
Sub-policy Adaptation for Hierarchical Reinforcement Learning

Alexander C. Li * 1 Carlos Florensa * 1 Pieter Abbeel 1 2

Abstract
Hierarchical Reinforcement Learning is a promis-
ing approach to long-horizon decision-making
problems with sparse rewards. Unfortunately,
most methods still decouple the lower-level skill
acquisition process and the training of a higher
level that controls the skills in a new task. Treat-
ing the skills as fixed can lead to significant
sub-optimality in the transfer setting. In this
work, we propose a novel algorithm to discover
a set of skills, and continuously adapt them
along with the higher level even when train-
ing on a new task. Our main contributions are
two-fold. First, we derive a new hierarchical
policy gradient, as well as an unbiased latent-
dependent baseline. We introduce Hierarchical
Proximal Policy Optimization (HiPPO), an on-
policy method to efficiently train all levels of the
hierarchy simultaneously. Second, we propose
a method of training time-abstractions that im-
proves the robustness of the obtained skills to en-
vironment changes. Code and results are available
at sites.google.com/view/hippo-rl.

1. Introduction
Reinforcement learning (RL) has made great progress in a
variety of domains, from playing games such as Pong and
Go (Mnih et al., 2015; Silver et al., 2017) to automating
robotic locomotion (Schulman et al., 2015; Heess et al.,
2017; Florensa et al., 2018b), dexterous manipulation (Flo-
rensa et al., 2017b; Andrychowicz et al.), and perception
(Nair et al., 2018; Florensa et al., 2018a). Yet, most work
in RL is still learning a new behavior from scratch when
faced with a new problem. This is particularly inefficient
when dealing with tasks that are hard to solve due to sparse
rewards or long horizons, or when solving many related
tasks.

1Department of EECS, UC Berkeley, USA 2covariant.ai. Cor-
respondence to: Alexander C. Li <alexli1@berkeley.edu>, Carlos
Florensa <florensa@berkeley.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

A promising technique to overcome this limitation is Hierar-
chical Reinforcement Learning (HRL) (Sutton et al., 1999;
Florensa et al., 2017a). In this paradigm, policies have sev-
eral modules of abstraction, so the reuse of a subset of the
modules becomes easier. The most common case consists
of temporal abstraction (Precup, 2000; Dayan & Hinton,
1993), where a higher-level policy (manager) takes actions
at a lower frequency, and its actions condition the behavior
of some lower level skills or sub-policies. When transferring
knowledge to a new task, most prior works fix the skills and
train a new manager on top. Despite having a clear benefit
in kick-starting the learning in the new task, having fixed
skills can considerably cap the final performance on the new
task (Florensa et al., 2017a). Little work has been done on
adapting pre-trained sub-policies to be optimal for a new
task.

In this paper, we develop a new framework for adapting all
levels of temporal hierarchies simultaneously. First, we de-
rive an efficient approximated hierarchical policy gradient.
Our key insight is that, under mild assumptions, the man-
ager’s decisions can be considered part of the observation
from the perspective of the sub-policies. This decouples the
gradient with respect to the manager and the sub-policies
parameters and provides theoretical justification for a tech-
nique used in other prior works (Frans et al., 2018). Second,
we introduce an unbiased sub-policy specific baseline for
our hierarchical policy gradient. Our experiments reveal
faster convergence, suggesting efficient gradient variance
reduction. Then we introduce a more stable way of using
this gradient, Hierarchical Proximal Policy Optimization
(HiPPO). This helps us take more conservative steps in our
policy space (Schulman et al., 2017), necessary in hierar-
chies because of the interdependence of each layer. Finally
we also evaluate the benefit of varying the time-commitment
to the sub-policies, and show it helps both in terms of final
performance and zero-shot adaptation to similar tasks.

2. Preliminaries
We define a discrete-time finite-horizon discounted
Markov decision process (MDP) by a tuple M =
(S,A,P, r, ρ0, γ,H), where S is a state set, A is an ac-
tion set, P : S × A × S → R+ is the transition proba-
bility distribution, γ ∈ [0, 1] is a discount factor, and H

Sub-policy Adaptation for HRL

Figure 1. Temporal hierarchy studied in this paper. A latent code zt
is sampled from the manager policy πθh(zt|st) every p time-steps,
using the current observation skp. The actions at are sampled
from the sub-policy πθl(at|st, zkp) conditioned on the same latent
code from timestep t = kp to timestep (k + 1)p− 1

the horizon. Our objective is to find a stochastic policy
πθ that maximizes the expected discounted reward within
the MDP, η(πθ) = Eτ [

∑T
t=0 γ

tr(st, at)]. We denote by
τ = (s0, a0, ...,) the entire state-action trajectory, where
s0 ∼ ρ0(s0), at ∼ πθ(at|st), and st+1 ∼ P(st+1|st, at).

3. Problem Statement
Prior works have been focused on learning a manager that
combines provided sub-policies, but they do not further
train the sub-policies when learning a new task. However,
preventing the skills from learning results in sub-optimal
behavior in new tasks. This effect is exacerbated when the
skills were learned in a task agnostic way or in a differ-
ent environment. In this paper, we present a HRL method
that learns all levels of abstraction in the hierarchical pol-
icy: the manager learns to make use of the low-level skills,
while the skills are continuously adapted to attain maxi-
mum performance in the given task. We derive a policy
gradient update for hierarchical policies that monotonically
improves the performance. Furthermore, we demonstrate
that our approach prevents sub-policy collapse behavior,
when the manager ends up using just one skill, observed in
previous approaches.

4. Efficient Hierarchical Policy Gradients
When using a hierarchical policy, the intermediate deci-
sion taken by the higher level is not directly applied in the
environment. This consideration makes it unclear how it
should be incorporated into the Markovian framework of
RL: should it be treated as an observed variable, like an
action, or as a latent?

In this section, we first prove that one framework is an ap-
proximation of the other under mild assumptions. Then, we
derive an unbiased baseline for the HRL setup that reduces
its variance. Thirdly, we introduce the notion of information

bottleneck and trajectory compression, which proves critical
for learning reusable skills. Finally, with these findings,
we present our method, Hierarchical Proximal Policy Opti-
mization (HiPPO), an on-policy algorithm for hierarchical
policies that monotonically improves the RL objective, al-
lowing learning at all levels of the policy and preventing
sub-policy collapse.

4.1. Approximate Hierarchical Policy Gradient

Policy gradient algorithms are based on the likelihood ratio
trick (Williams, 1992) to estimate the gradient of returns
with respect to the policy parameters as

∇θη(πθ) = Eτ
[
∇θ logP (τ)R(τ)

]
≈ 1

N

n∑
i=1

∇θ logP (τi)R(τi) (1)

In the context of HRL, a hierarchical policy with a manager
πθh(zt|st) selects every p time-steps one of n sub-policies
to execute. These sub-policies, indexed by z ∈ [n], can be
represented as a single conditional probability distribution
over actions πθl(at|zt, st). This allows us to also leverage
skills learned with Stochastic Neural Networks (SNNs) (Flo-
rensa et al., 2017a). Under this framework, the probability
of a trajectory τ = (s0, a0, s1, . . . , sH) can be written as

P (τ) =

(H/p∏
k=0

[n∑
j=1

πθh(zj |skp)
(k+1)p−1∏
t=kp

πθl(at|st, zj)
])

×
[
P (s0)

H∏
t=1

P (st+1|st, at)
]

(2)

The mixture action distribution, which presents itself as an
additional summation over skills, prevents the additive fac-
torization when taking the logarithm, as in Eq. 1. This can
yield considerable numerical instabilities due to the product
of the p sub-policy probabilities. For instance, in the case
where all the skills are distinguishable all the sub-policies
probabilities but one will have small values, resulting in
an exponentially small value. In the following Lemma, we
derive an approximation of the policy gradient, whose error
tends to zero as the skills become more diverse, and draw
insights on the interplay of the manager actions.

Lemma 1. If the skills are sufficiently differentiated, then
the latent variable can be treated as part of the observation
to compute the gradient of the trajectory probability. Let
πθh(z|s) and πθl(a|s, z) be Lipschitz functions w.r.t. their
parameters, and assume that 0 < πθl(a|s, zj) < ε ∀j 6= kp,

Sub-policy Adaptation for HRL

then

∇θ logP (τ) =
H/p∑
k=0

∇θ log πθh(zkp|skp)

+

H∑
t=0

∇θ log πθl(at|ot, zkp) +O(nHεp−1)

(3)

Proof. See Appendix.

Our assumption is that the skills are diverse. Namely, for
each action there is just one sub-policy that gives it high
probability. In this case, the latent variable can be treated
as part of the observation to compute the gradient of the
trajectory probability. Many algorithms to extract lower-
level skills are based on promoting diversity among the
skills (Florensa et al., 2017a; Eysenbach et al., 2019), so our
assumption usually holds. We further empirically analyze
this assumption in the appendix.

4.2. Unbiased Sub-policy Baseline

The REINFORCE policy gradient estimate is known to have
large variance. A very common approach to mitigate this
issue without biasing the estimate is to subtract a baseline
from the returns (Peters & Schaal, 2008). We show how,
under the assumptions of Lemma 1, we can formulate an
unbiased latent dependent baseline for the approximate gra-
dient (Eq. 4).

Lemma 2. For any functions bh : S → R and bl : S×Z →
R we have:

Eτ [
H/p∑
k=0

∇θ logP (zkp|skp)bh(skp)] = 0

Eτ [
H∑
t=0

∇θ log πs,θ(at|st, zkp)bl(st, zkp)] = 0

Proof. See Appendix.

Now we apply Lemma 1 and Lemma 2 to Eq. 1. By using the
corresponding value functions as the function baseline, the
return can be replaced by the Advantage function (Schul-
man et al., 2015), and we obtain the following gradient
expression:

ĝ = Eτ
[
(

H/p∑
k=0

∇θ log πθh(zkp|skp)A(skp, zkp))

+(

H∑
t=0

∇θ log πθl(at|st, zkp)A(st, at, zkp))
]

This hierarchical policy gradient estimate has lower variance
than without baselines, but using it for policy optimization
through stochastic gradient descent still yields an unstable
algorithm. In the next section, we further improve the sta-
bility and sample efficiency of the policy optimization by
incorporating techniques from Proximal Policy Optimiza-
tion (Schulman et al., 2017).

4.3. Hierarchical Proximal Policy Optimization

Using an appropriate step size in policy space is critical for
stable policy learning. We adopt the approach used by Prox-
imal Policy Optimization (PPO) (Schulman et al., 2017),
which modifies the cost function in a way that prevents large
changes to the policy while only requiring the computation
of the likelihood. Letting rh,kp(θ) =

πθh (zkp|skp)
πθh,old (zkp|skp)

and

rl,t(θ) =
πθl (at|st,zkp)

πθl,old (at|st,zkp)
, and using the super-index clip

to denote the clipped objective version, we obtain the new
surrogate objective:

LCLIPHiPPO(θ) =

Eτ
[H/p∑
k=0

min
{
rh,kp(θ)A(skp, zkp), r

clip
h,kp (θ)A(skp, zkp)

}
+

H∑
t=0

min
{
rl,t(θ)A(st, at, zkp), r

clip
l,t (θ)A(st, at, zkp)

}]
We call this algorithm Hierarchical Proximal Policy Opti-
mization (HiPPO). Next, we introduce two critical additions:
a switching of the time-commitment between skills, and an
information bottleneck at the lower-level. Both are detailed
in the following subsections.

4.4. Varying Time-commitment

Most hierarchical methods either consider a fixed time-
commitment to the lower level skills (Florensa et al., 2017a;
Frans et al., 2018), or implement the complex options frame-
work (Precup, 2000; Bacon et al., 2017). In this work we
propose an in-between, where the time-commitment to the
skills is a random variable sampled from a fixed distribu-
tion Categorical(Tmin, Tmax) just before the manager
takes a decision. This modification does not hinder final
performance, and we show it improves zero-shot adaptation
to a new task. This approach to sampling rollouts is detailed
given in Algorithm 1 in the appendix.

4.5. Information Bottleneck through Masking

If we apply the above HiPPO algorithm in the general case,
there is little incentive to either learn or maintain a diverse
set of skills. We claim this can be addressed via two simple
additions:

• Let z only take a finite number of values

Sub-policy Adaptation for HRL

Figure 2. Comparison of Flat PPO, HiPPO, and HiPPO with ran-
domized period learning from scratch on different environments.

Figure 3. Effect of using a Skill baseline as defined in Section 4.2

• Provide a masked observation to the skills ot = f(st)

The masking function f restricts the information about the
task, such that a single skill cannot perform the full task.
We use a hard-coded agent-space and problem-space split
(Konidaris & Barto, 2007; Florensa et al., 2017a) that hides
all task-related information and only allows the sub-policies
to see proprioceptive information. With this setup, all the
missing information needed to perform the task must come
from the sequence of latent codes passed to the skills. We
can interpret this as a lossy compression, whereby the man-
ager encodes the relevant problem information into log n
bits sufficient for the next p timesteps.

5. Experiments
We design the experiments to answer the following ques-
tions: 1) How does HiPPO compare against a flat policy
when learning from scratch? 2) Does it lead to more robust
policies? 3) How well does it adapt already learned skills?
and 4) Does our skill diversity assumption hold in practice?

Figure 4. Benefit of adapting some given skills when the prefer-
ences of the environment are different from those of the environ-
ment where the skills were originally trained.

5.1. Learning from Scratch

In this section, we study the benefit of using the HiPPO al-
gorithm instead of standard PPO on a flat policy (Schulman
et al., 2017). The results, shown in Figure 2, demonstrate
that training from scratch with HiPPO leads faster learning
and better performance than flat PPO. Furthermore, the ben-
efit of HiPPO does not just come from having temporally
correlated exploration, as PPO with action repeat converges
at a performance level well below our method. Finally,
Figure 3 shows the effectiveness of using the presented
baseline.

5.2. Adaptation of Pre-Trained Skills

For this task, we take 6 pre-trained subpolicies encoded by
a Stochastic Neural Network (Tang & Salakhutdinov, 2013)
that were trained in a diversity-promoting environment (Flo-
rensa et al., 2017a). We fine-tune them with HiPPO on
the Gather environment, but with an extra penalty on the
velocity of the Center of Mass. This can be understood as a
preference for cautious behavior. This requires adjustment
of the sub-policies, which were trained with a proxy reward
encouraging them to move as far as possible (and hence
quickly). Fig. 4 shows the difference between fixing the
sub-policies and only training a manager with PPO vs using
HiPPO to simultaneously train a manager and fine-tune the
skills. The two initially learn at the same rate, but HiPPO’s
ability to adjust to the new dynamics allows it to reach a
higher final performance.

6. Conclusions and Future Work
In this paper, we examined how to effectively adapt hi-
erarchical policies. We began by deriving a hierarchical
policy gradient and approximation of it. We then proposed
a new method, HiPPO, that can stably train multiple layers
of a hierarchy. The adaptation experiments suggested that
we can optimize pretrained skills for downstream environ-
ments, and learn emergent skills without any unsupervised
pre-training. We also explored hierarchy from an informa-
tion bottleneck point of view, demonstrating that HiPPO
with randomized period can learn from scratch on sparse-
reward and long time horizon tasks, while outperforming
non-hierarchical methods on zero-shot transfer.

There are many enticing avenues of future work. For in-
stance, replacing the manually designed bottleneck with
a variational autoencoder with an information bottleneck
could further improve HiPPO’s performance and extend the
gains seen here to other tasks. Also, as HiPPO provides a
policy architecture and gradient expression, we could ex-
plore using meta-learning on top of it in order to learn better
skills that are more useful on a distribution of different tasks.

Sub-policy Adaptation for HRL

References
Andreas, J., Klein, D., and Levine, S. Modular Multitask

Reinforcement Learning with Policy Sketches. Inter-
national Conference in Machine Learning, 2017. URL
http://github.com/.

Andrychowicz, M., Baker, B., Chociej, M., Jozefowicz,
R., McGrew, B., Pachocki, J., Petron, A., Plappert, M.,
Powell, G., and Ray, A. Learning Dexterous In-Hand
Manipulation. pp. 1–27.

Bacon, P.-L., Harb, J., and Precup, D. The Option-Critic
Architecture. AAAI, pp. 1726–1734, 2017. URL http:
//arxiv.org/abs/1609.05140.

Daniel, C., van Hoof, H., Peters, J., Neumann, G., Gärt-
ner, T., Nanni, M., Passerini, A., and Robardet Chris-
tian Daniel ChristianDaniel, C. B. Probabilistic infer-
ence for determining options in reinforcement learn-
ing. Machine Learning, 104(104), 2016. doi: 10.1007/
s10994-016-5580-x.

Dayan, P. and Hinton, G. E. Feudal Reinforcement Learn-
ing. Advances in Neural Information Processing Sys-
tems, pp. 271–278, 1993. ISSN 0143991X. doi:
10.1108/IR-08-2017-0143. URL http://www.cs.
toronto.edu/~fritz/absps/dh93.pdf.

Duan, Y., Chen, X., Schulman, J., and Abbeel, P. Bench-
marking Deep Reinforcement Learning for Continuous
Control. International Conference in Machine Learn-
ing, 2016. URL http://arxiv.org/abs/1604.
06778.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diver-
sity is All You Need: Learning Skills without a Reward
Function. International Conference in Learning Repre-
sentations, 2019. URL http://arxiv.org/abs/
1802.06070.

Florensa, C., Duan, Y., and Abbeel, P. Stochastic Neural
Networks for Hierarchical Reinforcement Learning. In-
ternational Conference in Learning Representations, pp.
1–17, 2017a. ISSN 14779129. doi: 10.1002/rcm.765.
URL http://arxiv.org/abs/1704.03012.

Florensa, C., Held, D., Wulfmeier, M., Zhang, M., and
Abbeel, P. Reverse Curriculum Generation for Rein-
forcement Learning. Conference on Robot Learning,
pp. 1–16, 2017b. ISSN 1938-7228. doi: 10.1080/
00908319208908727. URL http://arxiv.org/
abs/1707.05300.

Florensa, C., Degrave, J., Heess, N., Springenberg, J. T.,
and Riedmiller, M. Self-supervised Learning of Image
Embedding for Continuous Control. In Workshop on
Inference to Control at NeurIPS, 2018a. URL http:
//arxiv.org/abs/1901.00943.

Florensa, C., Held, D., Geng, X., and Abbeel, P. Automatic
Goal Generation for Reinforcement Learning Agents.
International Conference in Machine Learning, 2018b.
URL http://arxiv.org/abs/1705.06366.

Frans, K., Ho, J., Chen, X., Abbeel, P., and Schulman,
J. Meta Learning Shared Hierarchies. International
Conference in Learning Representations, pp. 1–11, 2018.
ISSN 14639076. doi: 10.1039/b203755f. URL http:
//arxiv.org/abs/1710.09767.

Ghavamzadeh, M. and Mahadevan, S. Hierarchical Policy
Gradient Algorithms. International Conference in Ma-
chine Learning, 2003. URL http://chercheurs.
lille.inria.fr/~ghavamza/my_website/
Publications_files/icml03.pdf.

Haarnoja, T., Hartikainen, K., Abbeel, P., and Levine, S. La-
tent Space Policies for Hierarchical Reinforcement Learn-
ing. Internation Conference in Machine Learning, 2018.
URL http://arxiv.org/abs/1804.02808.

Harb, J., Bacon, P.-L., Klissarov, M., and Precup, D. When
Waiting is not an Option : Learning Options with a De-
liberation Cost. AAAI, 9 2017. URL http://arxiv.
org/abs/1709.04571.

Hausman, K., Springenberg, J. T., Wang, Z., Heess, N.,
and Riedmiller, M. Learning an Embedding Space for
Transferable Robot Skills. International Conference in
Learning Representations, pp. 1–16, 2018.

Heess, N., Wayne, G., Tassa, Y., Lillicrap, T., Riedmiller, M.,
Silver, D., and Deepmind, G. Learning and Transfer of
Modulated Locomotor Controllers. 2016. URL https:
//arxiv.org/abs/1610.05182.

Heess, N., TB, D., Sriram, S., Lemmon, J., Merel, J., Wayne,
G., Tassa, Y., Erez, T., Wang, Z., Eslami, S. M. A.,
Riedmiller, M., and Silver, D. Emergence of Locomo-
tion Behaviours in Rich Environments. 7 2017. URL
http://arxiv.org/abs/1707.02286.

Konidaris, G. and Barto, A. Building portable options: Skill
transfer in reinforcement learning. International Joint
Conference on Artificial Intelligence, pp. 895–900, 2007.
ISSN 10450823. doi: 10.1158/1078-0432.CCR-05-1323.

Kulkarni, T. D., Narasimhan, K. R., Saeedi CSAIL, A., and
Tenenbaum BCS, J. B. Hierarchical Deep Reinforcement
Learning: Integrating Temporal Abstraction and Intrinsic
Motivation. Advances in Neural Information Processing
Systems, pp. 1–13, 2016.

Le, H. M., Jiang, N., Agarwal, A., Dud, M., and Hal, Y.
Hierarchical Imitation and Reinforcement Learning. In-
ternational Conference in Machine Learning, 2018.

http://github.com/
http://arxiv.org/abs/1609.05140
http://arxiv.org/abs/1609.05140
http://www.cs.toronto.edu/~fritz/absps/dh93.pdf
http://www.cs.toronto.edu/~fritz/absps/dh93.pdf
http://arxiv.org/abs/1604.06778
http://arxiv.org/abs/1604.06778
http://arxiv.org/abs/1802.06070
http://arxiv.org/abs/1802.06070
http://arxiv.org/abs/1704.03012
http://arxiv.org/abs/1707.05300
http://arxiv.org/abs/1707.05300
http://arxiv.org/abs/1901.00943
http://arxiv.org/abs/1901.00943
http://arxiv.org/abs/1705.06366
http://arxiv.org/abs/1710.09767
http://arxiv.org/abs/1710.09767
http://chercheurs.lille.inria.fr/~ghavamza/my_website/Publications_files/icml03.pdf
http://chercheurs.lille.inria.fr/~ghavamza/my_website/Publications_files/icml03.pdf
http://chercheurs.lille.inria.fr/~ghavamza/my_website/Publications_files/icml03.pdf
http://arxiv.org/abs/1804.02808
http://arxiv.org/abs/1709.04571
http://arxiv.org/abs/1709.04571
https://arxiv.org/abs/1610.05182
https://arxiv.org/abs/1610.05182
http://arxiv.org/abs/1707.02286

Sub-policy Adaptation for HRL

Levy, A., Platt, R., and Saenko, K. Hierarchical Rein-
forcement Learning with Hindsight. International Con-
ference on Learning Representations, 5 2019. URL
http://arxiv.org/abs/1805.08180.

Merel, J., Ahuja, A., Pham, V., Tunyasuvunakool, S., Liu,
S., Tirumala, D., Heess, N., and Wayne, G. Hierar-
chical visuomotor control of humanoids. International
Conference in Learning Representations, 2019. URL
http://arxiv.org/abs/1811.09656.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. a., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wier-
stra, D., Legg, S., and Hassabis, D. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Nachum, O., Lee, H., Gu, S., and Levine, S. Data-Efficient
Hierarchical Reinforcement Learning. Advances in Neu-
ral Information Processing Systems, 2018.

Nair, A., Pong, V., Dalal, M., Bahl, S., Lin, S., and Levine,
S. Visual Reinforcement Learning with Imagined Goals.
Adavances in Neural Information Processing Systems,
2018.

Peters, J. and Schaal, S. Natural Actor-Critic. Neurocom-
puting, 71(7-9):1180–1190, 2008. ISSN 09252312. doi:
10.1016/j.neucom.2007.11.026.

Precup, D. Temporal abstraction in reinforcement learning,
1 2000. URL https://scholarworks.umass.
edu/dissertations/AAI9978540.

Ranchod, P., Rosman, B., and Konidaris, G. Nonparametric
Bayesian Reward Segmentation for Skill Discovery Using
Inverse Reinforcement Learning. 2015. ISSN 21530866.
doi: 10.1109/IROS.2015.7353414.

Schulman, J., Moritz, P., Jordan, M., and Abbeel, P. Trust
Region Policy Optimization. International Conference in
Machine Learning, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,
and Oleg Klimov. Proximal Policy Optimization
Algorithms. 2017. URL https://openai-public.
s3-us-west-2.amazonaws.com/blog/
2017-07/ppo/ppo-arxiv.pdf.

Sharma, A., Sharma, M., Rhinehart, N., and Kitani, K. M.
Directed-Info GAIL: Learning Hierarchical Policies from
Unsegmented Demonstrations using Directed Informa-
tion. International Conference in Learning Representa-
tions, 2018. URL http://arxiv.org/abs/1810.
01266.

Shu, T., Xiong, C., and Socher, R. Hierarchical and in-
terpretable skill acquisition in multi-task reinforcement
Learning. International Conference in Learning Rep-
resentations, 3:1–13, 2018. doi: 10.1109/MWC.2016.
7553036.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai,
M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre,
L., Van Den Driessche, G., Graepel, T., and Hassabis,
D. Mastering the game of Go without human knowl-
edge. Nature, 550(7676):354–359, 10 2017. ISSN
14764687. doi: 10.1038/nature24270. URL http:
//arxiv.org/abs/1610.00633.

Sohn, S., Oh, J., and Lee, H. Multitask Reinforcement
Learning for Zero-shot Generalization with Subtask De-
pendencies. Advances in Neural Information Processing
Systems, 2018.

Sutton, R. S., Precup, D., and Singh, S. Between
MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial
Intelligence, 112:181–211, 1999. URL http://
www-anw.cs.umass.edu/~barto/courses/
cs687/Sutton-Precup-Singh-AIJ99.pdf.

Tang, Y. and Salakhutdinov, R. Learning Stochastic Feed-
forward Neural Networks. Advances in Neural Infor-
mation Processing Systems, 2:530–538, 2013. doi:
10.1.1.63.1777.

Vezhnevets, A., Mnih, V., Agapiou, J., Osindero, S., Graves,
A., Vinyals, O., and Kavukcuoglu Google DeepMind, K.
Strategic Attentive Writer for Learning Macro-Actions.
Advances in Neural Information Processing Systems,
2016.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jader-
berg, M., Silver, D., and Kavukcuoglu, K. Feudal Net-
works for Hierarchical Reinforcement Learning. Inter-
national Conference in Machine Learning, 2017. URL
https://arxiv.org/pdf/1703.01161.pdf.

Williams, R. J. Simple Statistical Gradient-Following Algo-
rithms for Connectionist Reinforcement Learning. Ma-
chine Learning, 8(3-4):229–256, 1992.

http://arxiv.org/abs/1805.08180
http://arxiv.org/abs/1811.09656
https://scholarworks.umass.edu/dissertations/AAI9978540
https://scholarworks.umass.edu/dissertations/AAI9978540
https://openai-public.s3-us-west-2.amazonaws.com/blog/2017-07/ppo/ppo-arxiv.pdf
https://openai-public.s3-us-west-2.amazonaws.com/blog/2017-07/ppo/ppo-arxiv.pdf
https://openai-public.s3-us-west-2.amazonaws.com/blog/2017-07/ppo/ppo-arxiv.pdf
http://arxiv.org/abs/1810.01266
http://arxiv.org/abs/1810.01266
http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1610.00633
http://www-anw.cs.umass.edu/~barto/courses/cs687/Sutton-Precup-Singh-AIJ99.pdf
http://www-anw.cs.umass.edu/~barto/courses/cs687/Sutton-Precup-Singh-AIJ99.pdf
http://www-anw.cs.umass.edu/~barto/courses/cs687/Sutton-Precup-Singh-AIJ99.pdf
https://arxiv.org/pdf/1703.01161.pdf

Sub-policy Adaptation for HRL

A. Related Work
The key points in HRL are how the different levels of the hierarchy are defined, trained, and then re-used. In this work, we
are interested in approaches that allow us to build temporal abstractions by having a higher level taking decisions at a slower
frequency than a lower-level. There has been growing interest in HRL for the past few decades (Sutton et al., 1999; Precup,
2000), but only recently has it been applied to high-dimensional continuous domains as we do in this work (Kulkarni et al.,
2016; Daniel et al., 2016).

To obtain the lower level policies, or skills, most methods exploit some additional assumptions, like access to demonstrations
(Le et al., 2018; Merel et al., 2019; Ranchod et al., 2015; Sharma et al., 2018), policy sketches (Andreas et al., 2017), or task
decomposition into sub-tasks (Ghavamzadeh & Mahadevan, 2003; Sohn et al., 2018). Other methods use a different reward
for the lower level, often constraining it to be a “goal reacher” policy, where the signal from the higher level is the goal to
reach (Nachum et al., 2018; Levy et al., 2019; Vezhnevets et al., 2017). These methods are very promising for state-reaching
tasks, but might require access to goal-reaching reward systems not defined in the original MDP, and are more limited when
training on tasks beyond state-reaching. Our method does not require any additional supervision, and the obtained skills are
not constrained to be goal-reaching.

When transferring skills to a new environment, most HRL methods keep them fixed and simply train a new higher-level on
top (Hausman et al., 2018; Heess et al., 2016). Other work allows for building on previous skills by constantly supplementing
the set of skills with new ones (Shu et al., 2018), but they require a hand-defined curriculum of tasks, and the previous skills
are never fine-tuned. Our algorithm allows for seamless adaptation of the skills, showing no trade-off between leveraging the
power of the hierarchy and the final performance in a new task. Other methods use invertible functions as skills (Haarnoja
et al., 2018), and therefore a fixed skill can be fully over-written when a new layer of hierarchy is added on top. This kind of
“fine-tuning” is promising, although they do not apply it to temporally extended skills as we are interested in here.

One of the most general frameworks to define temporally extended hierarchies is the options framework (Sutton et al.,
1999), and it has recently been applied to continuous state spaces (Bacon et al., 2017). One of the most delicate parts of
this formulation is the termination policy, and it requires several regularizers to avoid skill collapse (Harb et al., 2017;
Vezhnevets et al., 2016). This modification of the objective may be difficult to tune and affects the final performance. Instead
of adding such penalties, we propose having skills of a random length, not controlled by the agent during training of the
skills. The benefit is two-fold: no termination policy to train, and more stable skills that transfer better. Furthermore, these
works only used discrete action MDPs. We lift this assumption, and show good performance of our algorithm in complex
locomotion tasks.

The closest work to ours in terms of final algorithm is the one proposed by Frans et al. (2018). Their method can be included
in our framework, and hence benefits from our new theoretical insights. We also introduce two modifications that are shown
to be highly beneficial: the random time-commitment explained above, and the notion of an information bottleneck to obtain
skills that generalize better.

Sub-policy Adaptation for HRL

B. Algorithm

Algorithm 1 Collect Rollout

1: Input: skills πθl(a|s, z), manager πθh(z|s), time-commitment bounds
Pmin and Pmax, horizon H , and bottleneck function o = f(s)

2: Reset environment: s0 ∼ ρ0, t = 0.
3: while t < H do
4: Sample time-commitment p ∼ Cat([Pmin, Pmax])
5: Sample skill zt ∼ πθh(·|st)
6: for t′ = t . . . (t+ p) do
7: Sample action at′ ∼ πθl(·|f(st′), zt)
8: Observe new state st′+1 and reward rt′
9: end for

10: t← t+ p
11: end while
12: Output: (s0, z0, a0, o1, a1, . . . , sH , zH , aH , oH+1)

Algorithm 2 HiPPO

Input: skills πθl(a|s, z), manager πθh(z|s),
horizon H , learning rate α
while not done do

for actor = 1, 2, ..., N do
Obtain trajectory with Collect
Rollout
Estimate advantages Â(at′ , ot′ , zt) and
Â(zt, st)

end for
θ ← θ + α∇θLCLIPHiPPO(θ)

end while

C. Tasks

Figure 5. Snake and Ant are the two agents that we evaluate in the Gather environments.

To answer the posed questions, we evaluate our new algorithms on a variety of robotic navigation tasks. Each task is a
different robot trying to solve the Gather environment (Duan et al., 2016), depicted in Figure 5, in which the agent must
collect apples (green balls, +1 reward) while avoiding bombs (red balls, -1 reward). This is a challenging hierarchical
task with sparse rewards that requires agents to simultaneously learn perception, locomotion, and higher-level planning
capabilities. We use 2 different types of robots within this environment. Snake is a 5-link robot with a 17-dimensional
observation space and 4-dimensional action space; and Ant a quadrupedal robot with a 27-dimensional observation space
and 8-dimensional action space. Both can move and rotate in all directions, and Ant faces the added challenge of avoiding
falling over irrecoverably.

D. Robustness to Dynamics Perturbations

Gather Algorithm Initial Mass Dampening Inertia Friction

Snake
Flat PPO 2.72 3.16 (+16%) 2.75 (+1%) 2.11 (-22%) 2.75 (+1%)
HiPPO, p = 10 4.38 3.28 (-25%) 3.27 (-25%) 3.03 (-31%) 3.27 (-25%)
HiPPO random p 5.11 4.09 (-20%) 4.03 (-21%) 3.21 (-37%) 4.03 (-21%)

Ant
Flat PPO 2.25 2.53 (+12%) 2.13 (-5%) 2.36 (+5%) 1.96 (-13%)
HiPPO, p = 10 3.84 3.31 (-14%) 3.37 (-12%) 2.88 (-25%) 3.07 (-20%)
HiPPO random p 3.22 3.37 (+5%) 2.57 (-20%) 3.36 (+4%) 2.84 (-12%)

Table 1. Zero-shot transfer performance of flat PPO, HiPPO, and HiPPO with randomized period. The performance in the initial
environment is shown, as well as the average performance over 25 rollouts in each new modified environment.

Sub-policy Adaptation for HRL

We try several different modifications to the base Snake Gather and Ant Gather environments. One at a time, we change the
body mass, dampening of the joints, body inertia, and friction characteristics of both robots. The results, presented in Table
1, show that HiPPO with randomized period Categorical([Tmin, Tmax]) not only learns faster initially on the original
task, but it is also able to better handle these dynamics changes. In terms of the percent change in policy performance
between the training environment and test environment, it is able to outperform HiPPO with fixed period on 6 out of 8
related tasks without even taking any gradient steps. Our hypothesis is that the randomized period teaches the policy to
adapt to wide variety of scenarios, while its information bottleneck is able to keep separate its representations for planning
and locomotion, so changes in dynamics aren’t able to simultaneously affect both.

E. Skill Diversity Assumption

Gather Algorithm Cosine Similarity maxz′ 6=zkp πθl(at|ot, z′)

Snake Adapt given skills 0.98± 0.01 0.09± 0.04
HiPPO 0.97± 0.03 0.12± 0.03

Ant Adapt given skills 0.96± 0.04 0.11± 0.05
HiPPO 0.94± 0.03 0.13± 0.05

Table 2. Empirical evaluation of Lemma 1. On the right column we evaluate the quality of our assumption by computing what is the
average largest probability of a certain action under other skills. On the left column we report cosine similarity between our approximate
gradient and the gradient computed using Eq. 2 without approximation.

In Lemma 1, we assumed that the sub-policies present ought to be diverse. This allowed us to derive a more efficient and
numerically stable gradient. In this section, we empirically test the validity of our assumption, as well as the quality of our
approximation. For this we run, on Snake Gather and Ant Gather, the HiPPO algorithm both from scratch and on some
pretrained skills as described in the previous section. In Table 2, we report the average maximum probability under other
sub-policies, corresponding to ε from the assumption. We observe that in all settings this is on the order of magnitude of
0.1. Therefore, under the p = 10 that we use in our experiments, the term we neglect has a factor εp−1 = 10−10. It is not
surprising then that the average cosine similarity between the full gradient and the approximated one is almost 1, as also
reported in Table 2. We only ran two random seeds of these experiments, as the results seemed pretty consistent, and they
are more computationally challenging to run.

F. Hyperparameters and Architectures
For all experiments, both PPO and HiPPO used learning rate 3× 10−3, clipping parameter ε = 0.1, 10 gradient updates per
iteration, a batch size of 100,000, and discount γ = 0.999. HiPPO used n = 6 sub-policies. Ant Gather has a horizon of
5000, while Snake Gather has a horizon of 8000 due to its larger size. All runs used three random seeds. HiPPO uses a
manager network with 2 hidden layers of 32 units, and a skill network with 2 hidden layers of 64 units. In order to have
roughly the same number of parameters for each algorithm, flat PPO uses a network with 2 hidden layers with 256 and 64
units respectively. For HiPPO with randomized period, we resample p ∼ Uniform{5, 15} every time the manager network
outputs a latent, and provide the number of timesteps until the next latent selection as an input into both the manager and
skill networks. The single baselines and skill-dependent baselines used a MLP with 2 hidden layers of 32 units to fit the
value function. The skill-dependent baseline receives, in addition to the full observation, the active latent code and the time
remaining until the next skill sampling.

Sub-policy Adaptation for HRL

G. Proofs
Lemma 1. If the skills are sufficiently differentiated, then the latent variable can be treated as part of the observation to
compute the gradient of the trajectory probability. Concretely, if πθh(z|s) and πθl(a|s, z) are Lipschitz in their parameters,
and 0 < πθl(at|st, zj) < ε ∀j 6= kp, then

∇θ logP (τ) =
H/p∑
k=0

∇θ log πθh(zkp|skp)

+

p∑
t=1

∇θ log πθl(at|ot, zkp) +O(nHεp−1) (4)

Proof. From the point of view of the MDP, a trajectory is a sequence τ = (s0, a0, s1, a1, . . . , aH−1, sH). Let’s assume we
use the hierarchical policy introduced above, with a higher-level policy modeled as a parameterized discrete distribution
with n possible outcomes πθh(z|s) = Categoricalθh(n). We can expand P (τ) into the product of policy and environment
dynamics terms, with zj denoting the jth possible value out of the n choices,

P (τ) =

(H/p∏
k=0

[n∑
j=1

πθh(zj |skp)
(k+1)p−1∏
t=kp

πθl(at|st, zj)
])[

P (s0)

H∏
t=1

P (st+1|st, at)
]

Taking the gradient of logP (τ) with respect to the policy parameters θ = [θh, θl], the dynamics terms disappear, leaving:

∇θ logP (τ) =
H/p∑
k=0

∇θ log
(n∑
j=1

πθl(zj |skp)
(k+1)p−1∏
t=kp

πs,θ(at|st, zj)
)

=

H/p∑
k=0

1∑n
j=1 πθh(zj |skp)

∏(k+1)p−1
t=kp πθl(at|st, zj)

n∑
j=1

∇θ
(
πθh(zj |skp)

(k+1)p−1∏
t=kp

πθl(at|st, zj)
)

The sum over possible values of z prevents the logarithm from splitting the product over the p-step sub-trajectories. This
term is problematic, as this product quickly approaches 0 as p increases, and suffers from considerable numerical instabilities.
Instead, we want to approximate this sum of products by a single one of the terms, which can then be decomposed into a
sum of logs. For this we study each of the terms in the sum: the gradient of a sub-trajectory probability under a specific
latent ∇θ

(
πθh(zj |skp)

∏(k+1)p−1
t=kp πθl(at|st, zj)

)
. Now we can use the assumption that the skills are easy to distinguish,

0 < πθl(at|st, zj) < ε ∀j 6= kp. Therefore, the probability of the sub-trajectory under a latent different than the one that
was originally sampled zj 6= zkp, is upper bounded by εp. Taking the gradient, applying the product rule, and the Lipschitz
continuity of the policies, we obtain that for all zj 6= zkp,

∇θ
(
πθh(zj |skp)

(k+1)p−1∏
t=kp

πθl(at|st, zj)
)
= ∇θπθh(zj |skp)

(k+1)p−1∏
t=kp

πθl(at|st, zj)+

(k+1)p−1∑
t=kp

πθh(zj |skp)
(
∇θπθl(at|st, zj)

) (k+1)p−1∏
t=kp
t′ 6=t

πθl(at′ |st′ , zj)

= O(pεp−1)

Thus, we can across the board replace the summation over latents by the single term corresponding to the latent that was

Sub-policy Adaptation for HRL

sampled at that time.

∇θ logP (τ) =
H/p∑
k=0

1

πθh(zkp|skp)
∏(k+1)p−1
t=kp πθl(at|st, zkp)

∇θ
(
P (zkp|skp)

(k+1)p−1∏
t=kp

πθl(at|st, zkp)
)
+
nH

p
O(pεp−1)

=

H/p∑
k=0

∇θ log
(
πθh(zkp|skp)

(k+1)p−1∏
t=kp

πθl(at|st, zkp)
)
+O(nHεp−1)

= Eτ
[(H/p∑

k=0

∇θ log πθh(zkp|skp) +
H∑
t=1

∇θ log πθl(at|st, zkp)
)]

+O(nHεp−1)

Interestingly, this is exactly ∇θP (s0, z0, a0, s1, . . .). In other words, it’s the gradient of the probability of that trajectory,
where the trajectory now includes the variables z as if they were observed.

Lemma 2. For any functions bh : S → R and bl : S × Z → R we have:

Eτ [
H/p∑
k=0

∇θ logP (zkp|skp)b(skp)] = 0

Eτ [
H∑
t=0

∇θ log πs,θ(at|st, zkp)b(st, zkp)] = 0

Proof. We can use the law of iterated expectations as well as the fact that the interior expression only depends on skp and
zkp:

Eτ [
H/p∑
k=0

∇θ logP (zkp|skp)b(skp)] =
H/p∑
k=0

Eskp,zkp [Eτ\skp,zkp [∇θ logP (zkp|skp)b(skp)]]

=

H/p∑
k=0

Eskp,zkp [∇θ logP (zkp|skp)b(skp)]

Then, we can write out the definition of the expectation and undo the gradient-log trick to prove that the baseline is unbiased.

Eτ [
H/p∑
k=0

∇θ log πθh(zkp|skp)b(skp)] =
H/p∑
k=0

∫
(skp,zkp)

P (skp, zkp)∇θ log πθh(zkp|skp)b(skp)dzkpdskp

=

H/p∑
k=0

∫
skp

P (skp)b(skp)

∫
zkp

πθh(zkp|skp)∇θ log πθh(zkp|skp)dzkpdskp

=

H/p∑
k=0

∫
skp

P (skp)b(skp)

∫
zkp

πθh(zkp|skp)
1

πθh(zkp|skp)
∇θπθh(zkp|skp)dzkpdskp

=

H/p∑
k=0

∫
skp

P (skp)b(skp)∇θ
∫
zkp

πθh(zkp|skp)dzkpdskp

=

H/p∑
k=0

∫
skp

P (skp)b(skp)∇θ1dskp

= 0

Sub-policy Adaptation for HRL

Subtracting a state- and subpolicy- dependent baseline from the second term is also unbiased, i.e.

Eτ [
H∑
t=0

∇θ log πs,θ(at|st, zkp)b(st, zkp)] = 0

We’ll follow the same strategy to prove the second equality: apply the same law of iterated expectations trick, express the
expectation as an integral, and undo the gradient-log trick.

Eτ [
H∑
t=0

∇θ log πθl(at|st, zkp)b(st, zkp)]

=

H∑
t=0

Est,at,zkp [Eτ\st,at,zkp [∇θ log πθm(at|st, zkp)b(st, zkp)]]

=

H∑
t=0

Est,at,zkp [∇θ log πθl(at|st, zkp)b(skp, zkp)]

=

H∑
t=0

∫
(st,zkp)

P (st, zkp)b(st, zkp)

∫
at

πθl(at|st, zkp)∇θ log πθl(at|st, zkp)datdzkpdst

=

H∑
t=0

∫
(st,zkp)

P (st, zkp)b(st, zkp)∇θ1dzkpdst

= 0

