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Abstract

In this paper, a bat-inspired high-resolution ultrasound 3D imaging system is pre-
sented. Live bats demonstrate that the properly used ultrasound can be used to
perceive 3D space. With this in mind, a neural network referred to as a Bat-G
network is implemented to reconstruct the 3D representation of target objects from
the hyperbolic FM (HFM) chirped ultrasonic echoes. The Bat-G network consists
of an encoder emulating a bat's central auditory pathway, and a 3D graphical visu-
alization decoder. For the acquisition of the ultrasound data, a custom-made Bat-I
sensor module is used. The Bat-G network shows the uniform 3D reconstruction
results and achieves precision, recall, and F1-score of 0.896, 0.899, and 0.895, re-
spectively. The experimental results demonstrate the implementation feasibility of
a high-resolution non-optical sound-based imaging system being used by live bats.
The project web page (https://sites.google.com/view/batgnet) contains
additional content summarizing our research.

1 Introduction

Recent improvements in sensor and information processing technologies have made significant
contributions to the progress of numerous unmanned systems (UMS) such as a drone, an autonomous
vehicle, and a robot. In order for UMS to reach full autonomous level that does not require any
human intervention, the collected data from sensors in UMS should suffice to manage the entire
environmental scenarios. Therefore, UMS commonly employs a combination of sensors including
RGB-D cameras, RADARs, LIDARs, and ultrasonic sensors that are complementary to each other.
Both RGB-D camera and LIDAR provide abundant high-resolution visual information, however, the
visibility and accuracy can be severely compromised depending on environmental/weather conditions
as shown in Fig. 1(a). On the contrary, RADAR and conventional ultrasonic sensors, measuring
the time-of-flight of the reflected signal, are relatively less sensitive to operating circumstances but
merely provide low-resolution ranging information [1, 2]. Consequently, a clear need exists for an
imaging sensor that can precisely visualize 3D space irrespective of environmental conditions.

In this paper, a high-resolution ultrasound 3D imaging system emulating the echolocation mechanism
of a live bat is presented. Among many outstanding features of a bat's sensory system that enables
accurate 3D perception, three following key points are essentials: (1) Bats localize obstacles and
discriminate prey by analyzing the echoes of emitted ultrasound pulses, which is called echolocation
[3–5]. The emitted ultrasound signal from a bat is frequency-chirped over a wide frequency range,
which plays a critical role in recognizing the shape of an object from the echo spectra [6]. Hence, the
proposed system employs a frequency-chirped broadcasting ultrasound signal in the range of 20-120
kHz as shown in Fig. 1(b). (2) Echolocation is an inverse problem where the spatial information
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Figure 1: (a) Measurement results of a camera, an RGB-D camera, and an ultrasound (US) sensor
in the different brightness/fog level. (b) Overview of a bat-inspired high-resolution ultrasound 3D
imaging system.

of a target is extracted from reflected/scattered echoes. In general, solving an inverse problem is
an extremely laborious and time-consuming task since the problem is often ill-posed and requires
several iterations [7]. However, live bats with a real neural network recognize the surroundings in
real time. From these, we can infer the fact that the echolocation problem can be solved efficiently
with the help of the artificial neural network. Therefore, we designed a feed-forward neural network
to inversely reconstruct a 3D image from the collected ultrasound data, referred to as a bat-inspired
graphical visualization (Bat-G) network. (3) The sensory-to-image conversion of bats involves the
neural interactions between the nuclei on the central auditory pathway (through the brainstem and
the midbrain) and the auditory cortex (AC). From the sensory input, it is believed that the auditory
nuclei extract temporal and spectral features needed for the echolocation and then pass them to AC
through monaural, binaural, ipsilateral, and/or contralateral connections. The architecture of Bat-G
net is heavily inspired by the neuroanatomical auditory pathway of bats.

2 Related Work

In the past decades, airborne ultrasonic sensors have been widely used for range detection. These
sensors emit a single frequency ultrasonic signal and calculate the distance to the object in a 2D
horizontal plane by measuring the time-of-flight (TOF) of echoes reflected from an object. Recently,
there have been attempts to localize/classify a target object and/or reconstruct the shape of an object
as shown in table 1. A series of 3D localization strategies have been explored, which includes the
calculation of TOF difference between two pairs of microphones [8] and the reception of signals from
a designated direction in 3D space using a beamforming (BF) technique [9]. In [10], a biomimetic
sonar system performing spectrum-based 3D localization is proposed. Another line of research
is the classification of target objects by combining different classification parameters such as the

Table 1: Summary of Related Works

[8] [9] [10] [11] [12] [13] [14] [15] [16] This Work
3D localization X X X X X × X X X X
Classification × × × X X X X X X X

Reconstruction × × × × × × X X X X
TX / RX 1/4 1/32 1/2 3/3 4/4 1/1 1/400 1/64 5/3 1/4

Measurement X X X X X X X X × X

Method1 T BF SC,
BM

T,
AC

T,
PCA

NN,
BM

SA,
BF

NN,
HG

T,
CS

T, NN,
BM

NOTE: 1 T: Time difference of arrival, BF: Beamforming, SC: Spectral Cues, BM: Biomimetics, AC:
Angle Change, PCA: Principal-Component-Analysis, NN: Neural Network, SA: Synthetic Aperture, HG:
Holography, CS: Compressive Sensing
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Figure 2: (a) Operational block diagram of a bat's cochlear block. (b) Illustration of the operation of a
bat's temporal cue analysis (TCA) block. (c) Fine delay determination mechanism of a bat's spectral
cue analysis (SCA) block.

angles/distances between the 3D sensor array and an object [11] or by utilizing 16 TOF vectors (4
TXs and 4 RXs) processed by means of the principal component analysis (PCA) [12]. However, such
techniques relying on a lookup table for the classification, distinguish only simple objects such as
plane, corner, and edge. On the other hand, [13] has attempted to categorize cube and tetrahedron by
analyzing the spectrum of echoes with the help of a neural network (NN). However, the approach has
yet to demonstrate the real potential of NN methods due to limited datasets alongside the rudimentary
NN structure. Besides 3D localization and classification of target objects, many efforts have been
made to solve the ill-posed inverse problem for the reconstruction of the 3D shape of an object
from the received echoes. Such attempts adopted either the BF [14] or holography [15] techniques
with a large number of TRX array. Compressive sensing (CS) technique, a subset of the inverse
problem approach, has also been tried in a simulation domain with a few cuboids considering the
sparse property of the scenes [16]. However, such inverse problem approaches require tremendous
computation power and time to process the incoming data from such large array. In this paper,
a feed-forward Bat-G network is proposed to solve the ill-posed 3D ultrasonic inverse problem.
The proposed network reconstructs 3D representation of diverse objects from measured 4-channel
ultrasonic signals.

3 Preliminaries

In order to understand the 3D spatial perception mechanism of a bat-inspired imaging (Bat-I) sensor,
it is essential to understand the structure of a bat's auditory system that comprising three principal
components including the cochlear and the temporal/spectral cue analysis block.

3.1 Cochlear Block

The position-dependent frequency selectivity of the basilar membrane in the bat's cochlea can be
modeled by sharply tuned band-pass filters (BPFs) as described in Fig. 2(a). These filters are
typically modeled by 81 parallel constant-bandwidth, 10th-order Butterworth IIR filters whose center
frequencies (fc) are hyperbolic in the range of 20-100 kHz. The transmission process linking the
excitation of hair cells to the primary auditory neurons through synapse is modeled by half-wave
rectification followed by low-pass filtering (LPF) at the output of each 81 BPF [17, 18]. As a
result, the emitted/received sound signal is decomposed into 81 band-pass filtered signals and then
subsequent rectifier and LPF extract the amplitude (or power) of the signals. Consequently, this
process produces the time-frequency representation of the acoustic time-domain signal, which is
analogous to the spectrogram.

3.2 Temporal/Spectral Cue Analysis (TCA/SCA)

The TCA block measures the elapsed time between the emitted sound signal and its echoes over each
repetitive emission time. Delay-tuned neurons operate as tapped delay lines in each frequency channel
as described in Fig. 2(b). The emitted and echo signal travel along these delay lines sequentially.
Coincidence detection neurons in multiple channels detect the coexistence of the emitted signal and
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the echo signal in each tapped delay line. The activated position of the tapped delay lines determines
the delay of the echo. When the number of activated channels exceeds the threshold, the location of
the target is declared [17].

Fine delay, caused by overlapping echoes reflected from two nearby glints, is unresolvable through
direct delay measurements by the TCA block [18]. These fine delays are resolved by the SCA block
analyzing the spectral cues such as notch and null. Assuming only two glints exist for simplicity
and the echoes r(t) from two glints are reflected back with the same magnitude A but with different
delays τ1 and τ2, then the received signal s(t) is given by

s(t) = Ar(t− τ1) +Ar(t− τ2), (1)

where t denotes time. The frequency spectrum S(f) of s(t) can be written by

S(f) = A ·R(f)e−j2πfτ1 [1 + e−j2πf(τ2−τ1)], (2)

where f and R(f) are the frequency and the frequency spectrum of the individual echo r(t), respec-
tively. Bats transform the spectral information into a time-delay domain, as shown in Fig. 2(c), by
summing up the |S(fk)|-weighted basis only when the magnitude of the frequency spectrum |S(fk)|
of k-th frequency channel exceeds the threshold Sthr [19, 17, 20–22], namely

xbat(τ) =

N∑
k=1

|S(fk)| · cos(2πfkτ) if |S(fk)| > Sthr, (3)

where xbat(τ) and fk denote the time-delay representation of the bats and the center frequency of k-th
channel, respectively, as shown in Fig. 2(c) [17]. The fine delay is eventually determined by finding
the location of the peaks in the time-delay representation. Furthermore, a target can be considered
as an object containing several glints and reflecting surfaces [23–26]. Echoes reflected from these
glints contribute to the spectral cues of an echo [27]. That is, the shape of a target is expressed with a
unique spectral fingerprint. Bats are known to use these spectral signatures to recognize the shape of
a target [18, 28, 29]. Consequently, the sophisticated pattern recognition of the spectral cue is central
to the spatial perception mechanism.

4 Data Acquisition

Bat-inspired imaging (Bat-I) sensor (see Fig. 1(b)) emits broadband FM signals and records echoes
reflected from the target object. The recorded data transformed into spectrogram are fed into the
Bat-G network for training and the network eventually infers the object’s 3D representation. In
order to train the network, we have adopted a supervised learning algorithm and created 4-channel
ultrasound echo dataset, ECHO-4CH (49 k data for training and 2.6 k data for evaluation). Each
echo data consists of eight spectrograms (2562 grayscale image) and one 3D ground-truth label (643

voxels).

4.1 Data (4-channel Ultrasound Echo)

System Setup The ultrasonic electrostatic speaker (UES) (see Fig. 3(a)), placed at the center of
a sensing module, broadcasts the ultrasonic chirp in the frequency range of 20-120 kHz with the
maximum power of 78 dB SPL at 1 m. The UES is driven by a class AB speaker driver with a
maximum power of 10 W. Four ultrasound condenser microphones (UCMs) are placed right, left,
up, and down of the UES with the separation of 6 cm. The UCMs have a broad and flat frequency
response in 20-150 kHz with the attenuation less than -6 dB. The recorder amplifies the received
signals from the UCMs with the maximum gain of 40 dB and digitizes at a sampling rate of 750
kSample/s.

Broadcasting Signal Bats use a hyperbolic frequency-modulated (HFM) chirp containing multi
harmonics, which has the effect of pulse compression increasing the spatial resolution as well as the
receiver sensitivity assuring robust performance in environments with heavy reverberation [30–35].
Compared to the linear FM chirp, the HFM chirp is less sensitive to the frequency shifts caused by
the movement of subjects because of its Doppler tolerance [36]. The waveform of the HFM chirp
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Figure 3: (a) Custom-made bat-inspired imaging (Bat-I) sensor for ultrasound data acquisition. (b)
Polar plot of signal-to-noise ratio (SNR) of a sphere and a triangular pyramid. (c) The region-of-
interest (ROI) pooling of the raw echo data. (d) Conversion of the echo signal into two spectrograms.

xHFM with pulse duration THFM , chosen as the broadcasting signal format in our Bat-I sensor, can
be expressed as

xHFM (t) = A(t) · sin[
2π

ξ
ln(1 + ξf1t)], 0 ≤ t ≤ THFM (4)

where ξ = (f1 − fN )/f1fNTHFM and f1 and fN are the first and the last carrier frequency, respec-
tively, andA(t) denotes a rectangular function given byA(t) = a·rect[(t−THFM/2)/(THFM )][37].
The selected HFM parameters are a = 0.3, THFM = 6 ms, f1 = 120 kHz, and fN = 20 kHz.

Objects and Data Acquisition We have chosen 16.2 k geometric object configuration (such as
cube, cone, sphere, and so on) as shown in Fig. 1(b), and created the objects using the building blocks
and a 3D printer. The geometric objects are randomly placed in a 643 cm3 space with a distance of
1.48 m from the Bat-I sensor. Each target object is measured five times to desensitize the network to
the ambient noise (e.g. noise from electronic equipment, footsteps, voice and so forth). We eventually
acquired 81 k measured echo data.

Data Processing (1) Thresholding - An object reflects a limited portion of ultrasound energy back
to the UCM. The backscattered power

∫ Ts

0
|xr,i(t)|2dt with scan duration Ts received by the i-th

UCM of a RADAR/SONAR system is∫ Ts

0

|xr,i(t)|2dt =

∫ THFM

0
|xHFM (t)|2dt ·GtArσe−2αRi

(4π)2R4
i

, i = 1, 2, ..., 4 (5)

where
∫ THFM

0
|xHFM (t)|2dt and Gt are the power of the transmitted HFM chirp and the gain of the

UES , respectively [38, 39]. Ar is the effective area of the UCM, σ is the sonar cross section (SCS), α
is the atmospheric attenuation constant, and Ri is the distance from the UES/i-th UCM to the object.
The SCS depends on the object’s geometric shape, and orientation of the ultrasound source. In case an
object has a small SCS (e.g. the most of the reflective surfaces of an object cause specular reflection),
the SNR of the received signal drops below the minimum detectable SNR threshold (see Fig. 3(b)).
As such, we have constructed training datasets with only reliable data that meet the threshold criteria
such as

Xthr = {xkr,i(t) | ∆dB [xkr,∀(t)] > −6 dB}, 0 ≤ t ≤ Ts i = 1, 2, ..., 4 (6)

where object-to-sphere power ratio (OSPR) of the k-th measured data of the i-th UCM ∆dB [xkr,i(t)] =

10 log[
∫ Ts

0
|xkr,i(t)|2dt/

∫ Ts

0
|xsph(t)|2dt].

∫ Ts

0
|xsph(t)|2dt is the backscattered power of an

isotropic sphere (radius = 9 cm).

(2) Pooling - 70.5 k-Sample data recorded by the Bat-I sensor covers a scan depth of 17.17 m
(the speed of sound c = 343.42 m/s) as described in Fig. 3(c). Processing raw data requires large
computational resources. In order to reduce the input dimension, preliminary information reflecting

5



Figure 4: Simplified diagram of the anatomical connections of a bat's auditory system and architecture
of the proposed Bat-G network (BN: batch normalization [40], ReLU: rectified linear unit [41]).

the fact that an object is placed at a distance of 1.48 m ± 32 cm is considered and only 2.8 k-Sample
data covering the region-of-interest (ROI) are used. This process reduces the input dimension by 98
%. The ROI pooling can be expressed as

Xroi = {x́kr,i(t) = xkr,i(t+ T1) | xkr,i ∈ Xthr},
0 ≤ t ≤ T2 − T1 + τir i = 1, 2, ..., 4 (7)

where T1 and T2 are the start and the end time of the data covering ROI. τir is the length of the
intrinsic transient response of the UES/UCM.

(3) Spectrogram – Bat-G net includes two pathways primarily processing temporal or spectral cues
similar to a bat's central auditory pathway (see section 5). In order to feed the appropriate signal
to each path, the recorded signal is converted into two high-resolution spectrograms (see Fig. 3(d))
produced by the short-time Fourier transform (STFT) with a short/long hamming window ωs/ωl
(33-µs/133-µs window size with 22-µs/90-us overlap), namely

Xsp = {|STFT [x́kr,i(t)](ωs)|2, |STFT [x́kr,i(t)](ωl)|2 | x́kr,i(t) ∈ Xroi}.
0 ≤ t ≤ T2 − T1 + τir i = 1, 2, ..., 4 (8)

As the size of generated two spectrograms is different, they are resized to 2562. As a result, we have
gathered 51.6 k data and each data is composed of eight spectrograms.

4.2 Labels (3D Ground-truth Model)

Each target object of the gathered data is modeled in 3D CAD and voxelized with the dimensions of
643 (voxel size of 13 cm3). As the acoustic reflection coefficient at the interface between the air and
the solid object material is close to one, the field of view (FoV) of the UCM is limited to the front
view of the target objects. Therefore, shaded regions, from the back of the object to the end of the
ROI, are padded by one.

5 Architecture of Proposed Bat-G Network

In this section, the architecture of the proposed Bat-G network that analyzes the 4-channel ultrasonic
echoes and inversely reconstructs the 3D representation of the target objects is presented. The network
consists of two components: (1) a neural encoder that emulates a bat's central auditory pathway
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and (2) a 3D rendering decoder that is inspired by the expansive path of the U-net [42] without any
concatenation from the contracting path.

5.1 Encoder

The 3D perception mechanism of the FM bats described in section 3 involves the neural interactions
between the auditory pathway (through the brainstem and the midbrain) and auditory cortex (AC).
Fig. 4 depicts the simplified anatomical connections of a bat's auditory system (reconstructed from
[43, 44]). The system consists of four main blocks2: (a) VCN where the cells (e.g. the bushy and the
octopus cells) play an important role in extracting the timing information from the auditory nerve;
and DCN where the principal neurons, including the fusiform cells, perform non-linear spectral
analysis considering the location of the head and ears [46], (b) SOC (MSO and LSO) that calculates
the interaural differences in time and intensity, contributing to the sound source localization, (c) NLL
and IC where organized auditory information and the auditory nerve from peripheral brainstem nuclei
converge, and (d) AC and PFC converting the integrated auditory features to a unified image.The
architecture of the proposed Bat-G network emulates two features of a bat's auditory system.

(1) Spectral/Temporal-Cue Dominant Path - Some neurons are sensitive to the temporal- (time) or
spectral- (frequency) domain information. These neurons form a nucleus, a cluster of neurons. Each
nucleus intensively extracts domain-specific features depending on the nature of the neurons that
make up the cluster. We constructed the front cluster of layers employing deformable convolution
layer [47] which adjusts the receptive field according to the pattern of the temporal/spectral cues. In
addition, the network pathway is divided into the two paths of dominantly processing either temporal
or spectral cues of the input spectrogram.

(2) Biomimetic Connections - The nuclei directly or indirectly receive the monaural, binaural, ipsilat-
eral, or contralateral signal from the lower auditory nuclei. In the aspect of network implementation,
each ultrasonic echo spectrogram with a short/long window from four recording channels (right, left,
up, and down) is monaurally processed at the corresponding L1-CN inspired by CN as shown in
Fig. 4. The output feature-maps of L1-CN, L2-SOC1, or L3-SOC2 are binaurally concatenated and
then fed into one step deeper layers (highlighted in blue arrow). The feature maps are simultaneously
transmitted to deeper layers (>2) via direct connection with successive stride-4 4 x 4 max pooling
(highlighted in red arrow). L4-NLL/IC integrates entire products of each layer and then forwards
the results (4 x 4 dimension vector with 4096 feature maps) to a 3D visualization decoder. The
detailed structure (see Fig. 4) of each layer is as follows. The first three layers (L1-CN, L2-SOC1, and
L3-SOC2) are implemented with two 3 x 3 deformable convolutions (dilation factor of 1, 3 x 3 offset,
and “same” padding) followed by batch normalization (BN) [40] and rectified linear unit (ReLU)
activation [41]. L4-NLL/IC consists of successive two conventional convolutions (3 x 3 kernels, and
“same” padding with BN and ReLU).

5.2 Decoder

A 3D inverse rendering decoder projects the output data of the encoder in low dimensional manifold
into the volumetric 3D image in R64×64×64 vector space (see Fig. 4). A fully-connected (FC) layer,
applied to 4 x 4 pixel inputs encoded with 4096 feature maps, has 4096 hidden units. The output
of the FC layer is reshaped into a 3D vector domain of R4×4×4 with 1024 feature maps. Then, the
3D vector passes through three 3D convolution transpose layers which are composed of one 3D
convolution transpose (or deconvolution) layer (stride-2 2 x 2 x 2 or stride-4 4 x 4 x 4 kernels, and
“same” padding with ReLU) and two 3D convolution layers (3 x 3 x 3 kernels, and “same” padding
with BN and ReLU) . In order to convert a 16-feature vector into the desired representation, a 1 x 1 x
1 convolution layer is added to the final layer. The detailed structure of each layer is described in
Fig. 4.

2Note that acronyms of bat's nerve nuclei are listed in this footnote for the readability. CN: the cochlear
nucleus (VCN: the ventral CN and DCN: the dorsal CN), SOC: the superior olivary nuclei, MSO: medial
superior olive, LSO: lateral superior olive, NLL: the nucleus of the lateral lemniscus, IC: the inferior colliculus,
PFC: the prefrontal cortex. [45]
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Figure 5: 3D reconstruction results of target objects when (a) the objects are composed of convex
surfaces, (b) the objects have vertices, (c) the objects have an significantly small reflective area, and
(d) the echo suffers the multiple diffusion reflections.

6 Training

The Bat-G network is trained employing a supervised learning algorithm. The network is repeatably
fed with 49 k training data randomly selected from ECHO-4CH dataset (51.6 k data). The learning
objective is minimizing the 3D reconstruction loss L between the 3D network f output ŷ = f(x́r) ∈
R64×64×64, where x́r ∈ Xsp ∼ R8×256×256 is the input spectrogram, and the corresponding ground
truth label y ∈ R64×64×64. The loss function is implemented by employing L2-regularization loss
(regularization strength λ=10−6), and cross-entropy loss with softmax activation S, which can be
expressed as

L(ŷ, y) = y log[S(ŷ)] + λ
∑m
i=1 ω

2
i . (9)

We adopted the Adam optimization algorithm [48] (β1, β2, and ε are 0.9, 0.999, and 10−8, respec-
tively) with an exponential decay (learning rate, decay rate, and decay steps are 10−4, 0.9, and 5 k,
respectively) for better convergence. To reduce overfitting, dropout with the probability of retention
of 0.5 [49] is applied to the network during training. The network is iteratively trained with 500 k
steps on a GTX 1080 Ti GPU and a Threadripper 1900X CPU.

7 Experimental Results

We first present the qualitative assessment of the 3D rendering results of the Bat-G network. We
then quantitatively evaluated 3D reconstruction performance based on precision, recall, and F1-score
metrics. The Bat-G network is evaluated with 2.6 k test data of the ECHO-4CH dataset.

7.1 Qualitative Assessment

Fig. 5 shows the measured objects, the ground-truth labels, and the 3D reconstruction results of the
Bat-G network presented in a 3D view and third angle projection. When a radiated ultrasonic chirp
is reflected from convex surfaces of target objects, the 3D representation of the measured objects is
uniformly reconstructed as shown in Fig. 5(a). It can be observed that the Bat-G network localizes
the measured objects in a 3D-space and reconstructs the shapes of the objects by inferring based on
test data. It is worth noting that the Bat-G network can reconstruct 3D shapes of the objects having
vertices (Fig. 5(b)). Results presented in Fig. 5 clearly shows that the Bat-G net is sensitive to both
azimuth and elevation cues. Examples yielding slightly unsatisfied outputs compared to those shown
in Fig. 5(a)-(b) are presented in Fig. 5(c)-(d). From the reconstruction result in Fig. 5(c), it can be
seen that the edge information of the measured objects are not fully-retrieved since the reflective area
seen by the Bat-G sensor is significantly small. Fig. 5(d) shows that the ultrasound echo reflected
from area A is received through multiple diffusion reflection paths, while the reflected echo from area
B is measured primarily through the direct path. As a result, the Bat-G net erroneously represented
the shape of A because of the multiple diffusion reflections.
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Figure 6: (a) Precision, recall and F1-score of the proposed Bat-G net and the stacked auto-encoder
(SAE) employing the 4-, 2-, or 1-channel UCM input data. (b) Performance of Bat-G network
with/without spectral/temporal-cue dominant path and/or the biomimetic connections.

7.2 Quantitative Assessment
As the volumetric 3D ground truth data is unbalanced (90 % of labels is label 0), the accuracy is always
estimated to be higher than 90 % even though the network infers all outputs as label 0. Therefore,
we quantitatively assessed the performance based on the precision, recall, and F1-score metric. The
current state-of-the-art image reconstruction method using a neural network [50] demonstrates that
the architecture composed of a conventional stacked auto-encoder (SAE) and FC layers can effectively
learn forward reconstruction method composed of two manifold transformations: (a) diffeomorphism
between sensory input and latent low dimensional space and (b) manifold mapping from latent space
to the output image. Therefore, such SAE (with an FC layer) structure is employed as the baseline,
while maintaining the number of parameters and layers equal to that of the Bat-G network for a fair
comparison. The Bat-G net (4-channel UCM) achieves (see Fig. 6(a)) 0.896 in precision, 0.899 in
recall, and 0.895 in F1-score which are 3.0 %, 7.1 %, and 5.4 % increase against the SAE (4-channel
UCM), respectively. Besides, the contribution of the number of UCMs is assessed. As the number
of UCMs decreases, the performance of the Bat-G net deteriorated (10.9 % and 27.8 % drops in
F1-score when the number of UCMs reduces into two and one, respectively). This suggests that
employing the 4-channel UCM data as the input is essential for the Bat-G net to reconstruct a 3D
image that is sensitive to both azimuth and elevation cues. We also presented the ablation studies to
validate efficacy of the spectral/temporal-cue dominant path and the biomimetic connection emulating
a bat's auditory pathways. Employing both spectral and temporal pathways demonstrated the best
performance, which means that the two pathways are complementary to each other (3.8 % or 14.6 %
increases in F1-score against using only the spectral or the temporal pathway, respectively). When
the biomimetic connection was removed, the performance degradation of 5.1 % was observed. The
result shows that the nested biomimetic connection in the Bat-G net contributes significantly to
extracting essential features required for 3D image reconstruction from ultrasonic echoes. More
information on the network structures used for the comparison and the ablation studies can be found
in the supplementary material.

8 Conclusion
In this study, a bat-inspired high-resolution 3D imaging system that can reconstruct the shape of
target objects in 3D space using HFM ultrasonic echoes is presented. The proposed imaging system
is composed of a Bat-G network and a Bat-I sensor that are equivalent to the central-auditory-
pathway/auditory-cortex and the nose/ear of the bat, respectively. The Bat-G net was implemented
using an encoder extracting temporal/spectral features from the hyperbolic chirped ultrasonic echoes,
and a decoder reconstructing the 3D representation of a target object from the extracted features.
The network is trained using a supervised learning algorithm with custom-made datasets (ECHO-
4CH). Through a range of experiments, we have shown that the proposed network can effectively
reconstruct the shapes of 3D objects. This work clearly demonstrates the implementation feasibility
of a high-resolution ultrasound 3D imaging system used by live bats. It also marks a crucial step
toward realizing an imaging sensor that can graphically visualize objects and their surroundings
irrespective of environmental conditions, unlike conventional electromagnetic wave-based imaging
systems.
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