
Towards Transparent Neural Network Acceleration

Anonymous Author(s)
Affiliation
Address
email

Abstract

Deep learning has found numerous applications thanks to its versatility and accu-1

racy on pattern recognition problems such as visual object detection. Learning and2

inference in deep neural networks, however, are memory and compute intensive3

and so improving efficiency is one of the major challenges for frameworks such4

as PyTorch, Tensorflow, and Caffe. While the efficiency problem can be partially5

addressed with specialized hardware and its corresponding proprietary libraries,6

we believe that neural network acceleration should be transparent to the user and7

should support all hardware platforms and deep learning libraries.8

To this end, we introduce a transparent middleware layer for neural network9

acceleration. The system is built around a compiler for deep learning, allowing one10

to combine device-specific libraries and custom optimizations while supporting11

numerous hardware devices. In contrast to other projects, we explicitly target12

the optimization of both prediction and training of neural networks. We present13

the current development status and some preliminary but encouraging results:14

on a standard x86 server, using CPUs our system achieves a 11.8x speed-up for15

inference and a 8.0x for batched-prediction (128); on GPUs we achieve a 1.7x and16

2.3x speed-up respectively.17

1 Introduction18

The limitations of today’s general purpose hardware and the extreme parallelism that neural network19

processing can exploit has led to a large range of specialized hardware from manufacturers such as20

NVIDIA [13], Google [7], ARM [1] and PowerVR [15], to name but a few. Most of these platforms21

come with their own proprietary development environment or a specialized extension to some deep22

learning frameworks such as TensorFlow [8], PyTorch [5], CNTK [12], and Caffe [4]. Often, such23

hardware makes it necessary to transform neural network models from one framework to another in24

order to utilize different hardware architectures. While standardized formats [6, 11] try to bridge this25

gap, they cannot guarantee that an exported network behaves identically in all frameworks.26

In addition to the hardware support for deep learning frameworks, the usage model itself can differ.27

For example, PyTorch is known to be very flexible thanks to its dynamic graph structure, while28

TensorFlow uses a static graph that is more restricted, but usually yields better performance. These29

differences are dealt with through different strategies. The big hardware manufacturers such as Intel30

[9] or NVIDIA [3] provide optimized libraries for the most performance-critical functionality. As an31

example, PyTorch introduced the so called Tensor Comprehensions [16], which is somewhat similar32

to Vertex.ai’s PlaidML [17]. Both require the neural network layers to be programmed in a tensor33

mathematical notation, which is then compiled into a specialized implementation. However, they are34

only capable of optimizing the functionality inside a single layer, not across multiple layers. Other35

approaches such as TensorRT [14] or TVM [2] compile optimized implementations for NN prediction36

deployment, which means that they cannot be used to optimize training. As training can take up to37

several days or weeks of computation, even small improvements are often meaningful.38

Submitted to 32nd Conference on Neural Information Processing Systems (NIPS 2018). Do not distribute.



To go beyond these limitations, we propose a modular middleware for NN processing, designed to39

optimize not only prediction but also training computations. It interfaces seamlessly with existing40

frameworks and accelerates neural networks on various types of hardware. The system performs such41

work transparently, allowing data scientists to concentrate on the design of neural networks without42

having to deal with framework or hardware specific issues. To use our system, the user simply adds a43

line of code of the form optimizedNN = optimize(myNN). Finally, our middleware can be easily44

extended to interface with other AI frameworks and hardware platforms.45

In the following we will introduce our optimization cycle, followed by our system architecture, some46

preliminary results and close with a description of our future development plans.47

2 Transparent Neural Network Optimization48

The proposed middleware consists of multiple stages. The first stage directly operates on the neural49

network structure and applies several optimization heuristics. Tensor concatenation operations, for50

instance, are common and provide multiple opportunities for improvements such as moving layers in51

front of the concat layer to reduce the amount of data needed to be processed (if a pooling layer is52

moved), and the merging of multiple concat layers. Moreover, if we generate code for the preceding53

layers (see below), data can be directly written into the destination memory without an explicit54

memcopy. An additional optimization step merges consecutive MaxPooling and ReLU layers.55

DFP

Pool

Act

+

Conv
Pool

+

Conv
Act

Figure 1: Illustration of the depth-first par-
allelization strategy.

In the next stage, the system attempts to fuse multiple56

layers. To this end, it analyzes the network structure57

and detects blocks of layers that have similar limita-58

tions. We distinguish between (1) I/O memory bound59

(e.g., pooling), (2) parameter memory bound (e.g., fully60

connected) or (3) compute bound (e.g., convolutions)61

layers. We group consecutive layers with the same62

limitations. Element-wise layers (e.g., ReLU) do not63

impose a specific limitation and can be assigned to any group. Each of these groups is then optimized64

separately. For now we use optimized vendor libraries for compute and parameter memory bound65

layers, e.g., Intel’s MKL-DNN [9] or NVIDIA’s cuDNN [3] (in the following referred to as DNN) as66

these operations benefit from specialized algorithms.67

Blocks of I/O memory-bound layers are optimized using a principled merging strategy based on the68

notion of depth-first parallelism (DFP) [18]. Instead of processing the networks layer-by-layer, DFP69

generates specialized code, merging several layers into one and improving cache utilization. More70

specifically, in this stage the system optimizes each I/O memory bound group of layers in several71

steps. First, a computation graph for all operations is constructed. With this graph we generate a72

naïve plan of nested loops that would be necessary to compute the graph. From this we apply loop73

transformations to merge these nested loops; this step is generic and identical for all target devices.74

Next, we use hardware characteristics (e.g., number of cores, SIMD units per core and cache sizes) to75

generate specific mappings of loops onto compute resources. Figure 1 illustrates a merging operation76

for a small neural network.77

Depending on the hardware, we further exploit device-specific characteristics (shared memory,78

approximate mathematical functions, OpenMP flags, etc.). After all groups of layers are optimized79

and an implementation tailored to the target hardware is compiled, we return a new executable neural80

network representation specific to the deep learning framework to the user. This optimized network81

behaves identical to the original network.82

3 Architecture83

Our architecture (Figure 2) is modular and, therefore, highly extensible. We use deep learning84

framework-specific frontends for translating the NN representation of the framework to that of our85

middleware and provide an optimized NN representation to the user. In addition, a runtime component86

bridges framework specific functionality such as memory (de-)allocation. Our system applies different87

optimizations depending on the performance bottleneck (e.g., CPU bound) of each layer. Finally, the88

device backends implement these optimizations and apply device-specific optimizations; for example,89

2



R
u

n
ti

m
e

C
o

m
p

ile
r

BackendsOptimizations

Fr
o

n
te

n
d

s A
n

al
yz

er

Depth-First 
Parallelism

DNN Library

CUDA

x86 CPU

NEC Aurora

cuDNN

MKL-DNN

Aurora-DNN

CUDA Runtime

x86 Runtime

Aurora RuntimeP
yT

o
rc

h
Te

n
so

rF
lo

w
C

N
TK

Sc
h

ed
u

le
r

0 200 400 600 800 1000 1200

AlexNet

SqueezeNet 1.0

ResNet 18

MobileNet 2

DenseNet 121

GoogleNet

Params I/O Saving Peak Memory Usage (MB)

Figure 2: (Left) Our architecture can easily be extended with more frontend, optimizations and
backend modules. (Right) Peak parameter and I/O memory data consumption (Batch size: 128).

1.0

3.0

5.0

7.0

9.0

0

50

100

150

Sp
e

e
d

U
p

PyTorch DFP DFP+DNN SpeedUp (DFP) SpeedUp (DFP+DNN)

Sp
e

e
d

U
p

1.0

1.5

2.0

2.5

0
100
200
300
400
500

121 169 201 161 18 34 50 101 152 v1 v2 1.0 1.1 11 13 16 19 11BN 13BN 16BN 19BN

Inception V3 Densenet GoogleNet Resnet MobileNet Alexnet Squeezenet VGG

Sp
e

e
d

U
p

1.0

1.2

1.4

1.6

1.8

0
5

10
15
20
25

Sp
e

e
d

U
p

G
P

U
 In

f.
 (

m
s)

C
P

U
 In

f.
 (

m
s)

C
P

U
 B

at
ch

e
d

 (
s)

G
P

U
 B

at
ch

e
d

 (
m

s)

1.0

5.0

9.0

13.0

0

200

400

600

800

Figure 3: Execution times and speed ups for Inference and Batched-prediction (128) for 8 different
neural networks in 24 variants.

our x86 backend uses OpenMP and the ISPC [10] compiler for the I/O memory bound layers, and the90

Intel MKL-DNN library for other layers.91

4 Preliminary Results92

Currently, our system can run prediction tasks on both CPUs and GPUs. To test its performance, we93

use a server with 2x Intel E5-2637 v4 CPUs, 128GB DDR4, an NVIDIA GTX 1080 Ti card, Debian94

9.5 (Kernel 4.9.0-3), ISPC 1.9.2, GCC 8.2.0, CUDA 9.2.148, cuDNN 7.2 and PyTorch 0.4.1. We95

run each test 20 times and show the best result (Figure 3). For all layers not optimized by the DFP96

method we use the default PyTorch implementation. As PyTorch uses cuDNN by default, we do97

not show results for (DFP+DNN) on GPUs. We applied our system to a set of typical networks for98

inference and batched prediction. We can see that depending on the network structure, DFP or DNN99

yield the highest performance gains, e.g., DFP in the MobileNets and DNN in AlexNet and the VGGs.100

Overall, we achieve a peak improvement of 11.8x for inference and 8.0x for batched-prediction (128)101

on CPUs; and a 1.7x and 2.3x speed-up respectively on GPUs. Figure 2 further shows that the DFP102

method can significantly reduce neural network peak memory consumption.103

5 Status and Future Work104

We plan to provide support for PyTorch, TensorFlow and CNTK as frontends; x86 CPUs, NVIDIA105

GPUs and NEC Aurora as backends; and applying the previously mentioned optimizations for both106

prediction and training. Further, we plan to add more optimization features targeting other types of107

network layers, such as those found in recurrent neural networks.108

3



References109

[1] ARM. ARM project trillium. arm.com/products/processors/machine-learning.110

[2] T. Chen, T. Moreau, Z. Jiang, H. Shen, E. Q. Yan, L. Wang, Y. Hu, L. Ceze, C. Guestrin,111

and A. Krishnamurthy. TVM: end-to-end optimization stack for deep learning. CoRR,112

abs/1802.04799, 2018. arxiv.org/abs/1802.04799.113

[3] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer.114

cuDNN: efficient primitives for deep learning. arXiv, 2014. arxiv.org/abs/1410.0759.115

[4] Facebook. Caffe2. caffe2.ai.116

[5] Facebook. PyTorch. pytorch.org.117

[6] Facebook and Microsoft. Open neural network exchange format. onnx.ai.118

[7] Google. Tensor processing unit. cloud.google.com/tpu.119

[8] Google. TensorFlow. tensorflow.org.120

[9] Intel. Intel Math Kernel Library for Deep Neural Networks. github.com/intel/mkl-dnn.121

[10] Intel. Intel SPMD program compiler. ispc.github.io.122

[11] Khronos. Neural network exchange format. khronos.org/nnef.123

[12] Microsoft. Cognitive toolkit. microsoft.com/en-us/cognitive-toolkit.124

[13] NVIDIA. Tensor cores in NVIDIA volta. nvidia.com/en-us/data-center/tensorcore.125

[14] NVIDIA. TensorRT. developer.nvidia.com/tensorrt.126

[15] Power VR. PowerVR Series2NX. imgtec.com/powervr-2nx-neural-network-accelerator.127

[16] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S. Moses, S. Verdoolaege,128

A. Adams, and A. Cohen. Tensor comprehensions: Framework-agnostic high-performance129

machine learning abstractions. 2018. research.fb.com/announcing-tensor-comprehensions/.130

[17] Vertex.ai. PlaidML: open source deep learning for every platform, 2017.131

vertex.ai/blog/announcing-plaidml.132

[18] N. Weber, F. Schmidt, M. Niepert, and F. Huici. BrainSlug: Transparent Acceleration of Deep133

Learning Through Depth-First Parallelism. arXiv, 2018.134

4

https://www.arm.com/products/processors/machine-learning
http://arxiv.org/abs/1802.04799
https://arxiv.org/abs/1410.0759
https://caffe2.ai
https://pytorch.org
https://onnx.ai
https://cloud.google.com/tpu/
https://www.tensorflow.org
https://github.com/intel/mkl-dnn
http://ispc.github.io
https://www.khronos.org/nnef
https://www.microsoft.com/en-us/cognitive-toolkit/
https://www.nvidia.com/en-us/data-center/tensorcore/
https://developer.nvidia.com/tensorrt
https://www.imgtec.com/powervr-2nx-neural-network-accelerator/
https://research.fb.com/announcing-tensor-comprehensions/
http://vertex.ai/blog/announcing-plaidml

	Introduction
	Transparent Neural Network Optimization
	Architecture
	Preliminary Results
	Status and Future Work

