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ABSTRACT

Reinforcement learning (RL) typically defines a discount factor (γ) as part of
the Markov Decision Process. The discount factor values future rewards by an
exponential scheme that leads to theoretical convergence guarantees of the Bell-
man equation. However, evidence from psychology, economics and neuroscience
suggests that humans and animals instead have hyperbolic time-preferences ( 1

1+kt

for k > 0). Here we extend earlier work of Kurth-Nelson and Redish and propose
an efficient deep reinforcement learning agent that acts via hyperbolic discounting
and other non-exponential discount mechanisms. We demonstrate that a simple
approach approximates hyperbolic discount functions while still using familiar
temporal-difference learning techniques in RL. Additionally, and independent of
hyperbolic discounting, we make a surprising discovery that simultaneously learn-
ing value functions over multiple time-horizons is an effective auxiliary task which
often improves over state-of-the-art methods.

1 INTRODUCTION

The standard treatment of the reinforcement learning (RL) problem is the Markov Decision Process
(MDP) which includes a discount factor 0 ≤ γ ≤ 1 that exponentially reduces the present value
of future rewards (Bellman, 1957; Sutton & Barto, 1998). A reward rt received in t-time steps is
devalued to γtrt, a discounted utility model introduced by Samuelson (1937). This establishes a time-
preference for rewards realized sooner rather than later. The decision to exponentially discount future
rewards by γ leads to value functions that satisfy theoretical convergence properties (Bertsekas, 1995).
The magnitude of γ also plays a role in stabilizing learning dynamics of RL algorithms (Prokhorov &
Wunsch, 1997; Bertsekas & Tsitsiklis, 1996) and has recently been treated as a hyperparameter of the
optimization (OpenAI, 2018; Xu et al., 2018).

However, both the magnitude and the functional form of this discounting function establish priors
over the solutions learned. The magnitude of γ chosen establishes an effective horizon for the agent of
1/(1− γ), far beyond which rewards are neglected (Kearns & Singh, 2002). This effectively imposes
a time-scale of the environment, which may not be accurate. Further, the exponential discounting of
future rewards is consistent with a prior belief that there is a known constant per-time-step hazard
rate (Sozou, 1998) or probability of dying of 1− γ (Lattimore & Hutter, 2011).

Additionally, discounting future values exponentially and according to a single discount factor γ
does not harmonize with the measured value preferences in humans1 and animals (Mazur, 1985;
1997; Ainslie, 1992; Green & Myerson, 2004; Maia, 2009). A wealth of empirical evidence has
been amassed that humans, monkeys, rats and pigeons instead discount future returns hyperbolically,
where dk(t) = 1

1+kt , for some positive k > 0 (Ainslie, 1975; 1992; Mazur, 1985; 1997; Frederick
et al., 2002; Green et al., 1981; Green & Myerson, 2004).

This discrepancy between the time-preferences of animals from the exponential discounted measure
of value might be presumed irrational. But Sozou (1998) showed that hyperbolic time-preferences is
mathematically consistent with the agent maintaining some uncertainty over the prior belief of the
hazard rate in the environment. Hazard rate h(t) measures the per-time-step risk the agent incurs as
it acts in the environment due to a potential early death. Precisely, if s(t) is the probability that the

1Time-preference reversals are one implication. Consider two hypothetical choices: (1) a stranger offers $1M
now or $1.1M dollars tomorrow (2) a stranger instead offers $1M in 99 days versus $1.1M in 100 days.
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agent is alive at time t then the hazard rate is h(t) = − d
dt lns(t). We consider the case where there is

a fixed, but potentially unknown hazard rate h(t) = λ ≥ 0. The prior belief of the hazard rate p(λ)
implies a specific discount function Sozou (1998). Under this formalism, the canonical case in RL
of discounting future rewards according to d(t) = γt is consistent with the belief that there exists a
single hazard rate λ = e−γ known with certainty. Further details are available in Appendix A.
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Figure 1: Hyperbolic versus exponential discount-
ing. Humans and animals often exhibit hyperbolic
discounts (blue curve) which have shallower dis-
count declines for large horizons. In contrast, RL
agents often optimize exponential discounts (or-
ange curve) which drop at a constant rate regard-
less of how distant the return.

Common RL environments are also character-
ized by risk, but often in a narrower sense. In
deterministic environments like the original Ar-
cade Learning Environment (ALE) (Bellemare
et al., 2013) stochasticity is often introduced
through techniques like no-ops (Mnih et al.,
2015) and sticky actions (Machado et al., 2018)
where the action execution is noisy. Physics sim-
ulators may have noise and the randomness of
the policy itself induces risk. But even with
these stochastic injections the risk to reward
emerges in a more restricted sense. In Section
2 we show that a prior distribution reflecting
the uncertainty over the hazard rate, has an as-
sociated discount function in the sense that an
MDP with either this hazard distribution or the
discount function, has the same value function
for all policies. This equivalence implies that
learning policies with a discount function can
be interpreted as making them robust to the as-
sociated hazard distribution. Thus, discounting
serves as a tool to ensure that policies deployed
in the real world perform well even under risks
they were not trained under.

We propose an algorithm that approximates hyperbolic discounting while building on successful Q-
learning (Watkins & Dayan, 1992) tools and their associated theoretical guarantees. We show learning
many Q-values, each discounting exponentially with a different discount factor γ, can be aggregated
to approximate hyperbolic (and other non-exponential) discount factors. We demonstrate the efficacy
of our approximation scheme in our proposed Pathworld environment which is characterized both by
an uncertain per-time-step risk to the agent. Conceptually, Pathworld emulates a foraging environment
where an agent must balance easily realizable, small meals versus more distant, fruitful meals. We
then consider higher-dimensional deep RL agents in the ALE, where we measure the benefits of
hyperbolic discounting. This approximation mirrors the work of Kurth-Nelson & Redish (2009);
Redish & Kurth-Nelson (2010) which empirically demonstrates that modeling a finite set of µAgents
simultaneously can approximate hyperbolic discounting function. Our method then generalizes
to other non-hyperbolic discount functions and uses deep neural networks to model the different
Q-values from a shared representation.

Surprisingly and in addition to enabling new non-exponential discounting schemes, we observe
that learning a set of Q-values is beneficial as an auxiliary task (Jaderberg et al., 2016). Adding
this multi-horizon auxiliary task often improves over a state-of-the-art baseline, Rainbow (Hessel
et al., 2018) in the ALE (Bellemare et al., 2013). This work questions the RL paradigm of learning
policies through a single discount function which exponentially discounts future rewards through the
following contributions:

1. Hazardous MDPs. We formulate MDPs with hazard present and demonstrate an
equivalence between undiscounted values learned under hazards and (potentially non-
exponentially) discounted values without hazard.

2. Hyperbolic (and other non-exponential)-agent. A practical approach for training an agent
which discounts future rewards by a hyperbolic (or other non-exponential) discount function
and acts according to this.

3. Multi-horizon auxiliary task. A demonstration of multi-horizon learning over many γ
simultaneously as an effective auxiliary task.
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2 HAZARD IN MDPS

To study MDPs with hazard distributions and general discount functions we introduce two modifica-
tions. The hazardous MDP now is defined by the tuple < S,A, R, P,H, d >. In standard form, the
state space S and the action space A may be discrete or continuous. The learner observes samples
from the environment transition probability P (st+1|st, at) for going from st ∈ S to st+1 ∈ S given
at ∈ A. We will consider the case where P is a sub-stochastic transition function, which defines
an episodic MDP. The environment emits a bounded reward r : S × A → [rmin, rmax] on each
transition. In this work we consider non-infinite episodic MDPs.

The first difference is that at the beginning of each episode, a hazard λ ∈ [0,∞) is sampled from
the hazard distributionH. This is equivalent to sampling a continuing probability γ = e−λ. During
the episode, the hazard modified transition function will be Pλ, in that Pλ(s′|s, a) = e−λP (s′|s, a).
The second difference is that we now consider a general discount function d(t). This differs from
the standard approach of exponential discounting in RL with γ according to d(t) = γt, which is a
special case. This setting makes a close connection to partially observable Markov Decision Process
(POMDP) (Kaelbling et al., 1998) where one might consider λ as an unobserved variable. However,
the classic POMDP definition contains an explicit discount function γ as part of its definition which
does not appear here.

A policy π : S → A is a mapping from states to actions. The state action value function QH,dπ (s, a)
is the expected discounted rewards after taking action a in state s and then following policy π until
termination.

QH,dπ (s, a) = EλEπ,Pλ

[ ∞∑
t=0

d(t)R(st, at)|s0 = s, a0 = a

]
(1)

where λ ∼ H and Eπ,Pλ implies that st+1 ∼ Pλ(·|st, at) and at ∼ π(·|st).

2.1 EQUIVALENCE BETWEEN HAZARD AND DISCOUNTING

In the hazardous MDP setting we observe the same connections between hazard and discount
functions delineated in Appendix A. This expresses an equivalence between the value function of an
MDP with a discount and MDP with a hazard distribution.

For example, there exists an equivalence between the exponential discount function d(t) = γt to
the undiscounted case where the agent is subject to a (1− γ) per time-step of dying (Lattimore &
Hutter, 2011). The typical Q-value (left side of Equation 2) is when the agent acts in an environment
without hazard λ = 0 or H = δ(0) and discounts future rewards according to d(t) = γt = e−λt

which we denote as Qδ(0),γt

π (s, a). The alternative Q-value (right side of Equation 2) is when the
agent acts under hazard rate λ = − ln γ but does not discount future rewards which we denote as
Q
δ(− ln γ),1
π (s, a).

Qδ(0),γt

π (s, a) = Qδ(− ln γ),1
π (s, a) ∀ π, s, a. (2)

where δ(x) denotes the Dirac delta distribution at x. This follows from Pλ(s′|s, a) = e−λP (s′|s, a)

Eπ,P

[ ∞∑
t=0

γtR(st, at)|s0 = s, a0 = a

]
= Eπ,P

[ ∞∑
t=0

e−λtR(st, at)|s0 = s, a0 = a

]

= Eπ,Pλ

[ ∞∑
t=0

R(st, at)|s0 = s, a0 = a

]
We also show a similar equivalence between hyperbolic discounting and the specific hazard distribu-
tion pk(λ) = 1

k exp(−λ/k), where again, λ ∈ [0,∞) in Appendix E.

Qδ(0),Γk
π (s, a) = Qpk,1π (s, a)

For notational brevity later in the paper, we will omit the explicit hazard distributionH-superscript if
the environment is not hazardous. This formulation builds upon Sozou (1998)’s relate of hazard rate
and discount functions and shows that this holds for generalized Q-values in reinforcement learning.
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3 COMPUTING NON-EXPONENTIAL Q-VALUES

We now show how one can re-purpose exponentially-discounted Q-values to compute hyperbolic
(and other-non-exponential) discounted Q-values. The central challenge with using non-exponential
discount strategies is that most RL algorithms use some form of TD learning (Sutton, 1988). This
family of algorithms exploits the Bellman equation (Bellman, 1958) which, when using exponential
discounting, relates the value function at one state with the value at the following state.

Qγ
t

π (s, a) = Eπ,P [R(s, a) + γQπ(s′, a′)] (3)

where expectation Eπ,P denotes sampling a ∼ π(·|s), s′ ∼ P (·|s, a), and a′ ∼ π(·|s′). Being able
to reuse TD methods without being constrained to exponential discounting is thus an important
challenge. We propose here a scheme to deduce hyperbolic as well as other non-exponentially
discounted Q-values when our discount function has a particular form.

Lemma 3.1. Let QH,γπ (s, a) be the state action value function under exponential discounting in a
hazardous MDP < S,A, R, P,H, γt > and let QH,dπ (s, a) refer to the value function in the same
MDP except for new discounting < S,A, R, P,H, d >. If there exists a function w : [0, 1]→ R such
that

d(t) =

∫ 1

0

w(γ)γtdγ (4)

which we will refer to as the exponential weighting condition, then

QH,dπ (s, a) =

∫ 1

0

w(γ)QH,γπ (s, a)dγ (5)

Proof. Applying the condition on d,

QH,dπ (s, a) = EλEπ,Pλ

[ ∞∑
t=0

(∫ 1

0

w(γ)γtdγ

)
R(st, at)|s0 = s, a0 = a

]
(6)

=

∫ 1

0

EλEπ,Pλw(γ)

[ ∞∑
t=0

γtR(st, at)|s0 = s, a0 = a

]
dγ (7)

=

∫ 1

0

w(γ)QH,γπ (s, a)dγ (8)

The exchange in the above proof is valid if
∑∞
t=0 γ

tR(st, at) < ∞. The exponential weighting
condition is satisfied for hyperbolic discounting and other discounting that we might want to consider
(see Appendix F for examples). As an example, the hyperbolic discount can be expressed as the
integral of a function f(γ, t) for γ = [0, 1) in Equation 9.

1

k

∫ 1

γ=0

γ1/k+t−1dγ =
1

1 + kt
(9)

This equationn tells us an integral over a function f(γ, t) = 1
kγ

1/k+t−1 = w(γ)γt yields the desired
hyperbolic discount factor Γk(t) = 1

1+kt . This integral can be derived by Sozou’s Laplace transform
of the hazard rate priorH = p(λ) in Equation 18 and then applying our change of variables γ = e−λ

relating RL discount factors to hazard rates. The computation of hyperbolic and other discount
functions is demonstrated in detail in Appendix F.

This prescription gives us a tool to produce general forms of non-exponentially discounted Q-values
using our familiar exponentially discounted Q-values traditionally learned in RL (Sutton, 1988;
Sutton & Barto, 1998).
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4 APPROXIMATING HYPERBOLIC Q-VALUES

Section 3 describes an equivalence between hyperbolically-discounted Q-values and integrals of
exponentially-discounted Q-values, however, the method required evaluating an infinite set of value
functions. We therefore present a practical approach to approximate discounting Γ(t) = 1

1+kt using a
finite set of functions learned via standard Q-learning (Watkins & Dayan, 1992). To avoid estimating
an infinite number of Qγπ-values we introduce a free hyperparameter (nγ) which is the total number
of Qγπ-values to consider, each with their own γ. We use a practically-minded approach to choose G
that emphasizes evaluating larger values of γ rather than uniformly choosing points and empirically
performs well as seen in Section 5.

G = [γ0, γ1, · · · , γnγ ] (10)

Our approach is described in Appendix G. EachQγiπ computes the discounted sum of returns according
to that specific discount factor Qγiπ (s, a) = Eπ [

∑
t(γi)

trt|s0 = s, a0 = a]. We previously proposed
two equivalent approaches for computing hyperbolic Q-values, but for simplicity we consider the one
presented in Lemma 3.1. The set of Q-values permits us to estimate the integral through a Riemann
sum (Equation 11) which is described in further detail in Appendix I.

QΓ
π(s, a) =

∫ 1

0

w(γ)Qγπ(s, a)dγ (11)

≈
∑
γi∈G

(γi+1 − γi) w(γi) Q
γi
π (s, a) (12)

where we estimate the integral through a lower bound. We consolidate this entire process in Figure 11
where we show the full process of rewriting the hyperbolic discount rate, hyperbolically-discounted
Q-value, the approximation and the instantiated agent. This approach is similar to that of Kurth-
Nelson & Redish (2009) where each µAgent models a specific discount factor γ. However, this
differs in that our final agent computes a weighted average over each Q-value rather than a sampling
operation of each agent based on a γ-distribution.

5 HYPERBOLIC RESULTS

5.1 WHEN TO DISCOUNT HYPERBOLICALLY?

The benefits of hyperbolic discounting will be greatest under two conditions: uncertain hazard and
non-trivial intertemporal decisions. The first condition can arise under a unobserved hazard-rate
variable λ drawn independently at the beginning of each episode from H = p(λ). The second
condition emerges with a choice between a smaller nearby rewards versus larger distant rewards.2
In the absence of both properties we would not expect any advantage to discounting hyperbolically.
To see why, if there is a single-true hazard rate λenv, than an optimal γ∗ = e−λenv exists and future
rewards should be discounted exponentially according to it. Further, if there is a single path through
the environment with perfect alignment of short- and long-term objectives, all discounting schemes
yield the same optimal policy.

5.2 PATHWORLD EXPERIMENTS

We note two sources for discounting rewards in the future: time delay and survival probability (Section
2). In Pathworld we train to maximize hyperbolically discounted returns (

∑
t Γk(t)R(st, at)) under

no hazard (H = δ(λ− 0)) but then evaluate the undiscounted returns d(t) = 1.0 ∀ t with the paths
subject to hazardH = 1

k exp(−λ/k).

Through this procedure, we are able to train an agent that is robust to hazards in the environment.
The agent makes one decision in Pathworld (Figure 2): which of the N paths to investigate. Once
a path is chosen, the agent continues until it reaches the end or until it dies. This is similar to a
multi-armed bandit, with each action subject to dynamic risk. The paths vary quadratically in length
with the index d(i) = i2 but the rewards increase linearly with the path index r(i) = i. This presents

2A trivial intertemporal decision is one between small distant rewards versus large close rewards. For
example, the choice between $100 now versus $10 tomorrow.
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r = 1, d = 1

 

r = 2, d = 4

 

r = 3, d = 9

 

r = 4, d = 16

 

r = a, d = a
2

Figure 2: The Pathworld. Each state (white circle) indicates the accompanying reward r and the
distance from the starting state d. From the start state, the agent makes a single action: which which
path to follow to the end. Longer paths have a larger rewards at the end, but the agent incurs a higher
risk on a longer path.

a non-trivial decision for the agent. At deployment, an unobserved hazard λ ∼ H is drawn and the
agent is subject to a per-time-step risk of dying of (1 − e−λ). This environment differs from the
adjusting-delay procedure presented by Mazur (1987) and then later modified by Kurth-Nelson &
Redish (2009). Rather then determining time-preferences through variable-timing of rewards, we
determine time-preferences through risk to the reward.
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Figure 3: In each episode of Pathworld an unobserved
hazard λ ∼ p(λ) is drawn and the agent is subject to
a total risk of the reward not being realized of (1 −
e−λ)d(a) where d(a) is the path length. When the agent’s
hazard prior matches the true hazard distribution, the
value estimate agrees well with the theoretical value.
Exponentially discounted values fail to approximate the
true value (Table 1).

Discount function MSE
hyperbolic value 0.002

γ=0.975 0.566
γ=0.95 1.461
γ=0.9 2.253
γ=0.99 2.288
γ=0.75 2.809

Table 1: The average mean
squared error (MSE) over each
of the paths in Figure 3 showing
that our approximation scheme
well-approximates the true value-
profile.

Figure 3 validates that our approach well-approximates the true hyperbolic value of each path when
the hazard prior matches the true distribution. Agents that discount exponentially according to a
single γ (the typical case in RL) incorrectly value the paths. We examine further the failure of
exponential discounting in this hazardous setting. For this environment, the true hazard parameter
in the prior was k = 0.05 (i.e. λ ∼ 20exp(−λ/0.05)). Therefore, at deployment, the agent must
deal with dynamic levels of risk and faces a non-trivial decision of which path to follow. Even if
we tune an agent’s γ = 0.975 such that it chooses the correct arg-max path, it still fails to capture
the functional form (Figure 3) and it achieves a high error over all paths (Table 1). If the arg-max
action was not available or if the agent was proposed to evaluate non-trivial intertemporal decisions,
it would act sub-optimally. In Appendix B we consider additional experiments where the agent’s
prior over hazard more realistically does not exactly match the environment true hazard rate and
demonstrate the benefit of appropriate priors.
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5.3 ATARI 2600 EXPERIMENTS

With our approach validated in Pathworld, we now move to the high-dimensional environment of
Atari 2600, specifically, ALE. We use the Rainbow variant from Dopamine (Castro et al., 2018)
which implements three of the six considered improvements from the original paper: distributional
RL, predicting n-step returns and prioritized replay buffers. The agent (Figure 4) maintains a shared
representation h(s) of state, but computes Q-value logits for each of the N γi via Q(i)

π (s, a) =
Wih(s) + bi where Wi and bi are the learnable parameters of the affine transformation for that head.
A ReLU-nonlinearity is used within the body of the network (Nair & Hinton, 2010).

conv. 8 x 8, stride 4 

conv. 4 x 4, stride 2 

conv. 3 x 3, stride 1 

FC 512 

ReLU 

Our model predicts
over multiple
horizons. 

 

 

< ⋯ <γ0 γ1 γN

ReLU 

ReLU 

Shared convolutional
body creates a
common

representation.

(s,a)Q
γ
0

π (s,a)Q
γ
1

π (s,a)Q
γ

N

π

...

Model feeds same
state as before. 

FC FC FC 

ReLU 

Figure 4: Multi-horizon model predictsQ-values for nγ separate discount functions thereby modeling
different effective horizons. Each Q-value is a lightweight computation, an affine transformation
off a shared representation. By modeling over multiple time-horizons, we now have the option to
construct policies that act according to a particular value or a weighted combination.

Hyperparameter details are provided in Appendix K and when applicable, they default to the standard
Dopamine values. We find strong performance improvements of the hyperbolic agent built on
Rainbow (Hyper-Rainbow; blue bars) on a random subset of Atari 2600 games in Figure 5.

6 MULTI-HORIZON AUXILIARY TASK RESULTS

To dissect the Hyper-Rainbow improvements, recognize that two properties from the base Rainbow
agent have changed:

1. Behavior policy, µ. The agent acts according to hyperbolic Q-values computed by our
approximation described in Section 4

2. Learn over multiple horizons. The agent simultaneously learns Q-values over many γ
rather than a Q-value for a single γ

On this subset of 19 games, Hyper-Rainbow improves upon 14 games and in some cases, by
large margins. But we seek here a more complete understanding of the underlying driver of this
improvement in ALE through an ablation study.

The second modification can be regarded as introducing an auxiliary task (Jaderberg et al., 2016).
Therefore, to attribute the performance of each properly we construct a Rainbow agent augmented
with the multi-horizon auxiliary task (referred to as Multi-Rainbow and shown in orange) but have it
still act according to the original policy. That is, Multi-Rainbow acts to maximize expected rewards
discounted by a fixed γaction but now learns over multiple horizons as shown in Figure 4.
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Figure 5: We compare the Hyper-Rainbow (in blue) agent versus the Multi-Rainbow (orange) agent
on a random subset of 19 games from ALE (3 seeds each). For each game, the percentage performance
improvement for each algorithm against Rainbow is recorded. There is no significant difference
whether the agent acts according to hyperbolically-discounted (Hyper-Rainbow) or exponentially-
discounted (Multi-Rainbow) Q-values suggesting the performance improvement in ALE emerges
from the multi-horizon auxiliary task.

We find that the Multi-Rainbow agent performs nearly as well on these games, suggesting the
effectiveness of this as a stand-alone auxiliary task. This is not entirely unexpected given the rather
special-case of hazard exhibited in ALE through sticky-actions (Machado et al., 2018).

We examine further and investigate the performance of this auxiliary task across the full Arcade
Learning Environment (Bellemare et al., 2017) using the recommended evaluation by (Machado
et al., 2018). Doing so we find strong empirical benefits of the multi-horizon auxiliary task over the
state-of-the-art Rainbow agent as shown in Figure 6.
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Auxiliary Task Improvement for Rainbow Agent

Figure 6: Performance improvement over Rainbow using the multi-horizon auxiliary task in Atari
Learning Environment (3 seeds each).

6.1 ANALYSIS AND ABLATION STUDIES

To understand the interplay of the multi-horizon auxiliary task with other improvements in deep
RL, we test a random subset of 10 Atari 2600 games against improvements in Rainbow (Hessel
et al., 2018). On this set of games we measure a consistent improvement with multi-horizon C51
(Multi-C51) in 9 out of the 10 games over the base C51 agent (Bellemare et al., 2017) in Figure 7.

Figure 7 indicates that the current implementation of Multi-Rainbow does not generally build
successfully on the prioritized replay buffer. On the subset of ten games considered, we find that
four out of ten games (Pong, Venture, Gravitar and Zaxxon) are negatively impacted despite (Hessel
et al., 2018) finding it to be of considerable benefit and specifically beneficial in three out of these
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(b) Multi-C51 + n-step
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Figure 7: Measuring the Rainbow improvements on top of the Multi-C51 baseline on a subset of 10
games in the Arcade Learning Environment (3 seeds each). On this subset, we find that the multi-
horizon auxiliary task interfaces well with n-step methods (top right) but poorly with a prioritized
replay buffer (bottom left).

four games (Venture was not considered). The current prioritization scheme simply averaged the
temporal-difference errors over all Q-values to establish priority. Alternative prioritization schemes
are resulted in comparable performance indicating this is an open issue (Appendix J).

7 RELATED WORK

Hyperbolic discounting in economics. Hyperbolic discounting is well-studied in the field of eco-
nomics (Sozou, 1998; Dasgupta & Maskin, 2005). Dasgupta and Maskin (2005) proposes a softer
interpretation than Sozou (1998) (which produces a per-time-step of death via the hazard rate) and
demonstrates that uncertainty over the timing of rewards can also give rise to hyperbolic discount-
ing and preference reversals, a hallmark of hyperbolic discounting. Hyperbolic discounting was
initially presumed to not lend itself to TD-based solutions (Daw & Touretzky, 2000) but the field
has evolved on this point. Maia (2009) proposes solution directions that find models that discount
quasi-hyperbolically even though each learns with exponential discounting (Loewenstein, 1996) but
reaffirms the difficulty. Finally, Alexander and Brown (2010) proposes hyperbolically discounted
temporal difference (HDTD) learning by making connections to hazard.

Behavior RL and hyperbolic discounting in neuroscience. TD-learning has long been used for
modeling behavioral reinforcement learning (Montague et al., 1996; Schultz et al., 1997; Sutton &
Barto, 1998). TD-learning computes the error as the difference between the expected value and actual
value (Sutton & Barto, 1998; Daw, 2003) where the error signal emerges from unexpected rewards.
However, these computations traditionally rely on exponential discounting as part of the estimate
of the value which disagrees with empirical evidence in humans and animals (Strotz, 1955; Mazur,
1985; 1997; Ainslie, 1975; 1992). Hyperbolic discounting has been proposed as an alternative to
exponential discounting though it has been debated as an accurate model (Kacelnik, 1997; Frederick
et al., 2002). Naive modifications to TD-learning to discount hyperbolically present issues since the
simple forms are inconsistent (Daw & Touretzky, 2000; Redish & Kurth-Nelson, 2010) RL models
have been proposed to explain behavioral effects of humans and animals (Fu & Anderson, 2006;
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Rangel et al., 2008) but Kurth-Nelson & Redish (2009) demonstrated that distributed exponential
discount factors can directly model hyperbolic discounting. This work proposes the µAgent, an agent
that models the value function with a specific discount factor γ. When the distributed set of µAgent’s
votes on the action, this was shown to approximate hyperbolic discounting well in the adjusting-delay
assay experiments (Mazur, 1987). Using the hazard formulation established in Sozou (1998), we
demonstrate how to extend this to other non-hyperbolic discount functions and demonstrate the
efficacy of using a deep neural network to model the different Q-values from a shared representation.

Towards more flexible discounting in reinforcement learning. RL researchers have recently
adopted more flexible versions beyond a fixed discount factor (Feinberg & Shwartz, 1994; Sutton,
1995; Sutton et al., 2011; White, 2017). Optimal policies are studied in Feinberg & Shwartz (1994)
where two value functions with different discount factors are used. Introducing the discount factor as
an argument to be queried for a set of timescales is considered in both Horde (Sutton et al., 2011)
and γ-nets (Sherstan et al., 2018). Reinke et al. (2017) proposes the Average Reward Independent
Gamma Ensemble framework which imitates the average return estimator. Lattimore and Hutter
(2011) generalizes the original discounting model through discount functions that vary with the age of
the agent, expressing time-inconsistent preferences as in hyperbolic discounting. The need to increase
training stability via effective horizon was addressed in François-Lavet, Fonteneau, and Ernst (2015)
who proposed dynamic strategies for the discount factor γ. Meta-learning approaches to deal with
the discount factor have been proposed in Xu, van Hasselt, and Silver (2018). Finally, Pitis (2019)
characterizes rational decision making in sequential processes, formalizing a process that admits a
state-action dependent discount rates. Operating over multiple time scales has a long history in RL.
Sutton (1995) generalizes the work of Singh (1992) and Dayan and Hinton (1993) to formalize a
multi-time scale TD learning model theory. Previous work has been explored on solving MDPs with
multiple reward functions and multiple discount factors though these relied on separate transition
models (Feinberg & Shwartz, 1999; Dolgov & Durfee, 2005). Edwards, Littman, and Isbell (2015)
considers decomposing a reward function into separate components each with its own discount factor.
In our work, we continue to model the same rewards, but now model the value over different horizons.
Recent work in difficult exploration games demonstrates the efficacy of two different discount factors
(Burda et al., 2018) one for intrinsic rewards and one for extrinsic rewards. Finally, and concurrent
with this work, Romoff et al. (2019) proposes the TD(∆)-algorithm which breaks a value function
into a series of value functions with smaller discount factors.

Auxiliary tasks in reinforcement learning. Finally, auxiliary tasks have been successfully employed
and found to be of considerable benefit in RL. Suddarth and Kergosien (1990) used auxiliary tasks
to facilitate representation learning. Building upon this, work in RL has consistently demonstrated
benefits of auxiliary tasks to augment the low-information coming from the environment through
extrinsic rewards (Lample & Chaplot, 2017; Mirowski et al., 2016; Jaderberg et al., 2016; Veeriah
et al., 2018; Sutton et al., 2011)

8 DISCUSSION AND FUTURE WORK

This work builds on a body of work that questions one of the basic premises of RL: one should
maximize the exponentially discounted returns via a single discount factor. By learning over multiple
horizons simultaneously, we have broadened the scope of our learning algorithms. Through this
we have shown that we can enable acting according to new discounting schemes and that learning
multiple horizons is a powerful stand-alone auxiliary task. Our method well-approximates hyperbolic
discounting and performs better in hazardous MDP distributions. This may be viewed as part of an
algorithmic toolkit to model alternative discount functions.

However, this work still does not fully capture more general aspects of risk since the hazard rate
may be a function of time. Further, hazard may not be an intrinsic property of the environment
but a joint property of both the policy and the environment. If an agent purses a policy leading
to dangerous state distributions then it will naturally be subject to higher hazards and vice-versa -
this creates a complicated circular dependency. We would therefore expect an interplay between
time-preferences and policy. This is not simple to deal with but recent work proposing state-action
dependent discounting (Pitis, 2019) may provide a formalism for more general time-preference
schemes.
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A SOZOU (1998): BELIEF OF RISK IMPLIES A DISCOUNT FUNCTION

Sozou (1998) formalizes time preferences in which future rewards are discounted based on the
probability that the agent will not survive to collect them due to an encountered risk or hazard.
Definition A.1. Survival s(t) is the probability of the agent surviving until time t.

s(t) = P (agent is alive|at time t) (13)

A future reward rt is less valuable presently if the agent is unlikely to survive to collect it. If the
agent is risk-neutral, the present value of a future reward rt received at time-t should be discounted
by the probability that the agent will survive until time t to collect it, s(t).3

v(rt) = s(t)rt (14)

Consequently, if the agent is certain to survive, s(t) = 1, then the reward is not discounted per
Equation 14. From this it is then convenient to define the hazard rate.
Definition A.2. Hazard rate h(t) is the negative rate of change of the log-survival at time t

h(t) = − d

dt
lns(t) (15)

or equivalently expressed as h(t) = −ds(t)dt
1
s(t) . Therefore the environment is considered hazardous

at time t if the log survival is decreasing sharply.

Sozou (1998) demonstrates that the prior belief of the risk in the environment implies a specific
discounting function. When the risk occurs at a known constant rate than the agent should discount
future rewards exponentially. However, when the agent holds uncertainty over the hazard rate then
hyperbolic and alternative discounting rates arise.

A.1 KNOWN HAZARD IMPLIES EXPONENTIAL DISCOUNT

We recover the familiar exponential discount function in RL based on a prior assumption that the
environment has a known constant hazard. Consider a known hazard rate of h(t) = λ ≥ 0. Definition
A.2 sets a first order differential equation λ = − d

dt lns(t) = −ds(t)dt
1
s(t) . The solution for the survival

rate is s(t) = e−λt which can be related to the RL discount factor γ

s(t) = e−λt = γt (16)

This interprets γ as the per-time-step probability of the episode continuing. This also allows us to
connect the hazard rate λ ∈ [0,∞] to the discount factor γ ∈ [0, 1).

γ = e−λ (17)

As the hazard increases λ → ∞, then the corresponding discount factor becomes increasingly
myopic γ → 0. Conversely, as the environment hazard vanishes, λ → 0, the corresponding agent
becomes increasingly far-sighted γ → 1. In RL we commonly choose a single γ which is consistent
with the prior belief that there exists a known constant hazard rate λ = −ln(γ). We now relax the
assumption that the agent holds this strong prior that it exactly knows the true hazard rate. From a
Bayesian perspective, a looser prior allows for some uncertainty in the underlying hazard rate of the
environment which we will see in the following section.

A.2 UNCERTAIN HAZARD IMPLIES NON-EXPONENTIAL DISCOUNT

We may not always be so confident of the true risk in the environment and instead reflect this
underlying uncertainty in the hazard rate through a hazard prior p(λ). Our survival rate is then
computed by weighting specific exponential survival rates defined by a given λ over our prior p(λ)

s(t) =

∫ ∞
λ=0

p(λ)e−λtdλ (18)

3Note the difference in RL where future rewards are discounted by time-delay so the value is v(rt) = γtrt.
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Sozou (1998) shows that under an exponential prior of hazard p(λ) = 1
k exp(−λ/k) the expected

survival rate for the agent is hyperbolic

s(t) =
1

1 + kt
≡ Γk(t) (19)

We denote the hyperbolic discount by Γk(t) to make the connection to γ in reinforcement learning
explicit. Further, Sozou (1998) shows that different priors over hazard correspond to different discount
functions. We reproduce two figures in Figure 8 showing the correspondence between different
hazard rate priors and the resultant discount functions. The common approach in RL is to maintain a
delta-hazard (black line) which leads to exponential discounting of future rewards. Different priors
lead to non-exponential discount functions.
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Figure 8: We reproduce two figures from Sozou (1998). There is a correspondence between
hazard rate priors and the resulting discount function. In RL, we typically discount future rewards
exponentially which is consistent with a Dirac delta prior (black line) on the hazard rate indicating no
uncertainty of hazard rate. However, this is a special case and priors with uncertainty over the hazard
rate imply new discount functions. All priors have the same mean hazard rate E[p(λ)] = 1.

B ADDITIONAL PATHWORLD EXPERIMENTS

In Figure 9 we consider the case that the agent still holds an exponential prior but has the wrong
coefficient k and in Figure 10 we consider the case where the agent still holds an exponential prior
but the true hazard is actually drawn from a uniform distribution with the same mean.

Through these two validating experiments, we demonstrate the robustness of estimating hyperbolic
discounted Q-values in the case when the environment presents dynamic levels of risk and the agent
faces non-trivial decisions. Hyperbolic discounting is preferable to exponential discounting even
when the agent’s prior does not precisely match the true environment hazard rate distribution, by
coefficient (Figure 9) or by functional form (Figure 10).
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ard coefficient is k = 0.05, but we compute values
for hyperbolic agents with mismatched priors in range
k = [0.025, 0.05, 0.1, 0.2]. Predictably, the mismatched
priors result in a higher prediction error of value but
performs more reliably than exponential discounting, re-
sulting in a cumulative lower error. Numerical results in
Table 2.

Discount function MSE
k=0.05 0.002
k=0.1 0.493

k=0.025 0.814
k=0.2 1.281

Table 2: The average mean
squared error (MSE) over each of
the paths in Figure 9. As the prior
is further away from the true value
of k = 0.05, the error increases.
However, notice that the errors for
large factor-of-2 changes in k re-
sult in generally lower errors than
if the agent had considered only a
single exponential discount factor
γ as in Table 1.
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hyperbolic value

gamma=0.95

gamma=0.975

gamma=0.99

Figure 10: If the true hazard rate is now drawn according
to a uniform distribution (with the same mean as before)
the original hyperbolic discount matches the functional
form better than exponential discounting. Numerical
results in Table 3.

Discount function MSE
hyperbolic value 0.235
γ = 0.975 0.266
γ = 0.95 0.470
γ = 0.99 4.029

Table 3: The average mean
squared error (MSE) over each
of the paths in Figure 10 when
the underlying hazard is drawn ac-
cording to a uniform distribution.
We find that hyperbolic discount-
ing results is more robust to haz-
ards drawn from a uniform distri-
bution than exponential discount-
ing.
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C ALTERNATIVE APPROACH TO HYPERBOLIC Q-VALUES

C.1 COMPUTING HYPERBOLIC Q-VALUES

Let’s start with the case where we would like to estimate the value function where rewards are
discounted hyperbolically instead of the common exponential scheme. We refer to the hyperbolic
Q-values as QΓ

π below in Equation 21

QΓk
π (s, a) =Eπ

[
Γk(1)R(s1, a1) + Γk(2)R(s2, a2) + · · ·

∣∣∣∣s, a] (20)

=Eπ

[∑
t

Γk(t)R(st, at)

∣∣∣∣s, a
]

(21)

We may relate the hyperbolic QΓ
π-value to the values learned through standard Q-learning. To do so,

notice that the hyperbolic discount Γt can be expressed as the integral of a certain function f(γ, t)
for γ = [0, 1) in Equation 22. ∫ 1

γ=0

γktdγ =
1

1 + kt
= Γk(t) (22)

The integral over this specific function f(γ, t) = γkt yields the desired hyperbolic discount factor
Γk(t) by considering an infinite set of exponential discount factors γ over its domain γ ∈ [0, 1).

Recognize that the integrand γkt is the standard exponential discount factor which suggests a
connection to standard Q-learning (Watkins & Dayan, 1992). This suggests that if we could consider
an infinite set of γ then we can combine them to yield hyperbolic discounts for the corresponding
time-step t. We build on this idea of modeling many γ throughout this work.

We employ Equation 22 and return to the task of computing hyperbolic Q-values QΓ
π(s, a)4

QΓ
π(s, a) =Eπ

[∑
t

Γk(t)R(st, at)

∣∣∣∣s, a
]

(23)

=Eπ

[∑
t

(∫ 1

γ=0

γktdγ

)
R(st, at)

∣∣∣∣s, a
]

(24)

=

∫ 1

γ=0

Eπ

[∑
t

R(st, at)(γ
k)t
∣∣∣∣s, a

]
dγ (25)

=

∫ 1

γ=0

Q(γk)t

π (s, a)dγ (26)

where Γk(t) has been replaced on the first line by
(∫ 1

γ=0
γktdγ

)
and the exchange is valid if∑∞

t=0 γ
ktrt < ∞. This shows us that we can compute the QΓ

π-value according to hyperbolic
discount factor by considering an infinite set of Qγ

k

π -values computed through standard Q-learning.
Examining further, each γ ∈ [0, 1) results in TD-errors learned for a new γk. For values of k < 1,
which extends the horizon of the hyperbolic discounting, this would result in larger γ.

4Hyperbolic Q-values can generally be infinite for bounded rewards. We consider non-infinite episodic
MDPs only.
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D VISUAL SUMMARY OF APPROACH

We summarize our approach for estimating non-exponential discounted Q-values here.

4. Where a   is simultaneously learned for each
exponential discount rate 

Learning simultaneous exponential Q­values are
effective auxiliary tasks. 

(s, a)Q
γ

i

π

∈ γi

(s, a)Q
γ0
π (s, a)Q

γ1
π

(s, a)Q
γN
π

s

 
2.  Hyperbolically­discounted Q­values can be expressed
as a weighting over exponentially­discounted Q­values

using the same weights  : 
 

 

w(γ)

(s, a) = w(γ) (s, a) dγQΓ
π ∫

1

γ=0

Q
γ

π

1.  A hyperbolic discount function 

can be expressed as a weighting over exponential
discount functions   

with weights     (see Table 1). 

Γ(t) =
1

1 + kt

γ
t

Γ(t) = w(γ) dγ∫
1

γ=0

γ
t

w(γ) = 1

k
γ
1/k−1

3. The integral in box 2 can be approximated  
with a Riemann sum over the discrete intervals: 

 = [ , ⋯ ]γ0 γ1 γN

(s, a) ≈ ( − ) w( ) (s, a)QΓ
π ∑

∈γ
i

γi+1 γi γi Q
γ

i

π

⋯

 

Figure 11: Summary of our approach to approximating hyperbolic (and other non-exponential)
Q-values via a weighted sum of exponentially-discounted Q-vaulues.
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E EQUIVALENCE OF HYPERBOLIC DISCOUNTING AND EXPONENTIAL
HAZARD

Following Section A we also show a similar equivalence between hyperbolic discounting and the
specific hazard distribution pk(λ) = 1

k exp(−λ/k), where again, λ ∈ [0,∞)

Qδ(0),Γk
π (s, a) = Eπ,P0

[ ∞∑
t=0

Γk(t)R(st, at)|s0 = s, a0 = a

]

= Eπ,P0

[ ∞∑
t=0

(∫ ∞
λ=0

pk(λ)e−λtdλ

)
R(st, at)|s0 = s, a0 = a

]

=

∫ ∞
λ=0

pk(λ)Eπ,P0

[ ∞∑
t=0

e−λtR(st, at)|s0 = s, a0 = a

]
dλ

= Eλ∼pk(·)Eπ,P0

[ ∞∑
t=0

e−λtR(st, at)|s0 = s, a0 = a

]

= Eλ∼pk(·)Eπ,Pλ

[ ∞∑
t=0

R(st, at)|s0 = s, a0 = a

]
= Qpk,1π (s, a)

Where the first step uses Equation 19. This equivalence implies that discount factors can be used to
learn policies that are robust to hazards.

F ALTERNATIVE DISCOUNT FUNCTIONS

We expand upon three special cases to see how functions f(γ, t) = w(γ)γt may be related to different
discount functions d(t).

We summarize in Table 4 how a particular hazard prior p(λ) can be computed via integrating over
specific weightings w(γ) and the corresponding discount function.

H = p(λ) d(t) w(γ)

Dirac Delta Prior δ(λ− k) e−kt(= (γk)t) 1
γ δ(− ln γ − k)

Exponential Prior 1
ke
−λ/k 1

1+kt
1
kγ

1/k−1

Uniform Prior
{

1
k , if λ ∈ [0, k]

0, otherwise
1
kt

(
1− e−kt

) {
1
kγ
−1, if γ ∈ [e−k, 1]

0, otherwise

Table 4: Different hazard priors H = p(λ) can be alternatively expressed through weighting ex-
ponential discount functions γt by w(γ). This table matches different hazard distributions to their
associated discounting function and the weighting function per Lemma 3.1. The typical case in RL
is a Dirac Delta Prior over hazard rate δ(λ− k). We only show this in detail for completeness; one
would not follow such a convoluted path to arrive back at an exponential discount but this approach
holds for richer priors. The derivations can be found in the Appendix F.

Three cases:
1. Delta hazard prior: p(λ) = δ(λ− k)

2. Exponential hazard prior: p(λ) = 1
ke
−λ/k

3. Uniform hazard prior: p(λ) = 1
k for λ ∈ [0, k]
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For the three cases we begin with the Laplace transform on the prior p(λ) =
∫∞
λ=0

p(λ)e−λtdλ and
then chnage the variables according to the relation between γ = e−λ, Equation 17.

F.1 DELTA HAZARD PRIOR

A delta prior p(λ) = δ(λ− k) on the hazard rate is consistent with exponential discounting.∫ ∞
λ=0

p(λ)e−λtdλ =

∫ ∞
λ=0

δ(λ− k)e−λtdλ

= e−kt

where δ(λ− k) is a Dirac delta function defined over variable λ with value k. The change of variable
γ = e−λ (equivalently λ = − ln γ) yields differentials dλ = − 1

γ dγ and the limits λ = 0→ γ = 1

and λ =∞→ γ = 0. Additionally, the hazard rate value λ = k is equivalent to the γ = e−k.

d(t) =

∫ ∞
λ=0

p(λ)e−λtdλ

=

∫ 0

γ=1

δ(− ln γ − k)γt
(
− 1

γ
dγ

)
=

∫ 1

γ=0

δ(− ln γ − k)γt−1dγ

= e−kt

= γtk

where we define a γk = e−k to make the connection to standard RL discounting explicit. Additionally
and reiterating, the use of a single discount factor, in this case γk, is equivalent to the prior that a
single hazard exists in the environment.

F.2 EXPONENTIAL HAZARD PRIOR

Again, the change of variable γ = e−λ yields differentials dλ = − 1
γ dγ and the limits λ = 0→ γ = 1

and λ =∞→ γ = 0. ∫ ∞
λ=0

p(λ)e−λtdλ =

∫ 0

γ=1

p(−lnγ)γt
(
− 1

γ
dγ

)
=

∫ 1

γ=0

p(−lnγ)γt−1dγ

where p(·) is the prior. With the exponential prior p(λ) = 1
k exp(−λ/k) and by substituting λ = −lnγ

we verify Equation 9

∫ 1

0

1

k
exp(ln γ/k)γt−1dγ =

1

k

∫ 1

0

exp(lnγ1/k)γt−1dγ

=
1

k

∫ 1

0

γ1/k+t−1dγ

=
1

k

1
1
k + t

γ1/k+t

∣∣∣∣1
γ=0

=
1

1 + kt
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F.3 UNIFORM HAZARD PRIOR

Finally if we hold a uniform prior over hazard, 1
k for λ ∈ [0, k] then Sozou (1998) shows the Laplace

transform yields

d(t) =

∫ ∞
0

p(λ)e−λtdλ

=
1

k

∫ k

0

e−λtdλ

=− 1

kt
e−λt

∣∣∣∣k
λ=0

=
1

kt

(
1− e−kt

)
Use the same change of variables to relate this to γ. The bounds of the integral become λ = 0 →
γ = 1 and λ = k → γ = e−k.

d(t) =− 1

k

∫ e−k

γ=1

γt−1dγ

=
1

kt
γt
∣∣∣∣1
γ=e−k

=
1

kt

(
1− e−kt

)
which recovers the discounting scheme.

G DETERMINING THE γ INTERVAL

We provide further detail for which γ we choose to model and motivation why. We choose a γmax
which is the largest γ to learn through Bellman updates. If we are using k as the hyperbolic coefficient
in Equation 19 and we are approximating the integral with nγ our γmax would be

γmax = (1− bnγ )
k (27)

However, allowing γmax → 1 get arbitrarily close to 1 may result in learning instabilities Bertsekas
(1995). Therefore we compute an exponentiation base of b = exp(ln(1− γ1/k

max )/nγ) which bounds
our γmax at a known stable value. This induces an approximation error which is described more in
Appendix H.

H APPROXIMATION ERRORS

Instead of evaluating the upper bound of Equation 9 at 1 we evaluate at γmax which yields γktmax/(1+kt).
Our approximation induces an error in the approximation of the hyperbolic discount.

This approximation error in the Riemann sum increases as the γmax decreases as evidenced by Figure
12. When the maximum value of γmax → 1 then the approximation becomes more accurate as
supported in Table 5 up to small random errors.

I ESTIMATING HYPERBOLIC COEFFICIENTS

As discussed, we can estimate the hyperbolic discount in two different ways. We illustrate the
resulting estimates here and resulting approximations. We use lower-bound Riemann sums in both
cases for simplicity but more sophisticated integral estimates exist.

As noted earlier, we considered two different integrals for computed the hyperbolic coefficients.
Under the form derived by the Laplace transform, the integrals are sharply peaked as γ → 1. The
difference in integrals is visually apparent comparing in Figure 13.
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Figure 12: By instead evaluating our integral up to γmax rather
than to 1, we induce an approximation error which increases
with t. Numerical results in Table 5.

Discount function MSE
max-γ=0.999 0.002

max-γ=0.9999 0.003
max-γ=0.99 0.233
max-γ=0.95 1.638
max-γ=0.9 2.281

Table 5: The average mean
squared error (MSE) over each of
the paths in Figure 12.
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(a) Our approach.
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(b) Alternative approach.

Figure 13: Comparison of hyperbolic coefficient integral estimation between the two approaches.
(a) We approximate the integral of the function γkt via a lower estimate of rectangles at specific
γ-values. The sum of these rectangles approximates the hyperbolic discounting scheme 1/(1 + kt)
for time t.
(b) Alternative form for approximating hyperbolic coefficients which is sharply peaked as γ → 1
which led to larger errors in estimation under our initial techniques.
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J PERFORMANCE OF DIFFERENT REPLAY BUFFER PRIORITIZATION SCHEME

As found through our ablation study in Figure 7, the Multi-Rainbow auxiliary task interacted poorly
with the prioritized replay buffer when the TD-errors were averaged evenly across all heads. As an
alternative scheme, we considered prioritizing according to the largest γ, which is also the γ defining
the Q-values by which the agent acts.

The (preliminary5) results of this new prioritization scheme is in Figure 14.
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Figure 14: The (preliminary) performance improvement over Rainbow using the multi-horizon
auxiliary task in Atari Learning Environment when we instead prioritize according to the TD-errors
computed from the largest γ (3 seeds each).

To this point, there is evidence that prioritizing according to the TD-errors generated by the largest
gamma is a better strategy than averaging.

5These runs have been computed over approximately 100 out of 200 iterations and will be updated for the
final version.
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K HYPERPARAMETERS

For all our experiments in DQN Mnih et al. (2015), C51 Bellemare et al. (2017) and Rainbow
Hessel et al. (2018), we benchmark against the baselines set by Castro et al. (2018) and we use the
default hyperparameters for each of the respective algorithms. That is, our Multi-agent uses the same
optimization, learning rates, and hyperparameters as it’s base class.

Hyperparameter Value
Runner.sticky_actions Sticky actions prob 0.25
Runner.num_iterations 200
Runner.training_steps 250000

Runner.evaluation_steps 125000
Runner.max_steps_per_episode 27000

WrappedPrioritizedReplayBuffer.replay_capacity 1000000
WrappedPrioritizedReplayBuffer.batch_size 32

RainbowAgent.num_atoms 51
RainbowAgent.vmax 10.

RainbowAgent.update_horizon 3
RainbowAgent.min_replay_history 20000

RainbowAgent.update_period 4
RainbowAgent.target_update_period 8000

RainbowAgent.epsilon_train 0.01
RainbowAgent.epsilon_eval 0.001

RainbowAgent.epsilon_decay_period 250000
RainbowAgent.replay_scheme ’prioritized’
RainbowAgent.tf_device ’/gpu:0’
RainbowAgent.optimizer @tf.train.AdamOptimizer()

tf.train.AdamOptimizer.learning_rate 0.0000625
tf.train.AdamOptimizer.epsilon 0.00015

HyperRainbowAgent.number_of_gamma 10
HyperRainbowAgent.gamma_max 0.99

HyperRainbowAgent.hyp_exponent 0.01
HyperRainbowAgent.acting_policy ’largest_gamma’

Table 6: Configurations for the Multi-C51 and Multi-Rainbow used with Dopamine Castro et al.
(2018).

L AUXILIARY TASK RESULTS

Final results of the multi-horizon auxiliary task on Rainbow (Multi-Rainbow) in Table 7.
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Game Name DQN C51 Rainbow Multi-Rainbow
AirRaid 8190.3 9191.2 16941.2 12659.5
Alien 2666.0 2611.4 3858.9 3917.2
Amidar 1306.0 1488.2 2805.7 2477.0
Assault 1661.6 2079.0 3815.9 3415.1
Asterix 3772.5 15289.5 19789.2 24385.6

Asteroids 844.7 1241.5 1524.1 1654.5
Atlantis 935784.0 894862.0 890592.0 923276.7
BankHeist 723.5 863.4 1209.0 1132.0
BattleZone 20508.5 28323.2 42911.1 38827.1
BeamRider 6326.4 6070.6 7026.7 7610.9
Berzerk 590.3 538.3 864.0 879.1
Bowling 40.3 49.8 68.8 62.9
Boxing 83.3 83.5 98.8 99.3

Breakout 146.6 254.1 123.9 162.5
Carnival 4967.9 4917.1 5211.8 5072.2
Centipede 3419.9 8068.9 6878.0 6946.6

ChopperCommand 3084.5 6230.4 13415.1 13942.9
CrazyClimber 113992.2 146072.3 151454.9 160161.0
DemonAttack 7229.2 8485.1 19738.0 14780.9
DoubleDunk -4.5 2.7 22.6 21.9

ElevatorAction 2434.3 73416.0 81958.0 85633.3
Enduro 895.0 1652.9 2290.1 2337.5

FishingDerby 12.4 16.6 44.5 45.1
Freeway 26.3 33.8 33.8 33.8

Frostbite 1609.6 4522.8 8988.5 7929.7
Gopher 6685.8 8301.1 11749.6 13664.6

Gravitar 339.1 709.8 1293.0 1638.7
Hero 17548.5 34117.8 47545.4 50141.8

IceHockey -5.0 -3.3 2.6 6.3
Jamesbond 618.3 816.5 1263.8 773.4

JourneyEscape -2604.2 -1759.1 -818.1 -1002.9
Kangaroo 13118.1 9419.7 13794.0 13930.6
Krull 6558.0 7232.3 6292.5 6645.7

KungFuMaster 26161.2 27089.5 30169.6 31635.2
MontezumaRevenge 2.6 1087.5 501.3 800.3

MsPacman 3664.0 3986.2 4254.2 4707.3
NameThisGame 7808.1 12934.0 9658.9 11045.9

Phoenix 5893.4 6577.3 8979.0 23720.3
Pitfall -11.8 -5.3 0.0 0.0
Pong 17.4 19.7 20.3 20.6

Pooyan 3800.8 3771.2 6347.7 4670.0
PrivateEye 2051.8 19868.5 21591.4 888.9

Qbert 11011.4 11616.6 19733.2 20817.4
Riverraid 12502.4 13780.4 21624.2 21421.2
RoadRunner 40903.3 49039.8 56527.4 55613.0
Robotank 62.5 64.7 67.9 67.2
Seaquest 2512.4 38242.7 11791.5 64985.0
Skiing -15314.9 -17996.7 -17792.9 -15603.3
Solaris 2062.7 2788.0 3061.9 3139.9

SpaceInvaders 1976.0 4781.9 4927.9 8802.1
StarGunner 47174.3 35812.4 58630.5 72943.2
Tennis -0.0 22.2 0.0 0.0

TimePilot 3862.5 8562.7 12486.1 14421.7
Tutankham 141.1 253.1 255.6 264.9
UpNDown 10977.6 9844.8 42572.5 50862.3
Venture 88.0 1430.7 1612.4 1639.9

VideoPinball 222710.4 594468.5 651413.1 650701.1
WizardOfWor 3150.8 3633.8 8992.3 9318.9
YarsRevenge 25372.0 12534.2 47183.8 49929.4

Zaxxon 5199.9 7509.8 15906.2 21921.3

Table 7: Multi-Rainbow agent returns versus the DQN, C51 and Rainbow agents of Dopamine Castro
et al. (2018).
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