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ABSTRACT

We present TraceFlow, a novel framework for high-fidelity rendering of dynamic
specular scenes by addressing two key challenges: precise reflection direction es-
timation and physically accurate reflection modeling. To achieve this, we propose
a Residual Material-Augmented 2D Gaussian Splatting representation that mod-
els dynamic geometry and material properties, allowing accurate reflection ray
computation. Furthermore, we introduce a Dynamic Environment Gaussian and
a hybrid rendering pipeline that decomposes rendering into diffuse and specu-
lar components, enabling physically grounded specular synthesis via rasterization
and ray tracing. Finally, we devise a coarse-to-fine training strategy to improve op-
timization stability and promote physically meaningful decomposition. Extensive
experiments on dynamic scene benchmarks demonstrate that TraceFlow outper-
forms prior methods both quantitatively and qualitatively, producing sharper and
more realistic specular reflections in complex dynamic environments.

1 INTRODUCTION

High-quality dynamic reconstruction and photorealistic rendering from monocular videos are es-
sential for a wide range of applications, including augmented/virtual reality (AR/VR), 4D content
creation, and artistic production. In recent years, Neural Radiance Fields (NeRF) (Mildenhall et al.,
2020) and 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) have emerged as groundbreaking tech-
niques in 3D reconstruction, also driving progress in monocular dynamic scene modeling. In par-
ticular, 3DGS represents a scene as a collection of 3D Gaussians and employs a rasterization-based
rendering pipeline, greatly improving the efficiency of novel view synthesis. However, extending
3DGS to faithfully model dynamic scenes with specular surfaces remains challenging, primarily due
to the difficulty of precise geometry estimation and ensuring physically accurate reflection modeling
throughout the dynamic process.

Recently, several works have begun to consider view-dependent dynamic reconstruction. Yan et al.
(2023) achieves dynamic view-dependent specular reconstruction by conditioning the radiance field
on per-frame surface orientation in the observation space. To better capture view-dependent effects,
Gao et al. (2025) proposes a 7D Gaussian representation that incorporates spatial, temporal, and
directional information. Fan et al. (2024) further advances this direction by dynamically decompos-
ing rendering into diffuse and specular components and introducing a dynamic environment map,
achieving improved modeling of dynamic specular reflections.

Physically, in dynamic specular reconstruction, specular details arise from the reflection of rays,
which requires careful consideration of the reflection ray direction and simulation process of re-
flection. Recent view-dependent methods have introduced the use of reflection directions and have
physically approximated the specular imaging process by employing dynamic environment maps:
incident rays reflect off surfaces, and outgoing rays query the environment map to estimate the sur-
face appearance.

However, two key issues remain. First, the calculation of reflection ray directions is often highly
approximate. Since 3DGS-based methods do not explicitly reconstruct surfaces, surface normals are
typically estimated approximately. This approximation can cause deviations in reflection directions,
which lead to inaccuracies in specular color computation. Second, while dynamic environment
maps can approximate far-field reflections, they cannot accurately model near-field reflections and
are limited by the resolution of the environment map, resulting in a loss of fine details.
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Figure 1: TraceFlow shows the sharpest and most photorealistic specular details among all com-
pared approaches. PSNR ↑ and SSIM ↑ should be as high as possible. The performance shown in
the figure corresponds to the Plate scene. Please ß zoom in for a clearer view.

In light of the preceding discussions, we present TraceFlow, a novel framework for dynamic view-
dependent reconstruction, explicitly designed to address the challenges in modeling complex spec-
ular reflections within dynamic scenes. TraceFlow comprises three key components: First, a Resid-
ual Material-Augmented 2D Gaussian Splatting representation that accurately captures dynamic
geometry and temporally evolving material properties, ensuring precise reflection ray computation
without normal estimation inaccuracies. Second, a Dynamic Environment Gaussian representation
combined with a physically grounded hybrid rendering pipeline, explicitly decomposing appearance
into diffuse and specular components, enabling high-quality reconstruction of dynamic specular re-
flections. Third, a carefully designed coarse-to-fine training strategy stabilizes training and guides
the model toward physically meaningful decomposition, resulting in robust and photorealistic novel
view synthesis from monocular videos of dynamic specular scenes.

Our evaluations demonstrate that TraceFlow achieves state-of-the-art performance on dynamic scene
benchmarks with complex specular reflections. As shown in Figure 1, our method produces the
sharpest and most photorealistic specular details among all compared approaches. Quantitatively,
TraceFlow outperforms prior works across multiple metrics, achieving improvements of 0.74 in
PSNR, 0.0358 in SSIM, and 0.0307 in LPIPS compared to the previous state-of-the-art, validating
its effectiveness in dynamic specular reconstruction and photorealistic novel view synthesis.

2 RELATED WORK

Specular Scene Reconstruction. Neural Radiance Field (NeRF) (Mildenhall et al., 2020) and 3D
Gaussian Splatting (3DGS) (Kerbl et al., 2023) have emerged as a significant advancement in com-
puter graphics and 3D vision, achieving high-fidelity rendering quality. Numerous works have been
proposed to improve rendering quality (Barron et al., 2021; 2022; 2023; Yu et al., 2024; Lu et al.,
2024; Bi et al., 2024), rendering efficiency (Chen et al., 2022; Sara Fridovich-Keil and Alex Yu
et al., 2022; Liu et al., 2020; Müller et al., 2022; Sun et al., 2022; Lee et al., 2024; Bagdasarian
et al., 2024), geometry quality (Liu et al., 2023b; Wang et al., 2021; 2023; Li et al., 2023; Wang
et al., 2024a; Yariv et al., 2020; Huang et al., 2024a; Chen et al., 2024a;c), and training optimization
(Kheradmand et al., 2024; Höllein et al., 2024). However, these methods typically model specular
effects either by directly encoding view direction or by relying on spherical harmonics (SH). Due
to solely relying on viewing ray direction information, these methods often struggle to accurately
capture high-frequency specular details, which frequently results in blurry reflections.

To address this, mainstream approaches (Verbin et al., 2022; Ma et al., 2023; Verbin et al., 2024;
Tang & Cham, 2024; Keyang et al., 2024; Jiang et al., 2023; Liang et al., 2023a; Chen et al., 2024b;
Xie et al., 2024; Gu et al., 2024) typically decompose rendering into diffuse and specular compo-
nents. To capture specular reflections, one key is to utilize incident ray direction and outgoing ray
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direction information, either by using implicit neural networks (Verbin et al., 2022) to model light-
ing conditions or by leveraging explicit environment representations (Jiang et al., 2023; Xie et al.,
2024) to improve reflection modeling capabilities. Another key is improving the quality of surface
geometry and the accuracy of normal estimation (Chen et al., 2024b; Ge et al., 2023; Liang et al.,
2023a;b; Liu et al., 2023b; Zhang et al., 2023; Yang et al., 2024b; Zhu et al., 2024b), which enables
more precise reflection ray directions and thereby strengthens the modeling of reflective effects.
Nevertheless, accurately and physically modeling dynamic environments and time-varying specular
reflections remains a significant challenge. To address this, our work proposes a novel approach
that incorporates a deformable environment representation along with additional explicit Gaussian
attributes, specifically designed to capture temporal variations in specular color.

Dynamic Scene Reconstruction. Recent advances in dynamic scene reconstruction have largely
built upon two prominent paradigms: Neural Radiance Fields (NeRF) (Mildenhall et al., 2020) and
3D Gaussian Splatting (3DGS) (Kerbl et al., 2023). Mildenhall et al. (2020) revolutionized novel
view synthesis by representing scenes as continuous volumetric functions parameterized by neural
networks. While initially designed for static scenes, a range of extensions (Chen et al., 2024d;
Guo et al., 2023; Li et al., 2021; Liu et al., 2023a; Ma et al., 2024; Park et al., 2021a;b; Pumarola
et al., 2020; Tretschk et al., 2021; Wu et al., 2025; Xian et al., 2021) have adapted NeRFs for
dynamic scenarios. These include D-NeRF (Pumarola et al., 2020), Nerfies (Park et al., 2021a), and
HyperNeRF (Park et al., 2021b), which condition on time and learn deformation fields to warp points
across timesteps. Other methods, such as DyNeRF (Liu et al., 2023a), use compact latent codes
for time-conditioned radiance fields, and HexPlane (Cao & Johnson, 2023) accelerates rendering
via hybrid representations. Despite these efforts, NeRF-based approaches remain computationally
intensive and often struggle with real-time performance and accurate modeling of view-dependent
effects in complex dynamic scenes.

To address these challenges, 3D Gaussian Splatting (Kerbl et al., 2023) has emerged as a promising
alternative, offering high-quality, real-time rendering via rasterization of 3D Gaussians with learn-
able parameters. Building on this foundation, several works (Huang et al., 2024b; Liang et al.,
2023c; Stearns et al., 2024; Wang et al., 2024b; Wu et al., 2023; Yang et al., 2023; 2024a; Gao et al.,
2024; 2025; Zhu et al., 2024a) have extended 3DGS to dynamic settings. Some methods (Huang
et al., 2024b; Liang et al., 2023c; Stearns et al., 2024; Wang et al., 2024b; Wu et al., 2023; Yang et al.,
2023) utilize deformable networks to add a residual component to the attributes of 3D Gaussians,
embedding both temporal and spatial information into the representation. Other approaches (Yang
et al., 2024a; Gao et al., 2024; 2025) extend 3DGS to higher-dimensional Gaussian distributions,
treating the 3D Gaussians at each timestamp as a conditional distribution conditioned on time. More
recently, Fan et al. (2024) introduced a dynamic environment map into dynamic scene reconstruc-
tion, enabling improved modeling of dynamic specular reflections. However, these methods still
lack precise reflection direction estimation and physically accurate reflection modeling throughout
the dynamic process. To address these limitations, our work proposes a new approach that computes
reflection ray directions without approximation and explicitly models the dynamic specular reflec-
tion process in a physically grounded manner, thereby enabling accurate and temporally consistent
reconstruction of complex dynamic specular effects.

3 PRELIMINARY

2D Gaussian Splatting. Our reconstruction stage builds upon the state-of-the-art point-based ren-
derer with high-quality geometry performance, 2DGS (Huang et al., 2024a). 2DGS comprises sev-
eral components: the central point pk, two principal tangential vectors tu and tv that determine
its orientation, and a scaling vector S = (su, sv) controlling the variances of the 2D Gaussian dis-
tribution. 2D Gaussian Splatting represents the scene’s geometry as a set of 2D Gaussians. A 2D
Gaussian is defined in a local tangent plane in world space, parameterized as follows:

P (u, v) = pk + sutuu+ svtvv. (1)

For the point u = (u, v) in uv space, its 2D Gaussian value can then be evaluated by:

G(u) = exp

(
−u2 + v2

2

)
. (2)

The center pk, scaling (su, sv), and the rotation (tu, tv) are learnable parameters. Each 2D Gaussian
primitive has opacity α and view-dependent appearance c with spherical harmonics.
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Frame i

Gaussians at time i Gaussians at time j
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(a) Physically-Based Modeling of Dynamic Specular Reflection via Ray Tracing (b) Hybrid Rendering

Final Color

Viewing Ray
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Figure 2: Overview of TraceFlow. (a) For a dynamic specular scene, at each timestamp, a viewing
ray is traced from the camera. After intersecting with the main content, it reflects off the surface
based on the surface normal. The resulting reflection ray then intersects with the dynamic envi-
ronment. (b) To render such a scene, we use rasterization to compute the diffuse color of the main
content and employ a ray tracer to compute the specular color via the reflection ray. Finally, the
diffuse and specular components are blended to obtain the final color.

For volume rendering, Gaussians are sorted according to their depth value and composed into an
image with front-to-back alpha blending:

c(x) =
∑
i=1

ciαiGi(u(x))

i−1∏
j=1

(1− αjGj(u(x))). (3)

where x represents a homogeneous ray emitted from the camera and passing through uv space.

Compared to a 3DGS (Kerbl et al., 2023), 2DGS (Huang et al., 2024a) offers distinct advan-
tages as a surface representation. First, the ray-splat intersection method adopted by 2DGS avoids
multi-view depth inconsistency. Second, 2D Gaussians inherently provide a well-defined normal,
which is defined by two orthogonal tangential vectors tw = tu × tv , thus avoiding approxima-
tions when computing surface normals and reflection ray directions, which is critical for capturing
high-frequency specular details. However, 2DGS relies on the limited representational capacity of
Spherical Harmonics (SH) to model view-dependent scene appearance and struggles to reconstruct
dynamic scenes. To this end, we extend the geometry-aligned 2D Gaussian primitives to Residual
Material-Augmented 2DGS and demonstrate how we effectively model complex dynamic reflec-
tions in the next section.

4 METHOD

Overview of the approach. Given a monocular video of a dynamic specular scene, our goal is to
reconstruct the dynamic scene and synthesize photorealistic novel views in real-time. To ensure the
quality of the dynamic scene geometry and the accuracy of reflection ray direction computation, as
well as to effectively model material properties across different parts of the dynamic scene, we pro-
pose Residual Material-Augmented 2DGS to represent the dominant content of the dynamic scene.
Building on this, we propose a Dynamic Environment Gaussian to learn the dynamic environment,
enabling the computation of specular color through reflection rays in a physically grounded manner.
Finally, to further improve training stability, we propose a coarse-to-fine training strategy.

4.1 RESIDUAL MATERIAL-AUGMENTED 2DGS

Challenges in Normal Estimation for 3D Representation. Normal estimation is critical for mod-
eling specular objects because accurately determining the reflection ray direction relies on obtaining
the surface normal n. The reflection ray direction dout is computed as follows, din is the incident
ray direction:

dout = din − 2(din · n)n. (4)
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However, accurate normal estimation on Gaussian spheres remains challenging. Although recent
works (Jiang et al., 2023; Fan et al., 2024) have proposed approximation-based methods for estimat-
ing normals, such approximations inevitably introduce errors. These errors propagate into compu-
tation of the reflection ray direction dout, further amplifying inaccuracies. As a result, fine details
in specular effects may be significantly distorted or incorrectly reconstructed. This motivates the
search for a representation that enables accurate and error-free normal computation. As discussed
earlier in the preliminary section, 2DGS (Huang et al., 2024a) inherently provides well-defined nor-
mals without approximation during computation. However, 2DGS (Huang et al., 2024a) is originally
designed for static scenes, struggles with dynamic reconstruction, and lacks ability to model surface
material properties, which are essential for physically-based rendering (PBR) (Pharr et al., 2016).

Residual Material-Augmented 2DGS. Specular tint stint ∈ [0, 1] (Burley, 2012) is a key material
property in physically based rendering (PBR) (Pharr et al., 2016) frameworks. Specular tint controls
the color of specular reflections based on the material’s intrinsic color. Accurately modeling these
properties is essential for faithfully reproducing realistic appearance under varying lighting condi-
tions. To capture the material properties of the 3D scene, we introduce stint as learnable parameters
for each 2D Gaussian.

To enable the representation to capture time-varying information, we propose a Time-Conditioned
Residual Network with parameters θ to predict a residual ∆Gt = {∆pt,∆st,∆rt,∆ot,∆sttint}
that refines the parameters of the representation, where G denotes the Residual Material-Augmented
2DGS. The input to this network consists of the center position of each Gaussian p and the time t:

∆Gt = FθG(p, t),p ∈ R3, t ∈ [0, 1] (5)

So that the deformed Gaussians Gt at time t is obtained by (pt, st, rt,ot, sttint) =
(∆pt,∆st,∆rt,∆ot,∆sttint) + (p, s, r,o, stint). To further improve the quality of the reconstructed
geometry, we introduce additional supervision on the surface normals.

Geometry-Aligned Normal Loss. Following 2DGS (Huang et al., 2024a), we adopt a normal con-
sistency loss Lnorm to enforce consistency between the rendered normal map n and pseudo normal
map Nd derived from the depth map. The pseudo normal map is computed via normalized cross-
products of spatial depth gradients. The consistency loss is defined as:

Lnorm =
1

Np

Np∑
i=1

(
1− n⊤

i Nd(ui)
)
, (6)

where Np is the number of pixels, ni is the predicted normal at pixel i, and Nd(ui) is the pseudo
normal at pixel ui, computed as:

Nd(u) =
∇uPd ×∇vPd

∥∇uPd ×∇vPd∥
, (7)

Temporal-Consistent Normal Supervision Loss. While Lnorm provides a self-supervised con-
straint based on geometric consistency, it is often insufficient for supervising complex dynamic
surfaces in the absence of explicit normal supervision. To overcome this limitation, we introduce
a supervised loss Ltc-norm using normals Ne estimated by NormalCrafter (Bin et al., 2025), which
leverages video diffusion priors to produce temporally consistent surface normals. Compared to
other monocular normal estimators, this prior provides improved temporal consistency, effectively
reducing frame-to-frame flickering and making it well-suited for supervising dynamic geometry in
view-dependent scenarios.

Ltc-norm =
1

Np

Np∑
i=1

(
1− n⊤

i Ne

)
. (8)

Summary. This approach captures dynamic motion while preserving high-quality geometry, allow-
ing accurate reflection ray direction computation for dynamic scenes, which is an essential prereq-
uisite for the subsequent physically based modeling of dynamic specular reflection.

4.2 PHYSICALLY BASED MODELING OF DYNAMIC SPECULAR REFLECTION

Given a reliable representation of the main content from Residual Material-Augmented 2DGS, the
next critical step is to accurately model the reflection process. Specifically, incident rays intersect

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

with the main object, reflect off its surface based on the surface normals, and subsequently intersect
with the surrounding environment to determine the reflected illumination.

Dynamic Environment Gaussian. Recent methods (Fan et al., 2024; Jiang et al., 2023) typically
utilize dynamic environment maps to model dynamic illumination conditions. However, due to in-
herent limitations, environment maps often struggle to capture high-quality specular details. First,
environment maps have limited resolution, resulting in blurred or insufficiently sharp specular re-
flections. Second, environment maps inherently assume distant illumination, failing to accurately
model near-field reflections, which are crucial for realistic rendering of close-proximity interactions.

To address these limitations, inspired by (Xie et al., 2024), we introduce Dynamic Environment
Gaussian representations Genv to model the dynamic environment precisely. Each Gaussian in Genv
is parameterized similarly to 2D Gaussian Splatting (2DGS), including attributes such as position p,
scale s, rotation r, and opacity o. To capture temporal variations, we introduce a residual correction
network Fθenv that predicts time-dependent residuals. Specifically, at timestamp t, the dynamic
environment Gaussian Gt

env is defined by applying the residual corrections predicted by Fθenv :

∆Gt
env = Fθenv(p, t), p ∈ R3, t ∈ [0, 1], (9)

and the parameters at time t are updated as:

Gt
env = (p, s, r,o) + (∆pt,∆st,∆rt,∆ot). (10)

This enables accurate modeling of time-varying environmental illumination and reflection dynamics.

Color Decomposition. Following the principles of physically based rendering (PBR) (Pharr et al.,
2016) and recent works (Jiang et al., 2023; Fan et al., 2024; Xie et al., 2024), we explicitly decom-
pose the rendered color into diffuse Cdiffuse and specular Cspecular components. Such decomposition
allows us to separately handle view-independent illumination (diffuse), primarily influenced by sur-
face albedo and environmental lighting, and view-dependent illumination (specular), which depends
on reflection directions and surface properties. This explicit separation enhances the accuracy and
realism of specular reflections, enabling detailed control and modeling of complex reflective behav-
iors. Formally, the final rendered color C at each pixel is computed as:

C = (1− αspec)Cdiffuse + αspecCspecular, (11)

where the blending weight αspec balances the contribution between diffuse and specular components.

To derive αspec from the material properties, we employ a separate rasterization process where each
Gaussian contributes via its opacity-weighted specular tint stint. This ensures that the specular blend-
ing weight is computed in a view-dependent manner through a transmittance-weighted sum over
visible Gaussians:

αspec =
∑
i∈N

stint,iαi

i−1∏
j=1

(1− αj), (12)

where stint,i is the specular tint of the i-th Gaussian, and αi is computed from a 2D Gaussian pro-
jection scaled by a learned per-point opacity. This formulation ensures that specular contribution is
view-dependent and geometry-aware.

Hybrid Rendering Pipeline. To efficiently and accurately synthesize view-dependent reflections,
we employ a hybrid rendering pipeline that combines rasterization and physically-based ray tracing.
Specifically, we first utilize the rasterization-based rendering pipeline provided by (Huang et al.,
2024a) to compute the diffuse color Cdiffuse using incident rays:

Cdiffuse =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj), (13)

where ci denotes the diffuse color attribute of the i-th Gaussian intersected by the ray, αi is its
opacity, and N represents the set of Gaussians along the ray.

Subsequently, we employ a physically grounded ray tracer (Xie et al., 2024) to compute the specular
color Cspecular by tracing reflection rays guided by accurate surface normals. These rays query the
Dynamic Environment Gaussian representation, modeling time-varying environment illumination.

6
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GT Ours 4DGS GaussianShaderSpectroMotion

Figure 3: Qualitative Comparison Results on the NeRF-DS Dataset. Our method significantly
improves the visual quality of dynamic specular reconstruction compared to previous approaches.
In particular, it produces sharper details and fewer artifacts in specular regions, demonstrating en-
hanced fidelity in modeling dynamic reflections. Please ß zoom in for more details.

For each reflected ray, we collect up to k Gaussian intersections and aggregate their contributions
by spatial proximity and accumulated transmittance. The specular color Cspecular is computed as:

Cspecular =

k∑
i=1

Ti · Gi(H
−1
i xi) · ci, (14)

where xi is the intersection point between the reflection ray and the i-th Gaussian, Hi is its affine
transformation matrix, ci is the specular color attribute of the Gaussian, and Gi(·) denotes the
isotropic Gaussian kernel evaluated in the local coordinate system. Ti =

∏i−1
j=1(1 − αj) represents

the accumulated transmittance along the ray, with αj being the opacity of the j-th Gaussian.

Summary. By explicitly modeling dynamic environments, decomposing appearance into diffuse
and specular components, and combining rasterization with ray tracing, our framework achieves
physically accurate reconstruction of dynamic specular effects. To ensure robust and stable conver-
gence, we then introduce a coarse-to-fine training strategy tailored for dynamic scenes.

4.3 COARSE-TO-FINE TRAINING STRATEGY

Although our method explicitly decomposes the final color into diffuse and specular components,
supervision is only applied to the final rendered color C. As a result, the network receives no di-
rect supervision for either Cdiffuse or Cspecular, which makes the decomposition problem inherently
ill-posed and potentially unstable, especially in the early stages of training. Without proper regu-
larization, the network may converge to degenerate solutions that satisfy the color loss but fail to
accurately separate physically meaningful reflectance components.

We begin training with the diffuse rendering branch only, focusing on reconstructing geometry and
diffuse color from incident rays. This provides a stable geometric and photometric foundation for the
network. Once the diffuse reconstruction reaches a reasonable quality, we progressively introduce
the specular rendering branch and train the full model, allowing the ray-traced reflection components
to learn the specular detail. Details of the strategy are provided in the supplementary material.

This staged training procedure improves convergence stability, reduces entanglement between dif-
fuse and specular components, and promotes better geometry-material separation. It is particularly
effective when learning from real-world monocular videos with complex specular effects.
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Table 1: Quantitative comparison on the NeRF-DS Yan et al. (2023) dataset. We report the
average PSNR, SSIM, and LPIPS (VGG) across seven scenes. The best , the second best , and the
third best results are denoted by red, orange, yellow.

As Basin Bell Cup

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Deformable 3DGS Yang et al. (2023) 26.04 0.8805 0.1850 19.53 0.7855 0.1924 23.96 0.7945 0.2767 24.49 0.8822 0.1658
4DGS Yang et al. (2024a) 24.85 0.8632 0.2038 19.26 0.7670 0.2196 22.86 0.8015 0.2061 23.82 0.8695 0.1792
GaussianShader Jiang et al. (2023) 21.89 0.7739 0.3620 17.79 0.6670 0.4187 20.69 0.8169 0.3024 20.40 0.7437 0.3385
GS-IR Liang et al. (2023d) 21.58 0.8033 0.3033 18.06 0.7248 0.3135 20.66 0.7829 0.2603 20.34 0.8193 0.2719
NeRF-DS Yan et al. (2023) 25.34 0.8803 0.2150 20.23 0.8053 0.2508 22.57 0.7811 0.2921 24.51 0.8802 0.1707
HyperNeRF Park et al. (2021b) 17.59 0.8518 0.2390 22.58 0.8156 0.2497 19.80 0.7650 0.2999 15.45 0.8295 0.2302
EnvGS Xie et al. (2024) 21.59 0.7925 0.2997 17.95 0.7506 0.2855 20.75 0.7998 0.2331 20.25 0.8074 0.2717
SpectroMotion Wang et al. (2024b) 26.80 0.8843 0.1761 19.75 0.7915 0.1896 25.46 0.8490 0.1600 24.65 0.8871 0.1588
Ours 26.73 0.9026 0.1560 20.42 0.8479 0.1514 25.69 0.8825 0.1205 25.08 0.9082 0.1394

Plate Press Sieve Mean

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Deformable 3DGS Yang et al. (2023) 19.07 0.7352 0.3599 25.52 0.8594 0.1964 25.37 0.8616 0.1643 23.43 0.8284 0.2201
4DGS Yang et al. (2024a) 18.77 0.7709 0.2721 24.82 0.8355 0.2255 25.16 0.8566 0.1745 22.79 0.8235 0.2115
GaussianShader Jiang et al. (2023) 14.55 0.6423 0.4955 19.97 0.7244 0.4507 22.58 0.7862 0.3057 19.70 0.7363 0.3819
GS-IR Liang et al. (2023d) 15.98 0.6969 0.4200 22.28 0.8088 0.3067 22.84 0.8212 0.2236 20.25 0.7796 0.2999
NeRF-DS Yan et al. (2023) 19.70 0.7813 0.2974 25.35 0.8703 0.2552 24.99 0.8705 0.2001 23.24 0.8384 0.2402
HyperNeRF Park et al. (2021b) 21.22 0.7829 0.3166 16.54 0.8200 0.2810 19.92 0.8521 0.2142 19.01 0.8167 0.2615
EnvGS Xie et al. (2024) 15.33 0.6662 0.4005 21.84 0.8029 0.3032 23.74 0.8637 0.1922 20.21 0.7833 0.2837
SpectroMotion Fan et al. (2024) 20.84 0.8172 0.2198 26.49 0.8657 0.1889 25.22 0.8705 0.1513 24.17 0.8522 0.1778
Ours 21.10 0.8415 0.1821 27.39 0.9154 0.1559 27.95 0.9178 0.1242 24.91 0.8880 0.1471

5 EXPERIMENTS

5.1 COMPARISON WITH BASELINE

Quantitative Comparation Results.

Table 2: Quantitative comparison on HyperNeRF (Park
et al., 2021b). Best and second best results are highlighted.
Method PSNR↑ SSIM↑ LPIPS↓

General dynamic reconstruction methods

Deformable 3DGS Yang et al. (2023) 22.78 0.6201 0.3380
4DGS Yang et al. (2024a) 24.89 0.6781 0.3422
HyperNeRF Park et al. (2021b) 23.11 0.6387 0.3968

Specular reconstruction methods

NeRF-DS Yan et al. (2023) 23.65 0.6405 0.3972
SpectroMotion Fan et al. (2024) 22.22 0.6088 0.3295
GaussianShader Jiang et al. (2023) 18.55 0.5452 0.4795
GS-IR Liang et al. (2023d) 19.87 0.5729 0.4498
Ours 22.47 0.6328 0.3106

We compare our method with
several state-of-the-art baselines
on the NeRF-DS dataset, as
shown in Table 1. Among
them, Deformable 3DGS (Yang
et al., 2023), 4DGS (Yang et al.,
2024a), and HyperNeRF (Park
et al., 2021b) are designed for
dynamic scene reconstruction;
GaussianShader (Jiang et al.,
2023), GS-IR (Liang et al.,
2023d), and EnvGS (Xie et al.,
2024) target static specular re-
construction; while NeRF-DS
(Yan et al., 2023) and Spectro-
Motion (Fan et al., 2024) focus
on dynamic specular scene reconstruction. We also evaluate our method on the HyperNeRF dataset,
as shown in Table 2, where it demonstrates competitive performance compared to state-of-the-art
baselines. Our method achieves superior performance, which we attribute to two key factors: first, it
avoids approximation when computing reflection ray directions by relying on accurate surface nor-
mals; second, it incorporates a physically grounded model of the specular imaging process. These
two components together allow for sharper, more realistic specular detail reconstruction under com-
plex dynamic conditions, leading to significant improvements in quantitative metrics.

Qualitative Comparation Results. Figure 3 presents qualitative comparisons with several state-of-
the-art methods. We compare both dynamic scene reconstruction methods (Yang et al., 2024a), (Fan
et al., 2024) and static specular reconstruction methods (Jiang et al., 2023). As shown, static methods
such as Jiang et al. (2023), which do not incorporate temporal consistency across frames, often
suffer from severe artifacts in dynamic regions, including disappearance, blurriness, and ghosting,
which significantly degrade the visual quality. Additionally, Yang et al. (2024a) explicitly models
dynamic motion, but lacks consideration of specular components. As a result, it fails to capture
sharp and detailed specular effects, leading to fragmented or missing details in highly reflective
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GT + + + +Base Model (Full)

Figure 4: Qualitative comparison of ablation study on different components. ”+” denotes the
incremental addition of each component to the previous configuration, starting from the base model.

areas. As for Fan et al. (2024), due to its inability to model near-field reflections, the apple reflected
in the mirror is not reconstructed in the Press case, and artifacts appear in other cases as well. In
contrast, our method produces visually coherent reconstructions with significantly sharper and more
detailed specular reflections, effectively preserving both temporal consistency and high-frequency
view-dependent effects.

5.2 ABLATION ON DIFFERENT COMPONENTS.

Table 3: Ablation studies on different components.
FθG Fθenv Lnorm Ltc-norm PSNR↑ SSIM↑ LPIPS↓

15.33 0.6662 0.4005
✓ 19.68 0.7947 0.2385
✓ ✓ 20.12 0.8157 0.2278
✓ ✓ ✓ 20.69 0.8315 0.2158
✓ ✓ ✓ ✓ 21.10 0.8415 0.1821

We conduct ablation studies on the
Plate case from the NeRF-DS (Yan
et al., 2023) dataset. Quantitative
and qualitative results are shown in
Table 3 and Figure 4, respectively.

Base Model. Our base model
excludes the Time-Conditioned
Residual Network FθG , the resid-
ual correction network Fθenv , Geometry-Aligned Normal Loss Lnorm, Temporal-Consistent Normal
Supervision Loss Ltc-norm. As shown in the first row of Table 3 and the “Base Model” column of
Figure 4, this configuration performs poorly due to the lack of dynamic modeling and geometric
supervision. The results appear blurry and fail to recover scene structure, while the estimated
normals are severely misaligned, indicating its inability to handle dynamic specular effects.

+ Time-Conditioned Residual Network. We first add the Time-Conditioned Residual Network
FθG to capture dynamic motion which yields notable improvements. The structure becomes more
distinguishable, though specular regions remain blurry due to missing environment modeling and
normal refinement.

+ Residual Correction Network on Dynamic Environment. Adding the residual correction net-
work Fθenv enables dynamic environment modeling which yields further improvements. Visually,
specular regions become sharper and more realistic, normal maps capture finer geometric details.

+ Geometry-Aligned Normal Loss. To improve geometry, we introduce the Geometry-Aligned
Normal Loss Lnorm which enhances surface normal and reflection direction accuracy, resulting in
clearer specular regions in the RGB outputs.

Full Model. Finally, we incorporate the Temporal-Consistent Normal Supervision Loss Ltc-norm,
which supplies temporally consistent pseudo ground-truth normals. The last row of Table 3 and
the “+ Ltc-norm (Full)” column in Figure 4 show that this yields the best quantitative and qualitative
performance, with improved normal consistency and sharper specular reflections across frames.

6 CONCLUSION

We presented TraceFlow, a novel framework for dynamic specular scene reconstruction from
monocular video. Our method tackles the key challenges of accurate reflection direction estimation
and physically grounded reflection modeling by introducing Residual Material-Augmented 2DGS
and Dynamic Environment Gaussians. Through a hybrid rendering pipeline combining rasteriza-
tion and ray tracing, TraceFlow achieves photorealistic rendering of view-dependent effects with
sharp and detailed specular highlights. Additionally, a coarse-to-fine training strategy ensures stable
convergence and effective decomposition of reflectance components. Extensive experiments on dy-
namic benchmarks show that our method surpasses prior work both quantitatively and qualitatively,
especially in handling challenging specular regions with high fidelity.
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ETHICS STATEMENT

This work focuses on advancing 3D reconstruction techniques for dynamic specular scenes from
monocular video input. We have conducted our research using publicly available datasets (NeRF-DS
and HyperNeRF) with appropriate citations. Our method does not involve human subjects, private
data collection, or raise immediate ethical concerns. While the technology could potentially be mis-
used for creating deceptive visual content, we emphasize the importance of responsible deployment
and recommend appropriate disclosure when synthetic content is generated using our method.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide comprehensive implementation details in the ap-
pendix, including our coarse-to-fine training strategy with specific step counts for each phase (60,000
steps total: 9k for diffuse-only, 6k for specular-only, and 45k for joint optimization). Our method
builds upon publicly available codebases (2DGS, EnvGS) with modifications clearly described in
the method section. We use standard evaluation metrics (PSNR, SSIM, LPIPS) on public bench-
marks. The network architectures for FθG and Fθenv follow standard MLP designs with positional
encoding. We will release our code and trained models upon acceptance to facilitate reproduction
and future research.
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A COARSE-TO-FINE TRAINING STRATEGY

As described in subsection 4.3, we design a coarse-to-fine training strategy to stabilize optimization
and promote physically meaningful decomposition of appearance. Although our method explicitly
separates the final pixel color into diffuse and specular components, supervision is applied only to
the final rendered color C. As a result, neither Cdiffuse nor Cspecular receives direct ground-truth
supervision, rendering the decomposition inherently ill-posed and prone to instability, particularly
during early training. This situation is akin to pulling a cart together without knowing which direc-
tion to exert force—the effort exists, but the alignment is lacking. Without proper regularization, the
network may converge to trivial or degenerate solutions that minimize the reconstruction loss but
fail to produce physically meaningful or interpretable results.

To mitigate this issue, we adopt a staged coarse-to-fine training strategy comprising a total of 60,000
training steps, divided into three progressive phases:

• Phase 1: Diffuse-Only Training (0–9k steps). We begin by training only the diffuse
rendering branch, using RGB ground truth to supervise geometry and diffuse color recon-
struction. This phase establishes a reliable geometric foundation and reduces component
entanglement during the early optimization. With reasonable geometry in place, the com-
putation of reflection ray directions becomes more reliable, preventing gradient instability
and enabling the network to learn specular color more robustly in the subsequent phases.

• Phase 2: Specular-Only Training (9k–15k steps). Once the diffuse branch reaches a
stable state, we freeze its parameters and enable optimization of the specular rendering
branch. This allows the network to learn dynamic environment and to learn specular ap-
pearance from reflection rays, guided by the reconstructed geometry in Phase 1.

• Phase 3: Joint Fine-Tuning (15k–60k steps). Finally, we unfreeze both branches and
jointly optimize the entire network. This step encourages coordinated learning of diffuse
and specular components and enables the network to refine geometry, normals, and material
properties in a physically coherent manner.
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This training strategy effectively balances the learning of diffuse and specular components. Em-
pirically, we find that such staged optimization not only improves convergence stability but also
enhances final rendering quality—producing sharper specular highlights and more accurate diffuse
shading in dynamic scenes.
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Figure 5: More results on NeRF-DS datasets. Our method can recover fine-grained specular details
in dynamic specular reconstruction.
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Figure 6: Visualized our rendering images, normal maps, and depth maps.

B DATASETS

We evaluate our method on two datasets:

• NeRF-DS (Yan et al., 2023): A monocular video benchmark comprising seven real-world scenes
with moving or deforming specular objects. We use the dataset’s provided points.npy as
the initial point cloud for our reconstruction. As shown in Table 1 and Figure 3, our method
significantly outperforms existing baselines in both reconstruction accuracy and rendering quality
on these challenging dynamic scenes.

• HyperNeRF (Park et al., 2021b): A dataset of dynamic real-world scenes without a focus on
specularity. We use the dataset’s provided points.npy as the initial point cloud. We include
it to evaluate generalization beyond specular-centric scenarios. As shown in Table 2, our method
achieves competitive performance, demonstrating its robustness in general dynamic scenes.

C EVALUATION METRICS

We evaluate our method using three image quality metrics: Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index (SSIM) (Wang et al., 2004), and LPIPS (Zhang et al., 2018).
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D EFFICIENCY COMPARISON

Table 4: Efficiency comparison with SpectroMotion on NVIDIA RTX 6000 Ada. Our method
achieves comparable inference FPS while providing superior reconstruction quality.

Method GPU Iterations Training Time FPS↑

SpectroMotion (Fan et al., 2024) RTX 6000 Ada 40,000 1.1 hours 33
Ours RTX 6000 Ada 60,000 2.8 hours 32

E MORE RESULTS

We present additional visual results in Figure 5 and Figure 6. In Figure 5, we show dynamic specular
reconstructions over time. The results demonstrate that our method effectively recovers detailed
specular highlights and maintains temporal consistency across frames. In Figure 6, we visualize
the depth maps, normal maps, and corresponding novel view renderings. These results indicate that
our method produces high-quality geometry, which enables more accurate reflection ray direction
estimation and ultimately leads to superior dynamic specular rendering.

F BROADER IMPACT

This work presents a physically grounded framework for reconstructing dynamic specular scenes
from monocular videos, which may have broad applications in AR/VR, digital content creation,
robotics, and simulation. By accurately modeling dynamic geometry, material properties, and view-
dependent reflections, our method enables more realistic scene representations and improves the
fidelity of 3D reconstruction pipelines under challenging visual conditions. These advances can
enhance immersive experiences in virtual environments and support perception systems that rely
on physically consistent visual inputs. Furthermore, the hybrid rendering pipeline combining ras-
terization and ray tracing may inspire future research in efficient and photorealistic rendering for
dynamic scenes. At the same time, as with other view synthesis and 3D reconstruction methods,
there is potential for misuse, such as generating deceptive or manipulated visual content. We en-
courage responsible use of this technology, particularly in applications involving media synthesis
or human perception, and recommend appropriate safeguards, transparency, and disclosure during
deployment.

G LIMITATION

While TraceFlow achieves high-quality dynamic specular reconstruction, its performance remains
fundamentally limited by the quality of underlying geometry. Accurate and temporally consistent
surface geometry from monocular video is still challenging to obtain, especially in complex dynamic
scenes with fine-grained motions and non-rigid deformations. Inaccuracies in geometry directly af-
fect the computation of reflection directions and surface normals, which in turn degrade the quality
of specular rendering. Additionally, our ray tracing module relies on NVIDIA OptiX for acceler-
ation, which introduces approximations (e.g., bounding volume hierarchy traversal heuristics) that
may lead to subtle errors in specular appearance. Future work may explore improved surface recon-
struction from monocular cues and higher-fidelity, fully differentiable ray tracing to further enhance
physical accuracy.

H LLM USAGE

We used LLM (ChatGPT) to assist with writing refinement. Specifically, it was employed to im-
prove clarity, grammar, and flow of text, as well as to adjust tone for academic writing. No content
generation, experimental design, or analysis was delegated to the LLM; all technical contributions,
mathematical derivations, and experimental results were developed by the authors. The LLM’s role
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was limited to language polishing and presentation, and all outputs were carefully reviewed and
edited by the authors.
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