
[Re] When to Trust Your Model: Model-Based Policy
Optimization

Yuting Liu, Jiahao Xu, and Yiming Pan

Department of Computer Science, Brown University

{yuting_liu, jiahao_xu, yiming_pan}@brown.edu

1 Introduction

Reinforcement learning algorithms generally belong to one of two categories: model-based techniques,
which attempt to overcome the issue of a lack of prior knowledge by enabling the agent to construct a
representation of its environment, and model-free techniques, which learn a direct mapping from states
to actions. Model-free approaches are typically less practical because running a simulation is very time
consuming or expensive, and model-based approaches tend to achieve lower asymptotic performance
due to the error in model approximation. To design an effective model-based algorithm, Janner, M. et
al.1 studies the role of model usage in policy optimization and introduces a practical algorithm called
model-based policy optimization (MBPO), which makes limited use of a predictive model to achieve
pronounced improvements in performance comparing to other model-based approaches.

The authors of the paper1 first formulate and analyze a general implementation for MBPO with
monotonic improvement which uses a predictive model to optimize policy, utilizes the policy to
collect data and trains the model. Previous study shows it is difficult to justify model usage due to
pessimistic bounds on model error and this paper finds a way to modify the pessimistic bounds which
solves the problem. Based on the analysis, the authors develop a simple model-based reinforcement
learning algorithm of using short model-generated rollouts branched from real data to improve model
effectiveness. The Experiments show this algorithm is faster than other state-of-the-art model-based
methods such as STEVE2, and matches the performance of the best model-free methods like SAC3.

In this reproducibility report, we study in detail the MBPO algorithm described in the paper (detailed
in Section 3). Our work mainly focuses on the replication of their algorithm and the re-implementation
of their predictive model but in a PyTorch version (detailed in Section 4). Lastly, we describe our
experiments and provide insightful analysis of our results (detailed in Section 5).

2 Target Questions

In order to assess the reproducibility of the paper and validate its conclusions, the main questions we
will focus on are:

• Can we validate the performance of MBPO on two different benchmarks4 (Hopper and
Walker2d)?

• Compared to different baselines, can MBPO achieve a pronounced better performance than
these model-based and model-free algorithms?

• How the proposed MBPO algorithm can be further improved?

1



3 Methodology

3.1 Overview

This section introduces the details of the paper’s theory and approaches. The main contribution of
the paper is to introduce the MBPO algorithm which resolves the problem that accompanies during
monotonic model-based improvement when the model error εm is high. Specifically, instead of
propagating the predictive model for long trajectories, the authors suggest a method of disentangling
the task horizon and the model propagation horizon5. The method chooses the random states observed
previously during interaction with the environment and propagates short trajectories forward. The
authors propose that this approach would effectively reduce the effect of compounding errors, and
make policy learning substantially faster than most model-based ones while retaining the quality of
the policy. To accomplish this goal, the main implementation is divided into three parts: a ensemble
of probabilistic neural network, a policy optimizer, and the MBPO algorithm. The implementation of
MBPO of the original paper is described in Algorithm 1.

Algorithm 1 Model-Based Policy Optimization with Deep Reinforcement Learning
1: Initialize policy πφ, predictive model pθ, environment dataset Denv , model dataset Dmodel

2: for N epochs do
3: Train model pθ on Denv via maximum likelihood
4: for E steps do
5: Take action in environment according to πφ; add to Denv

6: for M model rollouts do
7: Sample st uniformly from Denv

8: Perform k-step model rollout starting from st using πφ; add to Dmodel

9: for G gradient updates do
10: Update policy parameters on model data: φ← φ− λπ∆̂Jπ(π,Dmodel)

3.2 Predictive Model

The authors use the ensemble of probabilistic neural networks from the PETS6. It is a bootstrap
ensemble of dynamics models. Each member of the ensemble has an output that parametrizes a
Gaussian distribution. To generate a prediction from the ensemble, the authors randomly choose a
model, so that different dynamics models can sample different transitions along a single model rollout.
Predictive models are preferable because they combine the sample efficiency of a model-based
approach with the asymptotic performance of function approximators7.

3.3 Soft Actor-Critic for Policy Optimization

The authors choose Haarnoja’s soft-actor critic algorithm (SAC), which is an off-policy model free
deep RL algorithm, as the policy optimization algorithm. The most critical feature of this algorithm
is entropy regularization, which is used to maximize expected reward while also maximize entropy.
SAC concurrently learns a policy πθ, two Q-functions Qφ1, Qφ2 and a value function Vψ . It considers
the entropy augmented objective:

J(π) = Eπ

[∑
t

r(st, at)− αlog(π(at|st))

]
Since the objective function consists of both a reward term and an entropy term, SAC encourages
the policy network to explore and not assign a very high probability to any one of the actions.
It controls the trade-off between exploration and exploitation by using a temperature parameter
to determine the relative importance of the entropy term against the reward. SAC provides us a
substantial improvement in exploration and robustness as maximum entropy policies could improve
exploration by exploring diverse behaviors and reduces estimation errors8. Furthermore, as SAC is
an off-policy method, it can reuse data collected for another task and will not suffer from poor sample
complexity. Generally, the idea is that learned models may be incorporated into model-free methods
for improvements in data efficiency.

2



3.4 Model-Based Policy Optimization

The authors state a way of optimization which interpolates model-based and model-free updates. It
chooses to rely less on the model and instead more on real data collected from the true dynamics
when the model is inaccurate. To achieve that, performing rollout is a desirable approach. In order to
allow for dynamic adjustment between model-based and model-free rollouts, the authors introduce
the notion of a branched rollout, in which they begin a rollout from a state under the previous state
distribution of the real environment dataset and run k steps according to π under the predictive
model pθ. Under the k-branched rollout method, using model error under the updated policy εm′ , the
equation of rollouts can be bounded into the following equation:

η[π] ≥ ηbranch[π]− 2rmax[
γk+1επ
(1− γ)2

+
γkεπ

(1− γ)
+

k

1− γ
(εm′)]

The bound above motivates the authors’ MBPO algorithm, which makes limited use of truncated, but
nonzero-length, model rollouts.

Figure 1: Diagram of Algorithm Pseudocode.

Figure 1 above is the diagram of the paper’s algorithm. For each epoch, the authors train the predictive
model from the samples of environment dataset Denv , and during each step in the epoch, they suggest
to interact with the environments with the current policy from SAC, and add the state-action pairs to
Denv. Then there will be M number of rollout. Each rollout is consist of choosing a random state
from Denv at each time step, and applying the policy generated from SAC algorithm to perform
the rollout. After that, they use the generated data to optimize the policy using SAC as the policy
optimization algorithm. Using the approach above, the authors claim to achieve the results that are
more effective than the best model-free algorithms, and surpass some recent model-based methods
such as PETS.

4 Reproducibility

This section will introduce the details of our re-implementation. The main contribution of the original
paper is the MBPO algorithm, and we fully re-implemented the MBPO based on both the algorithm
and hyperparameters of the original paper and the public codes of the original paper. We followed
the codes here because some details are missing in the description of the algorithm in the original
paper, which will be discussed extensively in the following parts. For the predictive model, the
authors of the original paper uses the existing implementation of PETS by TensorFlow, however, we
also re-implemented this part with PyTorch. We experimented with both PETS and our reproduced
predictive model by PyTorch. For the policy, the original paper leverage the existing implementation

3



of Softlearning by TensorFlow, while we chose to use another existing implementation of SAC by
PyTorch.

4.1 Predictive Model

The authors use an existing bootstrap ensemble model PETS as the predictive model and each single
model is a multi-layer fully connected neural network which whose outputs parametrize a Gaussian
distribution. In order to generate a prediction from the ensemble model, the algorithm will select a
single model randomly from the top n models with minimum loss. We re-implement the predictive
model by PyTorch with the same structure, however due to the difference between PyTorch and
TensorFlow, we have to make some changes to accomplish the same functionalities like how to
generate an ensemble model. We experiment with both the PETS and our re-implemented predictive
model. The results will be discussed in the next section.

4.2 Soft Actor-Critic for policy optimization

The authors used the existing reinforcement learning framework "Softlearning" which includes the
official implementation of the Soft Actor-Critic algorithm. This toolbox trains maximum entropy
policies in continuous domains and utilizes the TensorFlow modules for their models. Instead of using
their entire framework, we use a PyTorch implementation of SAC that provides policy optimization
for us9. We experiment with the efficiency and performance of the PyTorch implementation and
the results are convincing. Since we are able to reproduce results by using the PyTorch SAC and
it is much easier to integrate it with the rest piece of our MBPO, we decide to use the PyTorch
implementation.

4.3 Model-Based Policy Optimization(MBPO) with Deep Reinforcement Learning

The MBPO algorithm is the main contribution of the original paper, thus we put more efforts into fully
re-implementing the MBPO algorithm and experimenting with different environments. Generally
we followed the same procedure as the algorithm in the original paper. The Algorithm 1 above is
the pseudocode for the algorithm described in the original paper, and Algorithm 2 is our detailed
algorithm to re-implement the MBPO algorithm, which shows more details about the parameters and
algorithm itself.

Algorithm 2 Re-implemented Model-Based Policy Optimization with Deep Reinforcement Learning
1: Initialize policy πφ, predictive model pθ, environment dataset Denv , model dataset Dmodel

2: for T steps do
3: Take action in environment according to initial policy πφ; add to Denv

4: for N epochs do
5: for E steps do
6: Train model pθ on Denv per F steps
7: Take action in environment according to πφ; add to Denv

8: for M model rollouts do
9: Sample st uniformly from Denv

10: Perform k-step model rollout starting from st using πφ; add to Dmodel

11: for G gradient updates do
12: Update policy parameters on model data and environment data with a ratio of (1− r) :

r: φ← φ− λπ∆̂Jπ(π, [Dmodel, Denv])

Firstly, there are T steps sampling in real environment with initial policy πφ before the following
training process. As the policy has not been trained at this time, the current actions will be totally
random choices, which means that these sampling steps will be exploration steps. These steps are
important for the following rollouts because those rollouts will start from the samples uniformly
randomly chosen from the environment dataset. Secondly, MBPO may train the predictive model
once per F steps rather than training the model only once per epoch. It is designed to train the model
more frequently so that the rollouts from the predictive model will be more accurate. There will be
M rollouts in each step and there will be E steps per epoch, thus when E is set to be a large number,

4



training the predictive model only once per epoch may be not sufficient for a complex environment.
For Hopper and Walker2d, the predictive model will be trained once per 250 steps. Then the policy
will not be updated only by the data sampled by the predictive model. A small portion of data
sampled from the real environment will also be used to update the policy. It helps to update the policy
more accurately especially when the predictive model has not been trained well at the beginning. As
described in the appendix of the original paper, the rollout length k may be changed dynamically
along with the growth of epochs with the equation k = min(max(x+ e−a

b−a (y − x), x), y), where e
is the current epoch number, a and b are the minimum epoch and maximum epoch respectively, and x
and y are the minimum rollout length and maximum rollout length respectively.

4.4 Reproducibility Costs

Given that there was no mention in the paper about computational resources required, we describe
the computational cost for running the experiments. All of our experiments are conducted on Google
Cloud Platform. We use NVIDIA Tesla P100 GPU for each experiment, and we replicate three
baselines to make comparisons, which are SAC, SLBO10, and STEVE. We implement two versions
of predictive models, one in TensorFlow, another in Pytorch. They both take seven hours to run 150k
steps. SAC takes about one hour for training 150k steps which is much faster than other baselines
since it is a based-free algorithm and no need to train model. SLBO takes around eight hours while
STEVE takes 20 hours to train 150k steps. In conclusion, model-based methods usually take much
longer than model-free methods and they need much more computational costs. Our reproducibility
needs relatively large costs in terms of time and computing resources.

5 Results and Analysis

Table 1: Hyperparameter Settings

Description Hopper Walker2d

N epoch 125 300
E environment steps per epoch 1000 1000
M model rollouts per environment step 400 400
B ensemble size 7 7
G policy updates per environment step 20 20
k model horizon 1 1 -> 25 over epochs 20 -> 100
r real ratio 0.05 0.05
F train frequency for predictive model 250 250
T initial sampling steps for real environment 5000 5000

5.1 Experiments Settings

In our experiments, we aim to see if our replicated MBPO algorithm can yield similar experimental
results in the paper and how well our algorithm performs in comparison to the best model-based and
model-free reinforcement learning algorithms. For the model-based methods, we use STEVE and
SLBO as baselines. STEVE is an extension to model-based value expansion (MVE)11. Compared
to MVE, it interpolates between many different horizon lengths, favoring those whose estimates
have lower uncertainty, and thus lower error. SLBO achieves state-of-the-art performance when only
one million or fewer samples are permitted on a range of continuous control benchmark tasks. For
model-free methods, we choose SAC as our baseline since our model-based algorithm uses it for
policy learning & updating and this baseline can help us understand the difference of integrating a
model. Comparisons with those state-of-the-art model-based and model-free methods validate the
performance of our work.

Based on objective reasons such as time and computing resources, we evaluate our MBPO algorithm
and above baselines on two MuJoCo-simulated benchmark environments which are Hopper and
Walker2d. For each result graph, we use steps as our Horizontal axis and average return as our
vertical axis to measure the performance of each baseline and compare our MBPO method with

5



other baselines to see if it is much faster than other model-based algorithms and has asymptotic
performance similar to the model-free algorithm.

Following the paper, our replicated algorithm used the same hyperparameter settings provided in the
appendix of original paper with some parameters defined in the authors’ public codes. Table 1 shows
the parameters we used for the results we will present in the following subsections.

5.2 MBPO Evaluation

We evaluated our MBPO algorithm against the original MBPO on two benchmarks to verify whether
the algorithm’s performance can match the original paper.

Figure 2: Original MBPO vs. Replicated MBPO

Figure 2 is the learning curves of the two algorithms. The original MBPO’s data is provided by the
authors which is a combination of five trials. The replicated MBPO’s data is a combination of three
trials we ran. Solid curves depict the mean of the trials we ran and the shaded regions correspond to
standard deviation among trials. Replicated MBPO has the similar performance to the paper results.
Concisely, there is no major difference on average return after 75k steps on Hoppers and 10k steps on
Walker2d. We evaluated two algorithms on the standard 1000-step versions of the benchmarks.

The Figure shows that our re-implemented MBPO can achieve comparable performance on both
two benchmarks. Our method on Hopper can even attain higher rewards after convergence and it
converges a little bit faster than the original one. Better reward is possibly related to the different
version of policy optimizer SAC we used in our implementation. However, our results show greater
fluctuation. The reason might be that we don’t have enough trials to take average so we have
occasional outliers.

5.3 Baseline Evaluation

In our comparison, we also aim to understand how well the reproduction of MBPO compares to the
state-of-the-art model-based (STEVE, SLBO) and model-free (SAC) methods. We use the standard
full-length version of the two tasks Hopper and Walker2d to conduct the experiments following the
paper.

Figure 3 shows the training curves of re-implemented MBPO and three baselines on different
benchmarks. The blue solid line and shaded area are the mean and standard deviation of our MBPO
experiments. The yellow, green and pink curves represent the fitted results of our one trial of the
baselines. The dashed lines with different colors represents the average return on convergence
of different algorithms. We may observe that MBPO does outperform on both two experiments.
Specifically, MBPO learns substantially faster, an order of magnitude faster on Hopper, than prior
methods, while attaining comparable or better final performance. For example, MBPO converges after
150k steps on Walker2d while model-free SAC converges after 650k steps with the approximately
same average return. Also, MBPO converges at a higher average reward than model-based SLBO
method. Thus, we may validate that the proposed MBPO algorithm has asymptotic performance
rivaling the best model-free algorithms and learns substantially faster than prior model-free or
model-based methods.

6



Figure 3: Replicated MBPO vs. Baselines

5.4 Predictive Model Effects on Performance

Seeking for improvements on the average rewards, we ran our MBPO using two different versions of
predictive model which are the ensemble model from PETS in TensorFlow and our own ensemble
model of 7 probabilistic neural networks in PyTorch. Figure 4 shows the results of the experiments.

Figure 4: Predictive model in TensorFlow version vs. Predictive model in PyTorch version

Generally, the results with our re-implemented predictive model cannot compete with the results
using the existing PETS model, especially on Walker2d. That is probably due to the difference
between TensorFlow and PyTorch, and we do not have enough resources to tune our predictive model.

5.5 Exploration on Hyper Parameters

The algorithm described in the paper omits some details. Additionally, there are some differences
between the algorithms pseudocode described in the paper and the real implementation by the
authors. Specifically, the authors described the training update frequency as 1 per 1000 steps but
implemented as 1 per 250 steps. Moreover, the pseudocode did not include any data sampled from
the real environment during the policy training process. We decided to implement both algorithms
and compare the results. Figure 5 shows the difference between these two settings, and demonstrates
that the described algorithm in the paper will not generate the desired results as the paper shows.

Due to the limitation of time and GCP credits, we cannot tune the hyperparameters thoroughly. The
following is an example of our attempt to tune the rollout size M. The default rollout size M is
400 and we experimented on a rollout size 4000 to see whether a larger rollout size will lead to
faster convergence. Figure 6 shows that the performance with rollout size 400 is quite similar to the
performance with rollout size 4000.

7



Figure 5: MBPO follows the paper’s algorithm vs. MBPO follows the authors’ coding sequence

Figure 6: Our MBPO’s performance with different rollout sizes

6 Conclusion

In summary, despite some inconsistencies between the pseudocode and real code as we discussed
above, we have successfully reproduced the main results presented by Janner, M. et al., which
confirms the supremacy of MBPO algorithm over other baseline models in variety of RL problems,
e.g. STEVE and SAC. Due to limit of time, fewer repeats of our re-implemented model have been
run. This could be the reason for the overall higher standard deviation in our results. However, the
intense fluctuation of average return in our model comparing to the authors‘ results should demand a
further research. Overall, we should applaud for the authors for providing such practical algorithm
which not only guarantees the monotonic improvement at each step, but also prevents the error from
accumulating by dynamically controlling the rollout length.

Acknowledgement

To achieve this reproducibility challenge, we consulted some related materials other than paper itself,
including the different versions of SAC implementations, the review of the paper. All the materials
we consulted are included in the reference. We want to thank all the staffs in Brown University
CS2951-F, especially our professor Michael Littman, and our mentor TA Evan Cater for their help on
clarifications and suggestions. Thank Google Cloud Platform for providing computational resources.

8



References

1. Janner, M., Fu, J., Zhang, M., & Levine, S. (2019). When to Trust Your Model: Model-Based
Policy Optimization. arXiv preprint arXiv:1906.08253.

2. Buckman, J., Hafner, D., Tucker, G., Brevdo, E., & Lee, H. (2018). Sample-efficient reinforcement
learning with stochastic ensemble value expansion. In Advances in Neural Information Processing
Systems (pp. 8224-8234).

3. Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290.

4. Todorov, E., Erez, T., & Tassa, Y. (2012, October). Mujoco: A physics engine for model-
based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp.
5026-5033). IEEE.

5. Or Rivlin. Model Based Policy Optimization Reviewing recent advances in model-based reinforcement
learning.

6. Chua, K., Calandra, R., McAllister, R., & Levine, S. (2018). Deep reinforcement learning in a
handful of trials using probabilistic dynamics models. In Advances in Neural Information Processing
Systems (pp. 4754-4765).

7. Nagabandi, A., Kahn, G., Fearing, R. S., & Levine, S. (2018, May). Neural network dynamics for
model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE International
Conference on Robotics and Automation (ICRA) (pp. 7559-7566). IEEE.

8. Haarnoja, T., Tang, H., Abbeel, P., & Levine, S. (2017, August). Reinforcement learning with deep
energy-based policies. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70 (pp. 1352-1361). JMLR. org.

9. Github: pytorch-soft-actor-critic. Source code: https://github.com/pranz24/pytorch-soft-actor-
critic.

10. Luo, Y., Xu, H., Li, Y., Tian, Y., Darrell, T., & Ma, T. (2018). Algorithmic framework for model-
based deep reinforcement learning with theoretical guarantees. arXiv preprint arXiv:1807.03858.

11. Feinberg, V., Wan, A., Stoica, I., Jordan, M. I., Gonzalez, J. E., & Levine, S. (2018). Model-based
value estimation for efficient model-free reinforcement learning. arXiv preprint arXiv:1803.00101.

9


	Introduction
	Target Questions
	Methodology
	Overview
	Predictive Model
	Soft Actor-Critic for Policy Optimization
	Model-Based Policy Optimization

	Reproducibility
	Predictive Model
	Soft Actor-Critic for policy optimization
	Model-Based Policy Optimization(MBPO) with Deep Reinforcement Learning
	Reproducibility Costs

	Results and Analysis
	Experiments Settings
	MBPO Evaluation
	Baseline Evaluation
	Predictive Model Effects on Performance
	Exploration on Hyper Parameters

	Conclusion

