
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRACE RECONSTRUCTION FOR DNA DATA STORAGE
USING LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

DNA is a promising storage medium due to its high information density and
longevity. However, the storage process introduces errors, thus algorithms and
codes are required for reliable storage. A common important step in the recovery
of the information from DNA is trace reconstruction. In the trace reconstruction
problem, the goal is to construct a sequence from noisy copies corrupted by dele-
tion, insertion, and substitution errors. In this paper, we propose to use language
models trained with next-token prediction for trace reconstruction. A simple chan-
nel model for the DNA data storage pipeline allows for self-supervised pretrain-
ing on large amounts of synthetic data. Additional finetuning on real data enables
us to adapt to technology-dependent error statistics. The proposed method (TRe-
conLM) outperforms state-of-the-art trace reconstruction algorithms for DNA data
storage, often recovering significantly more sequences.

1 INTRODUCTION AND MOTIVATION

An important problem in DNA data storage and biological data analysis is trace reconstruction:
Given multiple versions of a string (traces) corrupted by deletions, insertions, and substitutions, the
goal of trace reconstruction is to reconstruct the original string from as few traces as possible.

Within DNA data storage, the string to be reconstructed is typically a DNA sequence consisting
of 50-200 bases adenine (A), cytosine (C), guanine (G), and thymine (T). The traces are corrupted
by deletions, insertions, and substitutions through the writing, storage, and reading processes. Trace
reconstruction is often used as an important information reconstruction step (Antkowiak et al., 2020;
Organick et al., 2018; Bar-Lev et al., 2024).

The current trace reconstruction algorithms used for DNA data storage, including general trace re-
construction algorithms like MUSCLE (Edgar, 2004) and ITR (Sabary et al., 2020), and algorithms
specialized for DNA data storage like RobuSeqNet (Qin et al., 2024) do not perform well for high
error rates and a small number of traces. Therefore, it is of interest to develop trace reconstruc-
tion methods that can operate in the medium to high noise regime for a small number of traces,
typically two to ten traces. Being able to perform trace reconstruction from few traces can further
improve the reliability of current DNA data storage systems. Furthermore, some classical algorithms
(Viswanathan & Swaminathan, 2008; Srinivasavaradhan et al., 2021) utilize estimated values for the
error probabilities but do not consider the distribution of these over the sequence length, others oper-
ate solely on the observed sequences (Sabary et al., 2020; Edgar, 2004; Gopalan et al., 2018). This
motivates the use of data-driven approaches.

In this work, we treat trace reconstruction for DNA data storage as a next-word prediction problem.
We train language models to predict sequence estimates from noisy observations.

Our contributions are as follows:

• We develop a language model-based trace reconstruction method called TReconLM,
standing for Trace Reconstruction with a Language Model. The method outperforms state-
of-the-art trace reconstruction methods for reconstructing DNA sequences from few traces.
Our method is trained on synthetic data, overcoming the lack of available real data.

• We demonstrate that additional finetuning on real datasets can overcome the distribution
shift to real systems, and can benefit data reconstruction in DNA storage systems.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Theoretical works on trace reconstruction typically ask for the minimum number of traces (obtained
through a deletion channel) such that a binary string can be reconstructed with high probability
(Batu et al., 2004; Holenstein et al., 2008; De et al., 2017; Holden & Lyons, 2020; Chase, 2021).
However, perfect reconstruction using only a few traces is usually not possible.

Several trace reconstruction algorithms suitable for DNA data storage applications have been de-
veloped. For traces with deletions, Batu et al. (2004) introduced the bitwise majority alignment
(BMA) algorithm, which is based on symbol-wise majority voting. Viswanathan & Swaminathan
(2008) extended the algorithm to traces with deletions, insertions, and substitutions. Gopalan et al.
(2018) provide another BMA-based method.

In the work of Antkowiak et al. (2020), the trace reconstruction was achieved by first performing
a multiple sequence alignment (MSA) using the MUSCLE algorithm (Edgar, 2004) followed by a
majority vote of each column of the alignment.

Sabary et al. (2020) proposed several reconstruction methods for DNA data storage based on dy-
namic programming, namely shortest common supersequence and longest common subsequence
algorithms. The proposed iterative algorithm (ITR) gives state-of-the-art performance. Srini-
vasavaradhan et al. (2021) introduced the TrellisBMA algorithm, which combines the BCJR al-
gorithm (Bahl et al., 1974) and BMA-based algorithms.

Qin et al. (2024) proposed a neural network-based method (RobuSeqNet) for trace reconstruction
using a combination of an attention module, conformer-encoder, and LSTM-decoder. The attention
module assigns a score to each sequence within a cluster which allows to reduce the influence of
erroneously clustered sequences. Sequences are one-hot encoded and padded to a fixed length to
obtain a matrix representation. These matrix representations are then added for different sequences.
For perfectly clustered data, the performance is slightly worse than that of the iterative algorithm
proposed in Sabary et al. (2020).

Bar-Lev et al. (2024) proposed an end-to-end solution for DNA data storage (DNAformer), including
a coding scheme. This involves using transformers for trace reconstruction. The neural network
architecture differs from that of this work in several key aspects. First, like in Qin et al. (2024),
sequences are one-hot encoded and padded to a fixed predetermined length. Second, the network
consists of two branches with shared weights, where one branch operates on the reversed data.
Third, the network uses an alignment module to learn the required alignment of all reads. The
alignment module is followed by a transformer block without positional embeddings and causal
attention masks. The method uses dynamic programming methods to postprocess the neural network
outputs. The DNAformer performs similarly to ITR (Sabary et al., 2020).

In Nahum et al. (2021), a method for single-read trace reconstruction utilizing the transformer ar-
chitecture was proposed where noisy sequences are grouped based on their length, and a separate
transformer network is applied to each group. The method operates on a set of 256 codewords.

Finally, Dotan et al. (2023) introduced BetaAlign, an encoder-decoder-based transformer network
for multiple sequence alignment of biological sequences.

3 BACKGROUND ON DNA DATA STORAGE AND PROBLEM STATEMENT

DNA data storage is an interesting storage technology because of its high information density and
longevity. For technological constraints, it is currently not possible to write long sequences of DNA,
and therefore data in DNA is stored on many relatively short sequences, i.e., sequences of length
L = 50 to L = 200 bases.

The binary data to be stored is therefore mapped with an encoder to a set of sequences D =
{x1, . . . ,xM}, where xi ∈ {A,C,T,G}L is a vector over the alphabet consisting of the four
bases: adenine (A), cytosine (C), guanine (G), and thymine (T).

The set of sequences D is then written in DNA (synthesized) and stored. After reading (sequenc-
ing), we obtain many unordered erroneous reads. The first step in recovering the information often
involves a clustering step to group sequences that are potentially perturbed versions of the same orig-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

x = [ACTTG]

IDS channel

IDS channel

y1 = [ACTC]

yN = [GCTTG]

...

ACTC | · · · | GCTTG :

Language Model
fθ

ACTC | · · · | GCTTG : ACTTG

Figure 1: Left panel: The goal of trace reconstruction is to reconstruct a sequence x from N noisy
copies y1, . . . ,yN independently corrupted by insertions, deletions, and substitutions (IDS). Right
panel: We propose to perform trace reconstruction by formulating trace reconstruction as a next-
word prediction problem, and training a transformer fθ to perform this task.

inal sequence xi. In general, we can have multiple clusters for sequences originating from the same
original sequence xi (Antkowiak et al., 2020; Organick et al., 2018; Rashtchian et al., 2017), and
clusters can in principle also contain sequences that are perturbed versions of two or more original
sequences.

Given the clusters, trace reconstruction is performed to compute cluster-wise sequence estimates
x̂i of the original sequences xi which reduces the error rates. Finally, a decoder relying on error-
correcting codes picks up the remaining errors and reconstructs the information.

In this paper, we consider the trace reconstruction problem in the context of DNA data storage:
Given N noisy observations y1, . . . ,yN of a (DNA) sequence x corrupted by unknown deletions,
insertions, and substitutions, the goal is to estimate the original sequence. See Figure 1, left panel,
for an illustration. We assume the original sequence x to consist of bases chosen uniformly at
random, since several DNA data storage systems use pseudorandom sequences to randomize the
bases within each of the sequences (Antkowiak et al., 2020; Organick et al., 2018).

4 METHOD

We formulate trace reconstruction as a next-word prediction problem and train a sequence-to-
sequence model (we consider transformers) on this next-word prediction problem. Given a set of
N sequences C =

{
y1, . . . ,yN

}
, our goal is to train a model fθ with parameters θ so that if we

prompt it with the concatenation of the observations

p = y1 | y2 | . . . | yN−1 | yN : , (1)

then the model provides an estimate x̂ of the original sequence x as a completion for this prompt.
Here, we introduced the “|” token to concatenate the noisy reads and the “:” token to mark the end of
the noisy observations. Thus, the vocabulary of our model is given by V = {A,C,T,G, “|”, “:” }.
The model, prompted with p, generates the sequence estimate x̂ by predicting the L tokens following
the prompt in an autoregressive manner via multiple forward passes. The generation is performed
via greedy sampling, where we choose the most likely token in each prediction step. See Figure 1,
right panel, for an illustration of the method.

4.1 PRETRAINING AND PRETRAINING DATA GENERATION

In DNA data storage, each sequence is corrupted by deletions, insertions, and substitutions (Heckel
et al., 2019). As stated before, the original sequence x can be assumed to consist of bases chosen
uniformly at random.

Therefore, we generate training data as follows. We first generate an original sequence x ∈
{A,C,G,T}L of length L uniformly at random, and then obtain associated noisy observations

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

y1, . . . ,yN by independently corrupting the sequence x with deletions, insertions, and substitu-
tions.

Specifically, to generate the noisy observation yj we go through the original sequence x element-
wise and introduce independent deletions, insertions, substitutions, or transmissions (i.e., no change)
with probabilities pI, pD, pS, and pT respectively. Note that pI+pD+pS+pT = 1. Figure 2 depicts
the transition from xℓ to xℓ+1. We then concatenate the noisy observations y1, . . . ,yN together with
the original target sequences to obtain one training instance

y1 | y2 | . . . | yN−1 | yN : x. (2)
We generate large numbers of such training examples (see the experiments Section 5.2 for details),
and vary the number of traces N in the range from two to ten, since this is a practically relevant
and challenging regime. With regards to the error probabilities, we uniformly sample the error
probabilities pI, pD, and pS from the interval [0.01; 0.1] for each training instance.

On the so-generated training data, we train the transformer model by minimizing the cross entropy
loss between the predicted original sequence, x̂, and the original sequence, x.

4.2 FINETUNING FOR REAL DATA

xℓ xℓ+1.

Insertion

Deletion

Transmission

Substitution

pI
pD

pT

pS

Figure 2: IDS channel

Our pretraining data is generated by varying the
deletion, insertion, and substitution errors in some
range, and by inserting deletions, insertions, and
substitutions independently at each position of the
original sequence. We also generate each noisy se-
quence independently of the other.

However, the data in practice is obtained differ-
ently in that there are specific deletion, insertion,
and substitution error probabilities, and the indepen-
dence assumption is violated. For example, the er-
ror probabilities can depend on the position within a
string (Antkowiak et al., 2020).

Thus, there is a distribution shift between our training data generation and the data we wish to apply
our method to in practice. To overcome this mismatch, we can finetune a pretrained model on real-
world data, as discussed in our real-world experiments in Section 5.3.1 and 5.3.2, where we consider
two publicly available datasets, namely the Noisy-DNA dataset (Antkowiak et al., 2020) and the
Microsoft dataset (Srinivasavaradhan et al., 2021). From these datasets, we extract ground-truth
sequences x and associated noisy traces y1, . . . ,yN and construct training examples of the form
given in Equation 2. We then finetune on these analogously as we do pretraining.

It is also possible to finetune or train the model directly on simulated data matching the respective
channel characteristics as closely as possible.

5 EXPERIMENTS

In this section, we evaluate the performance of our proposed language model-based trace recon-
struction method, TReconLM, on synthetic data and on real DNA storage data. We find that our
proposed approach based on next-word prediction outperforms state-of-the-art trace reconstruction
methods for DNA storage, specifically ITR (Sabary et al., 2020), DNAformer (Bar-Lev et al., 2024)
and RobuSeqNet (Qin et al., 2024). We evaluate performance with the following metrics:

• The Hamming distance dH(x, x̂) between the original sequences x and the reconstructed
one, x̂, which is the number of positions where the sequences x and x̂ differ, normalized by
the sequence length. For this distance measure, we slightly postprocess by random filling
of sequence estimates shorter than L and cutting sequence estimates longer than length L
to length L.

• The Levenshtein distance dL(x, x̂), which is the minimum number of single-character edit-
events (deletions, insertion, and substitutions) to transform the sequence estimate x̂ into the
ground-truth vector x, again normalized by the sequence length L.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2 3 4 5 6 7 8 9 10

N

10−4

10−3

10−2

10−1

100

S
u
cc

es
s

ra
te

VS

RobuSeqNet

MUSCLE

TrellisBMA

BMALA

ITR

TReconLM

Figure 3: Success rates for synthetically generated in-distribution data (L = 60) for different cluster
sizes N . Our reconstruction method TReconLM is able to recover more sequences than any of the
baseline methods.

• The success rate, which is the fraction of error-free reconstructed vectors, i.e., SR(x, x̂) =
#dH(x,x̂)=0
#test instances .

The Hamming distance captures the positional accuracy, and the Levenshtein distance measures
overall string similarity.

We consider decoder-only transformers (Radford et al., 2019).

5.1 BASELINES

We compare our proposed trace reconstruction technique to two types of trace reconstruction meth-
ods, dynamic programming-based and deep learning-based methods.

We consider the following dynamic programming-based algorithms: The iterative algorithm
(ITR) (Sabary et al., 2020), trace reconstruction using MUSCLE (Edgar, 2004) followed by majority
voting, and the TrellisBMA algorithm (Srinivasavaradhan et al., 2021). Furthermore, we compare
to BMALA (Gopalan et al., 2018) and VS (Viswanathan & Swaminathan, 2008). Due to the pro-
hibitively long running time of the TrellisBMA algorithm, we show reconstruction results only for
one experiment on synthetic and one real data experiment.

As a neural network-based reconstruction method, we consider RobuSeqNet (Qin et al., 2024) and
DNAformer (Bar-Lev et al., 2024). We also compare to GPT4oMini in Appendix C.2.

5.2 EVALUATION ON SYNTHETIC DATA

We first evaluate the trace reconstruction performance on synthetic data generated synthetically like
our training data for three sequence lengths L, namely 60, 110, and 180 bases. In general, training
a separate model for each trace reconstruction problem with number of sequences N gives the best
performance. However, to have one model that is applicable to different values of the number of
traces N , we train one model for the reconstruction of two to five sequences and another model for
six to ten traces. We train transformer models with 300M parameters on 32M training examples and
evaluate on 5000 random test examples, generated equally as the training data.

Success rates for L = 60 are in Figure 3, where we see that TReconLM outperforms the baseline
methods for each cluster size. It also outperforms RobuSeqNet, a neural network based method.
However RobuSeqNet is a much smaller model, but when controlling for the model size, TRe-
conLM also outperforms RobuSeqNet, as can be seen in Appendix C.1. Figure 4 shows the average
Hamming and Levenshtein distance for different cluster sizes, and our language model-based recon-
struction gives the best results in both metrics.

The results for L = 110 and L = 180 can be found in Appendix A and show that also for longer
sequences, our reconstruction method outperforms the baseline methods on synthetic data.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2 4 6 8 10

N

10−2

10−1
H

a
m

m
in

g
d
is

ta
n
ce
d

H

VS

RobuSeqNet

MUSCLE

TrellisBMA

BMALA

ITR

TReconLM

2 4 6 8 10

N

10−2

10−1

L
ev

en
sh

te
in

d
is

ta
n
ce
d

L

Figure 4: Hamming and Levenshtein distance for IDS data and sequence length L = 60. We see that
TReconLM gives the best overall result for all cluster sizes. While the curves for ITR have similar
slopes, we can observe a clear performance gap across cluster size of three to ten.

0.100 0.125 0.150 0.175 0.200

pUB

0.2

0.3

0.4

0.5

0.6

0.7

H
a
m

m
in

g
d

is
ta

n
ce
d

H

VS

MUSCLE

BMALA

ITR

TReconLM

0.100 0.125 0.150 0.175 0.200

pUB

0.1

0.2

0.3

0.4

L
ev

en
sh

te
in

d
is

ta
n

ce
d

L

Figure 5: Noise sweep for the IDS channel. We show Hamming and Levenshtein distances across
different values of the upper noise bound pUB. Our reconstruction model generalizes to higher noise
values outperforming all baseline methods.

5.2.1 GENERALIZATION TO HIGH NOISE VALUES

To test TReconLM’s generalization capabilities, we evaluate the trace reconstruction performance
for high noise values, which were not used during the pretraining process. For the error probabilities
pI, pD, and pS, we gradually increase both the lower and the upper bound (pLB and pUB) of the
uniform noise distribution U [pLB; pUB] by 0.01 at the same time. For a cluster size of N = 4 and
a sequence length of L = 110, we evaluate a set of 5000 random sequences for each noise interval.
Figure 5 shows that TReconLM generalizes to higher noise values, outperforming the baseline trace
reconstruction methods, even under this mismatch of training- and test-data. As before, the model
consists of 300M parameters and is trained on 32M training instances.

5.3 EXPERIMENTS ON REAL DATA

In this section, we finetune pretrained transformer models on real-world data, in order to quan-
tify the benefits that our proposed method yields for DNA storage applications. We consider the
Noisy-DNA dataset provided by Antkowiak et al. (2020), which uses a technology for writing
that is comparatively cost-efficient but induces many errors. Second, we consider the Microsoft
dataset (Srinivasavaradhan et al., 2021), which was obtained using nanopore sequencing, which
again induces many errors. Thus, for both scenarios reconstruction is very challenging, and trace
reconstruction is currently used.

By using the data from one storage experiment for finetuning, we obtain a technology-adapted
model that can be employed in any subsequent experiment with the same sequence length L and
reading/writing equipment.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

2 3 4 5 6 7 8 9 10

N

10−4

10−3

10−2

10−1

100

S
u
cc

es
s

ra
te

BMALA

VS

TReconLM (pretr.)

MUSCLE

ITR

TReconLM (finet.)

Figure 6: Success rates for Noisy-DNA dataset. The pretrained model is not able to overcome
the mismatch between the IDS channel and the error statistics of the Noisy-DNA dataset. A small
finetuned model with 20M parameters achieves the best success rate over all considered cluster sizes.

2 4 6 8 10

N

10−1

H
a
m

m
in

g
d
is

ta
n
ce
d

H

VS

MUSCLE

BMALA

ITR

TReconLM (pretr.)

TReconLM (finet.)

2 4 6 8 10

N

10−1

10−2

L
ev

en
sh

te
in

d
is

ta
n
ce
d

L

Figure 7: Hamming and Levenshtein for Noisy-DNA dataset. The pretrained model fails to outper-
form the iterative algorithm (ITR) in Hamming distance. Finetuning gives a substantial reduction in
both Hamming and Levenshtein distance.

5.3.1 REAL DATA EXPERIMENT 1: NOISY-DNA DATASET

The Noisy-DNA dataset contains M = 16383 ground-truth sequences, each of length L = 60
bases, along with unclustered noisy reads. We first discard reads outside the interval of [55, 70]
which yields 1.4e7 unclustered noisy observations. Each sequence contains a unique index of length
twelve, which can be used to order the sequences for data reconstruction. The error probabilities
were estimated in Antkowiak et al. (2020) with pI = 0.057, pD = 0.06, and pS = 0.026, which is
high. The error probabilities depend on the position within the sequence (Antkowiak et al., 2020).
The insertion probability is up to pI = 0.3 towards the sequence end.

We consider two pretrained models consisting of 20M parameters. The first model is trained to
reconstruct two to five sequences, and the second model to reconstruct six to ten. Both are trained
on 32M instances of form shown in Equation 2. Since we have two pretrained models that we
want to finetune, we generate a separate training/validation and testing set for each model. In order
to obtain training/validation and test sets, we first cluster all reads by the sequence index, which
yields M index-clusters that are separated into train/validation and test index-clusters. For the first
model (two to five sequences), we generate a test set out of 500 index-clusters and use the remaining
index-clusters for the generation of a training and validation set. For the second model (six to ten
sequences), we use 1000 index-clusters for test set generation.

The training/validation index-clusters are processed as follows. To remove erroneously clustered
sequences, we filter each of the index-clusters for training and validation by calculating the Leven-
shtein distance to the corresponding ground-truth sequence. Note that a sequence length of L = 60
gives around 60∗0.057+60∗0.06+60∗0.026 = 8.58 edit operations per noisy observation. Given
this value, we discard noisy reads with Levenshtein distance smaller than five and larger than 13 to
match the error probabilities stated above.

The test index-clusters are processed as follows to evaluate close to the pipeline of clustering fol-
lowed by trace reconstruction used in practice. We join all reads from the test index-clusters into one
set of reads. This set of reads is clustered using the algorithm proposed in Zorita et al. (2015), which

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

2 3 4 5 6 7 8 9 10

N

10−4

10−3

10−2

10−1

100

S
u
cc

es
s

ra
te

VS

MUSCLE

BMALA

TrellisBMA

ITR

TReconLM (pretr.)

TReconLM (finet.)

Figure 8: Success rates for Microsoft dataset. Pretrained and finetuned models give the best overall
performance.

operates based on sequence similarity and was already employed in previous DNA data storage ex-
periments (Organick et al., 2018). In order to evaluate the performance of different reconstruction
algorithms, we find the ground-truth sequence that has the lowest average Levenshtein distance for
each test cluster.

The filtered training/validation index-clusters and the test clusters (obtained through Zorita et al.
(2015)) are split into subclusters of either size two to five or six to ten in order to generate training
and test examples according to Equation 2. Finally, for the model that is finetuned on two to five
sequences, we have a training/validation set consisting of about 260000 instances and a test set with
3000 examples. For the second model, the associated training/validation set has 127000 training
instances and about 2000 test examples. For both training/validation sets we use 90% for training
and the remaining 10% for validation.

Due to the high relative frequency of cytosine at the end of most reads, caused by the insertion
probability of pI = 0.3 towards the end of the reads, we employ preprocessing of all test reads for
the baseline methods and the pretrained transformer models by removing any trailing C bases. This
increases the overall performance of the baselines. For the finetuned models, which learn the error
statistics of the Noisy-DNA dataset, preprocessing is not needed.

Figure 6 shows the success rates for different cluster sizes. We observe that the pretrained model
is not able to generalize to the technology-dependent error statistics. However, by finetuning we
obtain a significant performance increase where we are able to recover one order of magnitude more
sequences than the iterative algorithm (ITR) for cluster sizes of two and three. Figure 7 compares
Hamming and Levenshtein distance. We see that the pretrained models achieve lower Levenshtein
distance than the baselines but fail to do so for Hamming distance. The finetuned model outperforms
all other methods by a significant margin for all cluster sizes.

5.3.2 REAL DATA EXPERIMENT 2: MICROSOFT DATASET

The Microsoft dataset contains M = 10000 ground-truth sequences with L = 110 and 269707
clustered noisy reads, one cluster per sequence. This results in large clusters often containing more
than ten reads. The sequences were clustered using the algorithm by Rashtchian et al. (2017). The
error probabilities where estimated by Srinivasavaradhan et al. (2021) to be pI = 0.017, pD = 0.02,
and pS = 0.022.

Similar as for the Noisy-DNA dataset, we train and evaluate two models, one for small clusters (two
to five) and one for medium values of N (six to ten sequences).

Therefore, we split the large clusters into smaller subclusters. To obtain training and test data for the
model trained to reconstruct sequences based on clusters of size two to five, we first split the 10000
clusters into 9500 for training/validation and 500 for testing. Both are split into subclusters of size
two to five which results in 53000 training/validation examples and 2800 test examples. To obtain
training and test data for the model trained to reconstruct sequences of length six to ten sequences,
we use 1000 clusters of testing and the remaining 9000 for training/validation. Again, splitting both
into subclusters of size six to ten gives 2700 test examples and 24000 train/validation instances.
Both of the training/validation sets are split with 90% for training and 10% for validation.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

2 4 6 8 10

N

10−2

10−1

H
a
m

m
in

g
d
is

ta
n
ce
d

H

VS

MUSCLE

BMALA

TrellisBMA

ITR

TReconLM (pretr.)

TReconLM (finet.)

2 4 6 8 10

N

10−3

10−2

10−1

L
ev

en
sh

te
in

d
is

ta
n
ce
d

L

Figure 9: Hamming and Levenshtein distances for Microsoft dataset. Pretrained and finetuned mod-
els are able to outperform the considered baseline algorithms.

We then finetune 300M transformer models (see Appendix A, pretrained on 32M instances) on each
of the two training sets and test on the respective test sets.

For clusters of size two, finetuning allows recovering one order of magnitude more sequences than
the pretrained model. Figure 9 provides Hamming and Levenshtein distances for all considered
values of the cluster size N . Both pretrained and finetuned models achieve better performance than
the baselines, likely because the pretrained models can overcome the distribution shift between the
IDS channel and the Microsoft dataset.

We now compare to DNAformer (Bar-Lev et al., 2024). Unfortunately, the implementation for the
DNAformer is not available to compare to directly. However, DNAformer achieves an overall suc-
cess rate of 0.8542 on the Microsoft dataset with a 100M parameter model and dynamic program-
ming methods for postprocessing. Since the DNAformer is trained on synthetic data we evaluate
pretrained models on the Microsoft dataset. We use transformers of two model sizes, namely 20M
and 300M parameters. For both cases, we consider a model for clusters of size two to five and a sep-
arate model for six to ten sequences. When clusters contain more than ten sequences, we randomly
sample ten reads. The 20M parameter models achieve a success rate of 0.8508, while the networks
with 300M parameters reach 0.9242. TReconLM achieves similar performance with a network that
is five times smaller without postprocessing by any dynamic programming method and not utilizing
the full cluster size.

5.4 SCALING LAWS FOR TRACE RECONSTRUCTION

In this section, we show preliminary results on scaling laws for the trace reconstruction problem.
We train transformer models of different sizes for various numbers of tokens. We train models of
sizes 3M, 10M, 21M, 37M, 85M, 170M, 300M on 8M, 16M, and 32M instances. For transformers,
training compute can be estimated to be C = 6NPDT, with the number of parameters NP and the
total number of training tokens DT. We consider a sequence length of L = 60 and N = 5 noisy
reads. Figure 10 shows the training curves for all considered models and number of training in-
stances. It can be seen that especially for larger models, performance has not converged suggesting
that TReconLM achieves better performance by further increasing compute and in particular by in-
creasing the number of training instances relative to the model size. The corresponding experiments
are running and the figure will be updated with the final runs.

6 CONCLUSION AND DISCUSSION

In this work, we proposed a deep learning-based method for trace reconstruction for DNA data stor-
age. Our method achieves higher success rates and lower Hamming and Levenshtein distances than
state-of-the-art trace reconstruction methods for small cluster sizes and a wide range of noise values
on synthetic data as well as real-world data. Finetuning enables adaptation to the error character-
istics of different synthesis and sequencing technologies, and enables to recover significantly more
sequences than competing methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

1015 1018

C

10−1

100

T
es

t
L

o
ss

1017 1018 1019

C

0.10

0.15

0.20

0.25

H
a
m

m
in

g
d
is

ta
n
ce
d

H

3M

10M

20M

40M

80M

170M

300M

N
P

Figure 10: Preliminary scaling results for trace reconstruction. Investing further compute is expected
to increase performance further, and increasing the training instances relative to the model size is
also expected to give better performance.

Our proposed method is more efficient than other deep learning-based reconstruction algorithms,
as networks with smaller sizes can achieve similar performance. We demonstrated that training
networks with similar network sizes outperform competing data-driven approaches.

Since our method is data-driven it might not perform well if the test and train data are substantially
different. In this case, finetuning can help to achieve good reconstruction results.

REPRODUCIBILITY STATEMENT

We will release all code, dataset links, and reproduction instructions on our GitHub page.

REFERENCES

Philipp L. Antkowiak, Jory Lietard, Mohammad Zalbagi Darestani, Mark M. Somoza, Wendelin J.
Stark, Reinhard Heckel, and Robert N. Grass. Low cost DNA data storage using photolithographic
synthesis and advanced information reconstruction and error correction. Nature Communications,
11(1), 12 2020. ISSN 20411723. doi: 10.1038/s41467-020-19148-3.

L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of linear codes for minimizing symbol
error rate (corresp.). IEEE Transactions on Information Theory, 20(2):284–287, 1974. doi: 10.
1109/TIT.1974.1055186.

Daniella Bar-Lev, Itai Orr, Omer Sabary, Tuvi Etzion, and Eitan Yaakobi. Deep DNA Storage:
Scalable and Robust DNA-based Storage via Coding Theory and Deep Learning. arXiv, 2024.

Tuundefinedkan Batu, Sampath Kannan, Sanjeev Khanna, and Andrew McGregor. Reconstructing
strings from random traces. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’04, pp. 910–918, USA, 2004. Society for Industrial and Applied
Mathematics. ISBN 089871558X.

Zachary Chase. New lower bounds for trace reconstruction. In Annales de l’Institut Henri Poincaré,
Probabilités et Statistiques, volume 57, pp. 627–643. Institut Henri Poincaré, 2021.

Anindya De, Ryan O’Donnell, and Rocco A. Servedio. Optimal mean-based algorithms for trace
reconstruction. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, pp. 1047–1056, New York, NY, USA, 2017. Association for Com-
puting Machinery. ISBN 9781450345286. doi: 10.1145/3055399.3055450. URL https:
//doi.org/10.1145/3055399.3055450.

Edo Dotan, Yonatan Belinkov, Oren Avram, Elya Wygoda, Noa Ecker, Michael Alburquerque, Omri
Keren, Gil Loewenthal, and Tal Pupko. Multiple Sequence Alignment as a Sequence-to-Sequence
Learning Problem. In The Eleventh International Conference on Learning Representations, 2023.

10

https://doi.org/10.1145/3055399.3055450
https://doi.org/10.1145/3055399.3055450

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Robert C. Edgar. MUSCLE: Multiple sequence alignment with high accuracy and high throughput.
Nucleic Acids Research, 32(5):1792–1797, 2004. ISSN 03051048. doi: 10.1093/nar/gkh340.

Parikshit S. Gopalan, Sergey Yekhanin, Siena Dumas Ang, Nebojsa Jojic, Miklos Racz, Karen
Strauss, and Luis Ceze. Trace reconstruction from noisy polynucleotide sequencer reads.
U.S. Patent App. 15/536,115, July 26 2018. URL https://patentimages.storage.
googleapis.com/8e/77/21/c3592ab71cdabb/US20180211001A1.pdf.

Reinhard Heckel, Gediminas Mikutis, and Robert N. Grass. A Characterization of the DNA
Data Storage Channel. Scientific Reports, 9(1), 12 2019. ISSN 20452322. doi: 10.1038/
s41598-019-45832-6.

Nina Holden and Russell Lyons. Lower bounds for trace reconstruction. The Annals of Applied
Probability, 30(2):503 – 525, 2020. doi: 10.1214/19-AAP1506. URL https://doi.org/
10.1214/19-AAP1506.

Thomas Holenstein, Michael Mitzenmacher, Rina Panigrahy, and Udi Wieder. Trace reconstruction
with constant deletion probability and related results. In Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’08, pp. 389–398, USA, 2008. Society
for Industrial and Applied Mathematics.

Yotam Nahum, Eyar Ben-Tolila, and Leon Anavy. Single-Read Reconstruction for DNA Data Stor-
age Using Transformers. arXiv, 9 2021. URL http://arxiv.org/abs/2109.05478.

Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph Lopez, Sergey Yekhanin, Konstantin
Makarychev, Miklos Z. Racz, Govinda Kamath, Parikshit Gopalan, Bichlien Nguyen, Christo-
pher N. Takahashi, Sharon Newman, Hsing-Yeh Parker, Cyrus Rashtchian, Kendall Stewart,
Gagan Gupta, Robert Carlson, John Mulligan, Douglas Carmean, Georg Seelig, Luis Ceze, and
Karin Strauss. Random access in large-scale dna data storage. Nature Biotechnology, 36(3):
242–248, Mar 2018. ISSN 1546-1696. doi: 10.1038/nbt.4079. URL https://doi.org/10.
1038/nbt.4079.

Yun Qin, Fei Zhu, Bo Xi, and Lifu Song. Robust multi-read reconstruction from noisy clusters using
deep neural network for DNA storage. Computational and Structural Biotechnology Journal, 23:
1076–1087, 12 2024. ISSN 20010370. doi: 10.1016/j.csbj.2024.02.019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
Models are Unsupervised Multitask Learners. Technical report, OpenAI, 2019.

Cyrus Rashtchian, Konstantin Makarychev, Miklos Racz, Siena Ang, Djordje Jevdjic, Sergey
Yekhanin, Luis Ceze, and Karin Strauss. Clustering billions of reads for dna data stor-
age. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/
paper/2017/file/ab7314887865c4265e896c6e209d1cd6-Paper.pdf.

Omer Sabary, Alexander Yucovich, Guy Shapira, and Eitan Yaakobi. Reconstruction algorithms for
dna-storage systems. bioRxiv, 2020. doi: 10.1101/2020.09.16.300186. URL https://www.
biorxiv.org/content/early/2020/09/17/2020.09.16.300186.

Sundara Rajan Srinivasavaradhan, Sivakanth Gopi, Henry D. Pfister, and Sergey Yekhanin. Trellis
bma: Coded trace reconstruction on ids channels for dna storage. In 2021 IEEE International
Symposium on Information Theory (ISIT), pp. 2453–2458, 2021. doi: 10.1109/ISIT45174.2021.
9517821.

Krishnamurthy Viswanathan and Ram Swaminathan. Improved string reconstruction over insertion-
deletion channels. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’08, pp. 399–408, USA, 2008. Society for Industrial and Applied Mathemat-
ics.

Eduard Zorita, Pol Cuscó, and Guillaume J. Filion. Starcode: Sequence Clustering based
on All-Pairs Search. Bioinformatics, 31(12):1913–1919, 01 2015. ISSN 1367-4803. doi:
10.1093/bioinformatics/btv053. URL https://doi.org/10.1093/bioinformatics/
btv053.

11

https://patentimages.storage.googleapis.com/8e/77/21/c3592ab71cdabb/US20180211001A1.pdf
https://patentimages.storage.googleapis.com/8e/77/21/c3592ab71cdabb/US20180211001A1.pdf
https://doi.org/10.1214/19-AAP1506
https://doi.org/10.1214/19-AAP1506
http://arxiv.org/abs/2109.05478
https://doi.org/10.1038/nbt.4079
https://doi.org/10.1038/nbt.4079
https://proceedings.neurips.cc/paper_files/paper/2017/file/ab7314887865c4265e896c6e209d1cd6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/ab7314887865c4265e896c6e209d1cd6-Paper.pdf
https://www.biorxiv.org/content/early/2020/09/17/2020.09.16.300186
https://www.biorxiv.org/content/early/2020/09/17/2020.09.16.300186
https://doi.org/10.1093/bioinformatics/btv053
https://doi.org/10.1093/bioinformatics/btv053

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A ADDITIONAL RESULTS FOR THE IDS CHANNEL

In this section, we show additional results for the IDS channel. We consider sequence lengths of
L = 110 and L = 180. Figure 11 and 12 depict success rates and distances for sequence lengths of
110 bases. We trained 300M transformer models over 32M instances, one for two to five sequences
and another one for clusters of size six to ten. Similar to the results shown in Section 5.2, we can
observe that our method achieves higher success rates and lower distances for all cluster sizes in the
range of two to ten.

Figure 13 and 14 show similar results for L = 180. TReconLM is able to outperform state-of-the-
art reconstruction algorithms (ITR). The results are for 300M parameter models. Due to the higher
sequence length, we train on 24M instances to reduce training time.

2 3 4 5 6 7 8 9 10

N

10−4

10−3

10−2

10−1

100

S
u
cc

es
s

ra
te VS

MUSCLE

BMALA

ITR

TReconLM

Figure 11: Success rates for IDS data and sequence length L = 110

2 4 6 8 10

N

10−1

H
a
m

m
in

g
d
is

ta
n
ce
d

H

VS

MUSCLE

BMALA

ITR

TReconLM

2 4 6 8 10

N

10−2

10−1

L
ev

en
sh

te
in

d
is

ta
n
ce
d

L

Figure 12: Hamming and Levenshtein distance for IDS data and sequence length L = 110

B MULTIPLE SEQUENCE ALIGNMENT TARGET

In this section, we evaluate different neural network targets for the trace reconstruction problem. As
proposed in Dotan et al. (2023), we can train a model fθ to learn the alignment of the observed
sequences. For N noisy reads y1, . . . ,yN , one training instance is formed as

y1 | y2 | . . . | yN−1 | yN : MSA
(
y1,y2, . . . ,yN−1,yN

)
#. (3)

The vocabulary for the alignment task is given by

VMSA = {A,C,T,G, “|”, “:”, “-”, “#”} (4)

where we have an additional end of sequence “#” and a deletion token “-”, which is used to achieve
a column-wise matching of the aligned sequences. For the pretraining data generation, we know
exactly the positions where a deletion, insertion, or substitution occurred, which allows us to form
the correct sequence alignment. During inference, the model is provided the prompt p (Equation 1)
to predict the alignment token by token until the occurrence of “#”. In the next step, we write the

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

2 3 4 5 6 7 8 9 10

N

10−4

10−3

10−2

10−1

100

S
u
cc

es
s

ra
te VS

MUSCLE

BMALA

ITR

TReconLM

Figure 13: Success rates for IDS data and sequence length L = 180

2 4 6 8 10

N

10−1H
a
m

m
in

g
d
is

ta
n
ce
d

H

VS

MUSCLE

BMALA

ITR

TReconLM

2 4 6 8 10

N

10−2

10−1

L
ev

en
sh

te
in

d
is

ta
n
ce
d

L

Figure 14: Hamming and Levenshtein distance for IDS data and sequence length L = 180

aligned sequences ŷ1, . . . , ŷN , each of length LMSA, under each other:

ŷ1,1 ŷ1,2 · · · · · · ŷ1,LMSA−1 ŷ1,LMSA

ŷ2,1 ŷ2,2 · · · · · · ŷ2,LMSA−1 ŷ2,LMSA

...
...

...
ŷN,1 ŷ1,2 · · · · · · ŷN,LMSA−1 ŷN,LMSA

(5)

To compute the sequence estimate x̂, we perform a column-wise majority vote of the alignment.
The j-th entry of the estimated sequence x̂ can be calculated as

x̂j = argmax
a∈{A,C,T,G}

N∑
i=1

1(ŷi,j = a), (6)

with the indicator function 1(·). In Figure 15 we evaluate the following targets for the trace re-
construction: candidate prediction (CPRED) as described in Section 4, the MSA target as given in
Equation 3 and a NESTED alignment target, where we perform a token-wise nesting of the ground-
truth alignment MSA

(
y1, . . . ,yN

)
. We also evaluate MUSCLE to compare neural network-based

alignment to dynamic programming-based alignment. Figure 15 shows distances for all targets,
where we can observe that the candidate prediction gives the best overall result. Furthermore, the
alignment target requires higher block lengths of the transformer models compared to the CPRED
target. Also, finetuning, as described in Section 4.2, is not possible because the ground-truth align-
ment for real data is not known in general.

C ADDITIONAL COMPARISONS

Here, we provide additional comparisons to RobuSeqNet as well as to GPT4oMini.

C.1 ROBUSEQNET

In this section, we compare the performance of TReconLM to RobuSeqNet (Qin et al., 2024). The
network architecture proposed in Qin et al. (2024) is rather small with about 2.5M parameters and

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

2 3 4 5

N

0.2

0.3

0.4

0.5

0.6

0.7

H
a
m

m
in

g
d

is
ta

n
ce
d

H

MUSCLE

MSA

NESTED

CPRED

2 3 4 5

N

0.05

0.10

0.15

0.20

L
ev

en
sh

te
in

d
is

ta
n

ce
d

L

Figure 15: Comparison of different neural network targets. The candidate prediction target
(CPRED) gives the highest accuracy in both Hamming and Levenshtein distances.

2 4 6 8 10

N

0.2

0.3

0.4

0.5

H
a
m

m
in

g
d

is
ta

n
ce
d

H

RobuSeqNet

TReconLM

2 4 6 8 10

N

0.00

0.05

0.10

0.15

0.20

0.25

L
ev

en
sh

te
in

d
is

ta
n

ce
d

L

Figure 16: Comparison of TReconLM reconstruction to RobuSeqNet. TReconLM achieves lower
Levenshtein distances across all cluster sizes. Our method gives overall higher positional accuracy,
as the Hamming distances are lower for clusters of size four to ten and similar for two and three.

consists of an LSTM decoder with hidden dimension of 256. RobuSeqNet is trained over 32M
training instances. We train small transformer models of similar size with 3M parameters also of
dimension 256. As for the other experiments, we consider two models, one for two to five sequences
and a second model for six to ten reads. The results are shown in Figure 16. TReconLM is able to
significantly outperform RobuSeqNet even when the model size is controlled for. Here, we consider
the sequence length L = 110.

C.2 GPT4OMINI

As an additional baseline, we consider GPT4oMini. We prompt GPT4oMini as shown in Figure
20 to perform the trace reconstruction task. We consider zero, three, and five-shot prompting. We
evaluate 250 test instances of synthetic data obtained by the IDS channel for L = 60 and use the
uniform noise distribution U [0.01; 0.1] for the error probabilities. Examples are generated by using
the same distribution as for the test instances. For cluster sizes of two, five, and ten sequences, the
Hamming and Levenshtein distances are displayed in Figure 17. We compare the performance of
GPT4oMini to TReconLM by training two transformer models consisting of 20M parameters for two
to five and six to ten sequences. We train on 32M instances. TReconLM outperforms GPT4oMini
significantly for the trace reconstruction task in all considered cases, even though we only use a 20M
parameter model.

D PARAMETERS FOR BASELINE METHODS

Here, we provide the parameters for the baseline methods. For algorithms that utilize the error prob-
abilities pI, pD, and pS, we use the provided estimates when evaluating the real datasets (Antkowiak
et al., 2020; Srinivasavaradhan et al., 2021). For synthetic data, we choose the mean values of the
corresponding noise distribution.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

2 4 6 8 10

N

0.2

0.4

0.6

H
a
m

m
in

g
d

is
ta

n
ce
d

H

GPT4oMini (0 shot)

GPT4oMini (3 shot)

GPT4oMini (5 shot)

TReconLM

2 4 6 8 10

N

0.00

0.05

0.10

0.15

0.20

L
ev

en
sh

te
in

d
is

ta
n

ce
d

L

Figure 17: Comparison of GPT4oMini to TReconLM. We evaluate reconstruction using two, five,
and ten noisy reads. For GPT4oMini we consider zero, three, and five-shot prompting. TReconLM
is able to achieve significantly lower Hamming and Levensthein distances than GPT4oMini.

For the BMALA algorithm and VS algorithm, we use the parameters provided in Sabary et al.
(2020). The BMALA method requires a window size parameter w, which we set to 3. The VS
algorithm uses the substitution probability pS to obtain the parameter δ = (1+pS)/2. The remaining
parameters are chosen as follows: γ = 3/4, r = 2, and l = 3.

The TrellisBMA algorithm uses estimates of the error probabilities. Furthermore, the algorithm
requires additional parameters, which are given in Table 1 and were taken from Srinivasavaradhan
et al. (2021).

N βb βe βi

2 and 3 0 0.1 0.5
4 and 5 0 1 0.1
6 and 7 0 0.5 0.1
8 and 9 0 0.5 0.5
10 0 0.5 0

Table 1: Parameters for TrellisBMA algorithm

E ATTENTION MATRIX

In order to give some interpretability of the underlying algorithm of TReconLM we visualize the
attention matrices of the 20M-transformer models for both the pretrained and finetuned models. We
consider the sequence length L = 60 and provide a heatmap of the attention matrix for prompts
p consisting of N = 3 reads. We plot the attention score of the last layer, which we obtain by
performing a min-max normalization of the corresponding attention matrix values. In Figure 18 on
the left, we can observe a diagonal structure, where read position j attends to the sequence estimate
position j. While earlier layers typically show a broader structure of attention scores not equal to
0, indicating the attention of multiple read positions to one sequence estimate position, the structure
narrows down towards the pattern in the last layer displayed in Figure 18. The finetuned models
show a similar structure, see Figure 18 right. As the Noisy-DNA dataset contains a high number
of insertions towards the sequence end, we see that multiple bases in the reads attend to the last
position in the sequence estimate.

F INCREASING THE CLUSTER SIZE

To further evaluate the potential of TReconLM, we increase the number of reads N and calculate the
success rate in the high noise regime on test data obtained through the IDS channel. For the test data,
we consider the error characteristics as described in Section 5.2.1 where we gradually increased the
lower and upper bound (pLB and pUB) of the uniform noise distribution U [pLB; pUB] by 0.01 at the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

p

0
1
0

2
0

3
0

4
0

5
0

6
0

x̂

y1 y2 y3

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

p

0
1
0

2
0

3
0

4
0

5
0

6
0

x̂

y1 y2 y3

0.0

0.2

0.4

0.6

0.8

1.0

A
tt

en
ti

o
n

S
co

re

Figure 18: Visualization of the attention matrix for a prompt p consisting of three reads y1,y2, and
y3. The red lines mark the end of reads. Left: Attention matrix of a pretrained model for a test
example generated by the IDS channel. Right: Attention matrix of a finetuned model for a test
instance from the Noisy-DNA dataset.

0.100 0.125 0.150 0.175 0.200

pUB

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

es
s

ra
te

N = 10

N = 20

N = 30

N = 40

N = 50

Figure 19: Success rate as a function of the upper bound of the noise distribution pUB for larger
clusters ranging from N = 10 to N = 50.

same time. We train 300M models for the reconstruction of 10, 20, 30, 40, and 50 noisy reads on
the uniform noise distribution U [0.01; 0.1]. Here, we consider the sequence length of L = 110 and
evaluate 500 test instances. In Figure 19, we can see that increasing the number of reads from 10 to
20 gives a strong increase in success rate. Further scaling of the cluster size N does not yield any
benefit. However, as the models for 30, 40, and 50 reads need to be further trained, we might expect
an improvement.

G DETAILED NUMERICAL RESULTS

For better readability and comparison, we add tables with the numbers for the following experiments
from the main body: evaluation on IDS generated data for L = 60 (Figure 3 and Figure 4) as well
as the results for the real-world data experiments: first evaluation on the Noisy-DNA dataset (Figure
6 and Figure 7) and second the Microsoft dataset (Figure 8 and Figure 9).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Example Prompt for GPT4oMini:

We consider a reconstruction problem of DNA sequences. We want to reconstruct a DNA sequence
consisting of 60 characters (either A,C,T or G) from 5 noisy DNA sequences.
These noisy DNA sequences were generated by introducing random errors (insertion, deletion, and
substitution of single characters).
The task is to provide an estimate of the ground truth DNA sequence.

Here are some examples:
Example #1
Input DNA sequences:
1. GATACGGATTGTGCTCGAGTGGATACTGGTATAGAGAAGAGAGTAATGCTAAGGTAG
2. ATATAGGACTGTTCCTCGAAGTGGATACTGTACAAAAATCAGAAGCGAGTAAGGTAG
3. GATCAGGATTGTACTCGAGTGCTACTGTACAAAGCGTCAGAGGTGCCATAGGTACG
4. GATAAAGGGACGTTGCCCGAGTGATACTGTCAAAGCGTAAAAGAGATGCTAGGTG
5. GGATCAAAGGATTGCTTGCTCGAGTGTGATACTGTACAATGATCAGAAGAGATCTAATAG
Correct output:
GATAAAGGATTGTTGCTCGAGTGGATACTGTACAAAGAGTCAGAAGAGATGCTAAGGTAG

Example #2
Input DNA sequences:
1. AAACCCTTACGGGTCGAATACATCTTATCCGAGCGCCTCAAGGAGTAGCGATTCCTAC
2. AAACCCATAGGGTCCAAAAATATTTACCGTGCACTCCGAAAGGGAGTATCGTTGATA
3. AAACACTTGGGGTCGAAAAAATACTATCCGTGTACCCCAGAGGTGTAGTGTCTCATAC
4. AACCTGAGGGTCGAAACTGTTGATCCGTGCACCTCATGAGGGTGTCGCGGCATGC
5. AAACCTTAGGGCTCGAATACATATTTACCGTGCACCTCCAGAGGAGTAGCGTTTCAA
Correct output:
AAACCCTTAGGGTCGAATACATATTTATCCGTGCACCTCCAGAGGAGTAGCGTTTCATAC

Example #3
Input DNA sequences:
1. TGCCCCGACGATATGCCGGCGGATACACTCTCACGATCGTCAAGTATATCCGTTAA
2. ATGCCCGACGCTTCTGGCCGGATACACTCAACAATCGTCACCGTTTATCCGATAA
3. ATGCCCGACGAATGCTGGCCGGATACACTTACACGATGTCAATGATATCCGAGTG
4. ATGCCCACGAGTATGCTGCCGGATCCTCACAAATCGTCAAGTTATATCCCGATAT
5. ATGCCCGATAATATATGGCGGACTCCACTCTACACGTCGTCAAGTTATATCCCGTTAG
Correct output:
ATGCCCGACGATATGCTGGCCGGATACACTCTACACGATCGTCAAGTTATATCCCGTTAT

Task:
Reconstruct the DNA sequence from the following noisy input sequences.
Input DNA sequences:
1. GGTCCCTAGAAGGATTGGATGCTGTTCGCGGGTATCTAATGTTGTGCCTTGGTGCAT
2. AGGTCGCCCAGAAGTGATATGGTCGCTGGTCGCGGCATCTAATGTTGTGACATCTTGAT
3. AGGTTACCCTGATAGTGATGTAGTGTGCATTTCGCGGCTCTATGTTGTGCCTGTTGCT
4. AGGTCCTAGTAAGGTATATGCATGCGGTCGCGGCTCTAATGTTGTGCTTGAGTTGCT
5. AGCTCCGTAGAGGAATGATGCTGTTCGCCGGCATTAGATGTGTGCCTCGGTTGCT
Provide an estimate of the ground truth DNA sequence consisting of 60 characters in the
format ***estimated DNA sequence*** - use three * on each side of the estimated DNA sequence.

Figure 20: Example of a three-shot prompt for GPT4oMini.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Success rate

N VS RobuSeqNet MUSCLE TrellisBMA BMALA ITR TReconLM

2 2e-4 6e-4 2e-4 0 2e-4 1.8e-3 6e-3
3 1.8e-3 1.08e-2 4.4e-3 0 2.08-2 5.2e-3 0.121
4 2.2e-3 1.94e-2 2.42e-2 4.86e-2 5.36-2 0.157 0.311
5 3.6e-3 2.96e-2 5.5e-2 0.103 0.113 0.321 0.516
6 3.8e-3 3.66e-2 7.28e-2 0.12 0.170 0.509 0.648
7 2.8e-3 5.08e-2 9.06e-2 0.214 0.245 0.665 0.77
8 7.4e-3 6.52e-2 0.117 0.292 0.322 0.775 0.862
9 9.8e-3 7.80e-2 0.164 0.373 0.377 0.848 0.914

10 8.4e-3 8.16e-2 0.173 0.461 0.423 0.885 0.942

Hamming distance dH

N VS RobuSeqNet MUSCLE TrellisBMA BMALA ITR TReconLM

2 0.566 0.427 0.57 0.481 0.485 0.508 0.395
3 0.548 0.371 0.58 0.443 0.386 0.671 0.258
4 0.534 0.336 0.482 0.31 0.327 0.331 0.161
5 0.525 0.305 0.443 0.249 0.273 0.245 9.68e-2
6 0.522 0.28 0.439 0.231 0.230 0.138 6.82e-2
7 0.518 0.258 0.435 0.180 0.192 9.08e-2 4.24e-2
8 0.500 0.237 0.408 0.135 0.161 5.69e-2 2.46e-2
9 0.499 0.224 0.377 0.106 0.130 3.89e-2 1.615-2

10 0.498 0.214 0.366 8.81e-2 0.124 2.95e-2 9.64e-3

Levenshtein distance dL

N VS RobuSeqNet MUSCLE TrellisBMA BMALA ITR TReconLM

2 0.159 0.224 0.205 0.316 0.223 0.152 0.14
3 0.159 0.201 0.149 0.294 0.154 0.241 6.28e-2
4 0.174 0.191 0.106 0.124 0.122 6.63e-2 3.61e-2
5 0.162 0.183 8.13e-2 8.92e-2 9.81e-2 3.85e-2 2.04e-2
6 0.16 0.174 7.34e-2 9.28e-2 7.88e-2 2.02e-2 1.35e-2
7 0.159 0.167 6.70e-2 6.78e-2 6.23e-2 1.19e-2 7.86e-3
8 0.160 0.158 5.72e-2 4.92e-2 5.09e-2 6.9e-3 4.47e-3
9 0.164 0.154 4.87e-2 3.86e-2 4.27e-2 4.44e-3 2.67e-3

10 0.165 0.153 4.56e-2 2.99e-2 3.73e-2 3.07e-3 1.71e-3

Table 2: Results for IDS data with L = 60 (see Figure 3 and Figure 4).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Success rate

N VS MUSCLE BMALA ITR TReconLM (p) TReconLM (f)

2 2.05e-2 3.03e-2 3.26e-4 1.89e-2 1.95e-3 0.174
3 2.08e-2 6.28-2 1.30e-3 4.92e-2 1.53e-2 0.424
4 2.51e-2 0.135 4.23e-3 0.203 2.86e-2 0.556
5 2.12e-2 0.223 2.94e-3 0.395 4.33e-2 0.627
6 4.25e-2 0.359 6.57e-3 0.467 9.30e-2 0.761
7 3.54e-2 0.415 7.58e-3 0.581 0.101 0.794
8 4.10e-2 0.41 7.08e-3 0.56 0.155 0.817
9 3.99e-2 0.474 6.07e-3 0.628 0.208 0.835

10 2.73e-2 0.509 7.58e-3 0.61 0.353 0.843

Hamming distance dH

N VS MUSCLE BMALA ITR TReconLM (p) TReconLM (f)

2 0.476 0.426 0.503 0.449 0.5 0.192
3 0.463 0.43 0.446 0.505 0.363 0.126
4 0.441 0.337 0.42 0.289 0.29 9.16e-2
5 0.442 0.276 0.396 0.182 0.244 7.34e-2
6 0.405 0.186 0.364 0.145 0.176 5.62e-2
7 0.409 0.17 0.356 9.79e-2 0.162 4.08e-2
8 0.391 0.177 0.354 0.109 0.145 3.32e-2
9 0.396 0.137 0.350 8.28e-2 0.129 2.74e-2

10 0.402 0.116 0.344 8.75e-2 0.117 2.43e-2

Levenshtein distance dL

N VS MUSCLE BMALA ITR TReconLM (p) TReconLM(f)

2 8.97e-2 0.11 0.161 8.53e-2 8.67e-2 4.52e-2
3 9.5e-2 0.101 0.12 0.112 6.04e-2 2.74e-2
4 0.12 7.54e-2 0.116 5.84e-2 5.17e-2 2.08e-2
5 0.107 6.91e-2 0.107 5.65e-2 5.27e-2 1.84e-2
6 9.52e-2 6.12e-2 9.09e-2 4.13e-2 3.64e-2 7.78e-3
7 9.92e-2 6.29e-2 8.55e-2 4.03e-2 3.52e-2 6.77e-3
8 0.108 5.84e-2 8.54e-2 3.80e-2 3.24e-2 5.90e-3
9 0.111 5.51e-2 8.34e-2 3.69e-2 3.04e-2 5.49e-3

10 0.116 5.53e-2 8.26e-2 3.58e-2 2.53e-2 5.21e-3

Table 3: Results for Noisy-DNA dataset (see Figure 6 and Figure 7). Pretrained models (p) and
finetuned models (f).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Success rate

N VS MUSCLE BMALA TrellisBMA ITR TReconLM (p) TReconLM (f)

2 1.87e-2 6.69e-3 4.23e-3 7.05e-4 3.74e-2 3.28-e2 0.402
3 1.84e-2 1.65e-2 9.33e-2 1.36e-2 1.47e-2 0.361 0.735
4 2.32e-2 0.252 0.146 0.349 0.555 0.599 0.871
5 3.14e-2 0.419 0.296 0.528 0.675 0.756 0.924
6 3.25e-2 0.432 0.378 0.635 0.8 0.84 0.903
7 3.33e-2 0.433 0.492 0.697 0.841 0.887 0.933
8 4.88e-2 0.634 0.55 0.754 0.858 0.918 0.959
9 4.45e-2 0.72 0.624 0.797 0.873 0.935 0.968
10 4.76e-2 0.735 0.672 0.823 0.876 0.944 0.975

Hamming distance dH

N VS MUSCLE BMALA TrellisBMA ITR TReconLM (p) TReconLM (f)

2 0.464 0.49 0.387 0.342 0.408 0.337 0.223
3 0.456 0.555 0.237 0.265 0.63 0.165 0.103
4 0.405 0.253 0.184 0.111 9.87e-2 8.69e-2 5.73e-2
5 0.412 0.199 0.126 7.95e-2 9.37e-2 5.07e-2 3.95e-2
6 0.408 0.209 0.105 5.02e-2 5.17e-2 3.38e-2 2.01e-2
7 0.408 0.232 8.3e-2 4.17e-2 4.33e-2 2.44e-2 1.30e-2
8 0.365 0.13 7.15e-2 3.46e-2 4.22e-2 1.87e-2 8.02e-3
9 0.365 9.86e-2 5.66e-2 2.83e-2 3.75e-2 1.55e-2 6.33e-3
10 0.364 9.25e-2 4.99e-2 2.60e-2 3.91e-2 1.34e-2 5.24e-3

Levenshtein distance dL

N VS MUSCLE BMALA TrellisBMA ITR TReconLM (p) TReconLM (f)

2 5.68e-2 6.69e-2 0.119 0.154 5.29e-2 5.26e-2 2.06e-2
3 5.67e-2 4.85e-2 5.18e-2 0.119 9.16e-2 1.56e-2 6.09e-3
4 7.23e-2 1.56e-2 4.01e-2 0.0163 8.56e-3 7.78e-3 2.61e-3
5 6.08e-2 9.38e-3 2.59e-2 1.01e-2 4.87e-3 4.34e-3 1.45e-3
6 5.96e-2 8.78e-3 2.06e-2 7.19e-3 2.64e-3 2.68-3 1.58e-3
7 6.23e-2 8.75e-3 1.48e-2 5.63e-3 1.98e-3 1.87e-3 1.01e-3
8 6.51e-2 4.62e-3 1.22e-2 4.62e-3 1.67e-3 1.33e-3 5.87e-4
9 6.63e-2 3.27e-3 9.55e-3 3.66e-3 1.45e-3 1.09e-3 4.62e-4
10 6.87e-2 3.10e-3 8.06e-3 3.33e-3 1.38e-3 9.22e-4 3.78e-4

Table 4: Results for Microsoft dataset (see Figure 8 Figure 9). Pretrained models (p) and finetuned
models (f).

20

	Introduction and Motivation
	Related Work
	Background on DNA data storage and problem statement
	Method
	Pretraining and pretraining data generation
	Finetuning for Real Data

	Experiments
	Baselines
	Evaluation on synthetic data
	Generalization to high Noise Values

	Experiments on real data
	Real data experiment 1: Noisy-DNA Dataset
	Real data experiment 2: Microsoft Dataset

	Scaling Laws for Trace Reconstruction

	Conclusion and Discussion
	Additional Results for the IDS Channel
	Multiple Sequence Alignment Target
	Additional Comparisons
	RobuSeqNet
	GPT4oMini

	Parameters for Baseline Methods
	Attention Matrix
	Increasing the Cluster Size
	Detailed Numerical Results

