
concept_sportsteam_dodgers, concept:teamplayssport, concept_-sport_baseball
concept_sportsteam_yankees, concept:teamplaysagainstteam, concept_sportsteam_dodgers
concept_sportsteam_yankees, concept:teamplaysagainstteam_inv, concept_sportsteam_dodgers
concept_sportsteam_yankees, concept:teamwontrophy, concept_awardtrophytournament_world_series
concept_sportsteam_yankees, concept:teamplayssport, concept_sport_baseball
concept_sportsteam_yankees, concept:teamplaysagainstteam, concept_sportsteam_pittsburgh_pirates
concept_sportsteam_yankees, concept:teamplaysagainstteam_inv, concept_sportsteam_pittsburgh_pirates
concept_sport_baseball, concept:teamplayssport_inv, concept_sportsteam_dodgers
concept_sport_baseball, concept:teamplayssport_inv, concept_sportsteam_yankees
concept_sport_baseball, concept:awardtrophytournamentisthechampionshipgameofthenationalsport_inv,
concept.awardtrophytournament_world_series
concept_sport_baseball, concept:teamplayssport_inv, concept_sportsteam_pittsburgh_pirates
concept_sportsteam_pittsburgh_pirates , concept:teamplaysagainstteam, concept_sportsteam_yankees
concept_sportsteam_pittsburgh_pirates , concept:teamplaysagainstteam_inv, concept_sportsteam_yankees
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Figure 13: TeamPlaysSport. The head is concept_sportsteam_red_wings, the query relation is con-
cept:teamplayssport, and the tail is concept_sport_hockey. The left is a full subgraph derived with
max_attending from_per_step=20, and the right is a further pruned subgraph from the left based on
attention. The big yellow node represents the head, and the big red node represents the tail. Color
on the rest indicates attention scores over a T'-step reasoning process, where grey means less atten-
tion, yellow means more attention gained during early steps, and red means gaining more attention

when getting closer to the final step.

For the TeamPlaysSport task

Query: (concept_sportsteam_red_wings,
Selected key edges:

concept_sportsteam_red_wings , concept:
concept_sportsteam_red_wings, concept:
concept_sportsteam_red_wings , concept:
concept_sportsteam_red_wings , concept:
concept_sportsteam_red_wings , concept:
concept_sportsteam_red_-wings , concept:
concept_sportsteam_red_wings, concept:
concept_sportsteam_red_wings, concept:

concept_sportsteam_montreal_canadiens , concept:teamplaysagainstteam,
concept_sportsteam_montreal_canadiens, concept:teamplaysagainstteam.inv,
concept_sportsteam_montreal_canadiens, concept:teamplaysinleague ,

concept_sportsteam_montreal_canadiens,

concept.sportsteam_blue_jackets , conce

concept:teamplayssport,

concept_sport_hockey)
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Figure 14: OrganizationHeadQuarteredInCity. The head is concept_company_disney, the query
relation is concept:organizationheadquarteredincity, and the tail is concept_city_burbank. The left is a
full subgraph derived with max_attending from_per_step=20, and the right is a further pruned subgraph
from the left based on attention. The big yellow node represents the head, and the big red node
represents the tail. Color on the rest indicates attention scores over a 7'-step reasoning process,
where grey means less attention, yellow means more attention gained during early steps, and red
means gaining more attention when getting closer to the final step.

For the OrganizationHeadQuarteredInCity task

Query: (concept_.company_disney,

Selected key edges:

concept.company_disney, concept:headquarteredin,
concept.company_disney, concept:
concept_.company._disney, concept:worksfor_inv,
concept_.company_disney, concept:proxyfor_inv,
concept.company_disney, concept:
concept.company_disney, concept:ceoof_inv,
concept.company_disney, concept:
concept.company._disney, concept:organizationhiredperson,
concept.company_disney, concept:

concept:organizationheadquarteredincity , concept_city_-burbank)

concept_city_burbank
subpartoforganization_inv, concept-website_network
concept-ceo-robert_iger
concept_ceo_robert_iger
personleadsorganization_inv, concept.ceo_robert_iger
concept-ceo_robert_iger
personleadsorganization_inv, concept.ceo_jeffrey_katzenberg
concept_ceo_jeffrey_katzenberg
organizationterminatedperson, concept_ceo_jeffrey_katzenberg

concept_city_burbank , concept:headquarteredin_inv, concept.company.disney

concept_city_burbank, concept:headquarteredin_inv,

concept-website_network , concept:
concept_ceo_robert_iger, concept:worksfor,
concept_ceo_robert_iger, concept:
concept_ceo_robert_iger, concept:
concept_ceo_robert_iger, concept:
concept-ceo_robert_iger, concept:
concept_ceo_robert_iger, concept:

concept_biotechcompany_the_walt_disney_co_
subpartoforganization, concept-company._disney
concept_.company_disney

proxyfor, concept_.company_disney

personleadsorganization, concept.company._disney

ceoof, concept-company_disney

topmemberoforganization,
organizationterminatedperson_inv ,

concept_city_ne|

concept_-biotechcompany_the_walt_disney_co_-
concept_biotechcompany_the_walt_disney_co.

concept_ceo_jeffrey_katzenberg, concept:personleadsorganization, concept.company._disney
concept_ceo_jeffrey_katzenberg, concept:organizationhiredperson_inv, concept.company_disney
concept-ceo_jeffrey_katzenberg, concept:organizationterminatedperson_inv, concept.company._disney
concept.ceo_jeffrey_katzenberg, concept:worksfor, concept-recordlabel_dreamworks_skg
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concept:airportincity_inv ,
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concept-ceo_jeffrey_katzenberg
concept_ceo_jeffrey_katzenberg
concept_ceo_jeffrey_katzenberg
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Figure 15: WorksFor. The head is concept_scientisi-balmer, the query relation is con-
cept:worksfor, and the tail is concept_university_microsoft. The left is a full subgraph derived with
max_attending _from_per_step=20, and the right is a further pruned subgraph from the left based on at-
tention. The big yellow node represents the head, and the big red node represents the tail. Color on
the rest indicates attention scores over a T’-step reasoning process, where grey means less attention,
yellow means more attention gained during early steps, and red means gaining more attention when
getting closer to the final step.

For the WorksFor task

Query: (concept_scientist_balmer, concept:worksfor, concept_-university_microsoft)

Selected key edges:

concept_scientist_balmer, concept:topmemberoforganization, concept.company_microsoft
concept_scientist_balmer , concept:organizationterminatedperson_inv, concept_university_microsoft
concept_company_microsoft, concept:topmemberoforganization_inv, concept_personus._steve_ballmer
concept_-company_microsoft, concept:topmemberoforganization_inv, concept_-scientist_-balmer
concept-university_microsoft, concept:agentcollaborateswithagent, concept_personus_steve_ballmer
concept_university_microsoft, concept:personleadsorganization_inv, concept_personus_steve_ballmer
concept_university_microsoft, concept:personleadsorganization.inv, concept_person_bill
concept_university_microsoft, concept:organizationterminatedperson, concept_scientist_-balmer
concept-university_microsoft, concept:personleadsorganization_.inv, concept_person_robbie_bach
concept_personus_steve_ballmer, concept:topmemberoforganization, concept.company_microsoft
concept_personus_steve_ballmer, concept:agentcollaborateswithagent_inv, concept_university_microsoft
concept_personus_steve_ballmer, concept:personleadsorganization, concept-university_microsoft
concept_personus_steve_ballmer, concept:worksfor, concept_university_microsoft
concept_personus_steve_ballmer, concept:proxyfor, concept_-retailstore_microsoft
concept_personus_steve_ballmer, concept:subpartof, concept_retailstore_microsoft
concept_personus_steve_ballmer, concept:agentcontrols, concept.retailstore_microsoft
concept_-person_bill , concept:personleadsorganization, concept_university_microsoft
concept_-person_bill , concept:worksfor, concept_university_microsoft

concept_person_robbie_bach, concept:personleadsorganization, concept_university_microsoft
concept_person_robbie_bach, concept:worksfor, concept_university_microsoft
concept.retailstore_microsoft, concept:proxyfor_.inv, concept_personus_steve_ballmer
concept_retailstore_microsoft, concept:subpartof_inv, concept_personus_steve_ballmer
concept-retailstore_microsoft, concept:agentcontrols_inv, concept_-personus_steve_ballmer

For the PersonBornInLocation task

Query: (concept_person_mark001, concept:personborninlocation, concept_county_york_city)

Selected key edges:

concept_person_mark001, concept:persongraduatedfromuniversity, concept_university_college
concept_person_mark001, concept:persongraduatedschool, concept_-university_college
concept_person_mark001, concept:persongraduatedfromuniversity, concept_university_state_university
concept_person_mark001, concept:persongraduatedschool, concept_university_state_university
concept_person_mark001, concept:personbornincity, concept_city_hampshire
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Figure 16: PersonBornInLocation. The head is concept_person_-mark001, the query relation is con-
cept:personborninlocation, and the tail is concept_county_york_city. The left is a full subgraph derived
with max_attending_from_per_step=20, and the right is a further pruned subgraph from the left based on
attention. The big yellow node represents the head, and the big red node represents the tail. Color on
the rest indicates attention scores over a T’-step reasoning process, where grey means less attention,
yellow means more attention gained during early steps, and red means gaining more attention when
getting closer to the final step.
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For the PersonLeadsOrganization task

Query: (concept_journalist_bill_plante , concept:personleadsorganization, concept.company_cnn__pbs)
Selected key edges:

concept-journalist_bill_plante , concept:worksfor, concept_televisionnetwork_cbs

concept_-journalist_bill_plante , concept:agentcollaborateswithagent_inv, concept_televisionnetwork_cbs
concept_televisionnetwork_cbs , concept:worksfor_inv, concept_journalist_walter_cronkite
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Figure 17: PersonLeadsOrganization. The head is concepr_journalist_bill_plante, the query relation
1S concept:organizationheadquarteredincity, and the tail is concept_company_cnn__pbs. The left is a full
subgraph derived with max_attending from_per_step=20, and the right is a further pruned subgraph
from the left based on attention. The big yellow node represents the head, and the big red node
represents the tail. Color on the rest indicates attention scores over a 7'-step reasoning process,
where grey means less attention, yellow means more attention gained during early steps, and red
means gaining more attention when getting closer to the final step.
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For the OrganizationHiredPerson task
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Figure 18: OrganizationHiredPerson. The head is concepr_stateorprovince_afternoon, the query rela-
tion is concept:organizationhiredperson, and the tail is concept_personmexico_ryan_whitney. The left is a
full subgraph derived with max_attending from_per_step=20, and the right is a further pruned subgraph
from the left based on attention. The big yellow node represents the head, and the big red node rep-
resents the tail. Color on the rest indicates attention scores over a T'-step reasoning process, where
grey means less attention, yellow means more attention gained during early steps, and red means
gaining more attention when getting closer to the final step.

Query: (concept_stateorprovince_afternoon, concept:organizationhiredperson, concept_personmexico_ryan_whitney)
Selected key edges:

concept_stateorprovince_afternoon, concept:atdate, concept_dateliteral_-n2007
concept_stateorprovince_afternoon, concept:atdate, concept_-date_.n2003
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Figure 19: AgentBelongsToOrganization. The head is concept_person_mark001, the query relation
18 concept:agentbelongstoorganization, and the tail is concept_geopoliticallocation_world. The left is a
full subgraph derived with max_attending from_per_step=20, and the right is a further pruned subgraph
from the left based on attention. The big yellow node represents the head, and the big red node
represents the tail. Color on the rest indicates attention scores over a 7'-step reasoning process,
where grey means less attention, yellow means more attention gained during early steps, and red
means gaining more attention when getting closer to the final step.

For the AgentBelongsToOrganization task
Query: (concept_person_.mark001, concept:agentbelongstoorganization, concept_geopoliticallocation_world)

Selected key edges:

concept_person_mark001, concept:personbelongstoorganization, concept_sportsteam_state_university
concept_person_mark001, concept:agentcollaborateswithagent, concept_-male_world
concept_person_mark001, concept:agentcollaborateswithagent.inv, concept.-male_world
concept_person_mark001, concept:personbelongstoorganization, concept_politicalparty_college
concept-sportsteam_state_university , concept:personbelongstoorganization_.inv, concept_politician_jobs
concept_sportsteam_state_university , concept:personbelongstoorganization_inv, concept_-person_mark001
concept_sportsteam_state_university , concept:personbelongstoorganization_inv, concept_person_greg001
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Figure 20: TeamPlaysInLeague. The head is concept_sportsteam_mavericks, the query relation is
concept:teamplaysinleague, and the tail is concept_sportsleague_nba. The left is a full subgraph derived
with max_attending_from_per_step=20, and the right is a further pruned subgraph from the left based on
attention. The big yellow node represents the head, and the big red node represents the tail. Color on
the rest indicates attention scores over a T'-step reasoning process, where grey means less attention,
yellow means more attention gained during early steps, and red means gaining more attention when
getting closer to the final step.

For the TeamPlaysInLeague task
Query: (concept.sportsteam_mavericks, concept:teamplaysinleague, concept_sportsleague_nba)

Selected key edges:

concept_sportsteam_mavericks , concept:teamplayssport, concept.sport_basketball
concept_sportsteam_mavericks , concept:teamplaysagainstteam, concept_sportsteam_boston_celtics
concept_sportsteam_mavericks , concept:teamplaysagainstteam_.inv, concept-sportsteam_boston_celtics
concept_sportsteam_mavericks , concept:teamplaysagainstteam, concept_sportsteam_spurs
concept_sportsteam_mavericks , concept:teamplaysagainstteam_inv, concept_sportsteam_spurs
concept_sport_basketball, concept:teamplayssport_.inv, concept_sportsteam_college
concept_sport_basketball, concept:teamplayssport_.inv, concept_sportsteam_marshall_university
concept_sportsteam_boston_celtics, concept:teamplaysinleague, concept-sportsleague_-nba
concept_sportsteam_spurs, concept:teamplaysinleague, concept_sportsleague_nba
concept_sportsleague_nba, concept:agentcompeteswithagent, concept_sportsleague_nba
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