Published as a conference paper at ICLR 2020

RIDE: REWARDING IMPACT-DRIVEN EXPLORATION
FOR PROCEDURALLY-GENERATED ENVIRONMENTS

Roberta Raileanu* Tim Rocktischel

Facebook AI Research Facebook Al Research

New York University University College London

raileanu@cs.nyu.edu rockt@fb.com
ABSTRACT

Exploration in sparse reward environments remains one of the key challenges of
model-free reinforcement learning. Instead of solely relying on extrinsic rewards
provided by the environment, many state-of-the-art methods use intrinsic rewards
to encourage exploration. However, we show that existing methods fall short in
procedurally-generated environments where an agent is unlikely to visit a state
more than once. We propose a novel type of intrinsic reward which encourages the
agent to take actions that lead to significant changes in its learned state represen-
tation. We evaluate our method on multiple challenging procedurally-generated
tasks in MiniGrid, as well as on tasks with high-dimensional observations used in
prior work. Our experiments demonstrate that this approach is more sample ef-
ficient than existing exploration methods, particularly for procedurally-generated
MiniGrid environments. Furthermore, we analyze the learned behavior as well as
the intrinsic reward received by our agent. In contrast to previous approaches, our
intrinsic reward does not diminish during the course of training and it rewards the
agent substantially more for interacting with objects that it can control.

1 INTRODUCTION

Deep reinforcement learning (RL) is one of the most popular frameworks for developing agents that
can solve a wide range of complex tasks (Mnih et al., 2016; Silver et al., 2016; 2017). RL agents
learn to act in new environments through trial and error, in an attempt to maximize their cumulative
reward. However, many environments of interest, particularly those closer to real-world problems,
do not provide a steady stream of rewards for agents to learn from. In such settings, agents require
many episodes to come across any reward, often rendering standard RL methods inapplicable.

Inspired by human learning, the use of intrinsic motivation has been proposed to encourage agents
to learn about their environments even when extrinsic feedback is rarely provided (Schmidhuber,
1991b; 2010; Oudeyer et al., 2007; Oudeyer & Kaplan, 2009). This type of exploration bonus
emboldens the agent to visit new states (Bellemare et al., 2016; Burda et al., 2019b; Ecoffet et al.,
2019) or to improve its knowledge and forward prediction of the world dynamics (Pathak et al.,
2017; Burda et al., 2019a), and can be highly effective for learning in hard exploration games such
as Montezuma's Revenge (Mnih et al., 2016). However, most hard exploration environments used in
previous work have either a limited state space or an easy way to measure similarity between states
(Ecoffet et al., 2019) and generally use the same “singleton” environment for training and evaluation
(Mnih et al., 2016; Burda et al., 2019a). Deep RL agents trained in this way are prone to overfitting to
a specific environment and often struggle to generalize to even slightly different settings (Rajeswaran
et al., 2017; Zhang et al., 2018a;b). As a first step towards addressing this problem, a number
of procedurally-generated environments have been recently released, for example DeepMind Lab
(Beattie et al., 2016), Sokoban (Racaniere et al., 2017), Malmé (Johnson et al., 2016), CraftAssist
(Jernite et al., 2019), Sonic (Nichol et al., 2018), CoinRun (Cobbe et al., 2019), Obstacle Tower
(Juliani et al., 2019), or Capture the Flag (Jaderberg et al., 2019).

In this paper, we investigate exploration in procedurally-generated sparse-reward environments.
Throughout the paper, we will refer to the general problem that needs to be solved as the task

*Work done during an internship at Facebook AI Research.

Published as a conference paper at ICLR 2020

e embed —> T — Gt
St

— embed —>{ ¢4
forward - ¢ 41 \
ay / l

Ve

> a; +—— inverse b R ; @ /

5t+1 — embed —>| Prt1 |

Figure 1: RIDE rewards the agent for actions that have an impact on the state representation (R;pg),
which is learned using both a forward (L f,,) and an inverse dynamics (L;y,,) model.

(e.g. find a goal inside a maze) and to the particular instantiation of this task as the environment (e.g.
maze layout, colors, textures, locations of the objects, environment dynamics etc.). The environment
can be singleton or procedurally-generated. Singleton environments are those in which the agent
has to solve the same task in the same environment in every episode, i.e.., the environment does
not change between episodes. A popular example of a hard exploration environment that falls into
that category is Montezuma's Revenge. In procedurally-generated environments, the agent needs to
solve the same task, but in every episode the environment is constructed differently (e.g. resulting
in a different maze layout), making it unlikely for an agent to ever visit the same state twice. Thus,
agents in such environments have to learn policies that generalize well across a very large state
space. We demonstrate that current exploration methods fall short in such environments as they
(i) make strong assumptions about the environment (deterministic or resettable to previous states)
(Ecoffet et al., 2019; Aytar et al., 2018), (ii) make strong assumptions about the state space (small
number of different states or easy to determine if two states are similar) (Ecoffet et al., 2019; Burda
et al., 2019b; Bellemare et al., 2016; Ostrovski et al., 2017; Machado et al., 2018a), or (iii) provide
intrinsic rewards that can diminish quickly during training (Pathak et al., 2017; Burda et al., 2019a).

To overcome these limitations, we propose Rewarding Impact-Driven Exploration (RIDE), a
novel intrinsic reward for exploration in RL that encourages the agent to take actions which result
in impactful changes to its representation of the environment state (see Figure 1 for an illustration).
We compare against state-of-the-art intrinsic reward methods on singleton environments with high-
dimensional observations (i.e. visual inputs), as well as on hard-exploration tasks in procedurally-
generated grid-world environments. Our experiments show that RIDE outperforms state-of-the-art
exploration methods, particularly in procedurally-generated environments. Furthermore, we present
a qualitative analysis demonstrating that RIDE, in contrast to prior work, does not suffer from
diminishing intrinsic rewards during training and encourages agents substantially more to interact
with objects that they can control (relative to other state-action pairs).

2 RELATED WORK

The problem of exploration in reinforcement learning has been extensively studied. Exploration
methods encourage RL agents to visit novel states in various ways, for example by rewarding sur-
prise (Schmidhuber, 1991b;a; 2010; 2006; Achiam & Sastry, 2017), information gain (Little & Som-
mer, 2013; Still & Precup, 2012; Houthooft et al., 2016), curiosity (Pathak et al., 2017; Burda et al.,
2019b), empowerment (Klyubin et al., 2005; Rezende & Mohamed, 2015; Gregor et al., 2017), di-
versity (Eysenbach et al., 2019), feature control (Jaderberg et al., 2017; Dilokthanakul et al., 2019),
or decision states (Goyal et al., 2019; Modhe et al., 2019). Another class of exploration methods
apply the Thompson sampling heurisitc (Osband et al., 2016; Ostrovski et al., 2017; O’Donoghue
et al., 2018; Tang et al., 2017). Osband et al. (2016) use a family of randomized Q-functions trained
on bootstrapped data to select actions, while Fortunato et al. (2018) add noise in parameter space
to encourage exploration. Here, we focus on intrinsic motivation methods, which are widely-used
and have proven effective for various hard-exploration tasks (Mnih et al., 2016; Pathak et al., 2017;
Bellemare et al., 2016; Burda et al., 2019b).

Published as a conference paper at ICLR 2020

Intrinsic motivation can be useful in guiding the exploration of RL agents, particularly in environ-
ments where the extrinsic feedback is sparse or missing altogether (Oudeyer et al., 2007; 2008;
Oudeyer & Kaplan, 2009; Schmidhuber, 1991b; 2010). The most popular and effective kinds of
intrinsic motivation can be split into two broad classes: count-based methods that encourage the
agent to visit novel states and curiosity-based methods that encourage the agent to learn about the
environment dynamics.

Count-Based Exploration. Strehl & Littman (2008) proposed the use of state visitation counts
as an exploration bonus in tabular settings. More recently, such methods were extended to high-
dimensional state spaces (Bellemare et al., 2016; Ostrovski et al., 2017; Martin et al., 2017; Tang
et al., 2017; Machado et al., 2018a). Bellemare et al. (2016) use a Context-Tree Switching (CTS)
density model to derive a state pseudo-count, while Ostrovski et al. (2017) use PixelCNN as a state
density estimator. Burda et al. (2019b) employ the prediction error of a random network as explo-
ration bonus with the aim of rewarding novel states more than previously seen ones. However, one
can expect count-based exploration methods to be less effective in procedurally-generated environ-
ments with sparse reward. In these settings, the agent is likely to characterize two states as being
different even when they only differ by features that are irrelevant for the task (e.g. the texture of the
walls). If the agent considers most states to be “novel”, the feedback signal will not be distinctive or
varied enough to guide the agent.

Curiosity-Driven Exploration. Curiosity-based bonuses encourage the agent to explore the en-
vironment to learn about its dynamics. Curiosity can be formulated as the error or uncertainty in
predicting the consequences of the agent's actions (Stadie et al., 2015; Pathak et al., 2017; Burda
et al., 2019b). For example, Pathak et al. (2017) learn a latent representation of the state and design
an intrinsic reward based on the error of predicting the next state in the learned latent space. While
we use a similar mechanism for learning state embeddings, our exploration bonus is very different
and builds upon the difference between the latent representations of two consecutive states. As we
will see in the following sections, one problem with their approach is that the intrinsic reward can
vanish during training, leaving the agent with no incentive to further explore the environment and
reducing its feedback to extrinsic reward only.

Generalization in Deep RL. Most of the existing exploration methods that have achieved impres-
sive results on difficult tasks (Ecoffet et al., 2019; Pathak et al., 2017; Burda et al., 2019b; Bellemare
et al., 2016; Choi et al., 2019; Aytar et al., 2018), have been trained and tested on the same environ-
ment and thus do not generalize to new instances. Several recent papers (Rajeswaran et al., 2017,
Zhang et al., 2018a;b; Machado et al., 2018b; Foley et al., 2018) demonstrate that deep RL is sus-
ceptible to severe overfitting. As a result, a number of benchmarks have been recently released for
testing generalization in RL (Beattie et al., 2016; Cobbe et al., 2019; Packer et al., 2018; Justesen
et al., 2018; Leike et al., 2017; Nichol et al., 2018; Juliani et al., 2019). Here, we make another
step towards developing exploration methods that can generalize to unseen scenarios by evaluating
them on procedurally-generated environments. We opted for MiniGrid (Chevalier-Boisvert et al.,
2018) because it is fast to run, provides a standard set of tasks with varied difficulty levels, focuses
on single-agent, and does not use visual inputs, thereby allowing us to better isolate the exploration
problem.

More closely related to our work are the papers of Marino et al. (2019) and Zhang et al. (2019).
Marino et al. (2019) use a reward that encourages changing the values of the non-proprioceptive
features for training low-level policies on locomotion tasks. Their work assumes that the agent has
access to a decomposition of the observation state into internal and external parts, an assumption
which may not hold in many cases and may not be trivial to obtain even if it exists. Zhang et al.
(2019) use the difference between the successor features of consecutive states as intrinsic reward. In
this framework, a state is characterized through the features of all its successor states. While both
of these papers use fixed (i.e. not learned) state representations to define the intrinsic reward, we
use forward and inverse dynamics models to learn a state representation constrained to only capture
elements in the environment that can be influenced by the agent. Lesort et al. (2018) emphasize the
benefits of using a learned state representation for control as opposed to a fixed one (which may
not contain information relevant for acting in the environment). In the case of Zhang et al. (2019),
constructing a temporally extended state representation for aiding exploration is not trivial. Such a
feature space may add extra noise to the intrinsic reward due to the uncertainty of future states. This
is particularly problematic when the environment is highly stochastic or the agent often encounters
novel states (as it is the case in procedurally-generated environments).

Published as a conference paper at ICLR 2020

3 BACKGROUND: CURIOSITY-DRIVEN EXPLORATION

We use the standard formalism of a single agent Markov Decision Process (MDP) defined by a
set of states S, a set of actions A, and a transition function 7 : S x A — P(S) providing the
probability distribution of the next state given a current state and action. The agent chooses actions
by sampling from a stochastic policy 7 : S — P(.A), and receives reward r : S x A — R at every
time step. The agent's goal is to learn a policy which maximizes its discounted expected return

R, =E [Zg:o ’Yth+k+1} where 7 is the sum of the intrinsic and extrinsic reward received by

the agent at time ¢, v € [0, 1] is the discount factor, and the expectation is taken with respect to
both the policy and the environment. Here, we consider the case of episodic RL in which the agent
maximizes the reward received within a finite time horizon.

In this paper we consider that, along with the extrinsic reward rf, the agent also receives some
intrinsic reward 7{, which can be computed for any (s, a;, s;11) tuple. Consequently, the agent
tries to maximize the weighted sum of the intrinsic and extrinsic reward: r; = r¢{ + w;,.ri where w;,
is a hyperparameter to weight the importance of both rewards.

We built upon the work of Pathak et al. (2017) who note that some parts of the observation may
have no influence on the agent's state. Thus, Pathak et al. propose learning a state representation
that disregards those parts of the observation and instead only models (i) the elements that the agent
can control, as well as (ii) those that can affect the agent, even if the agent cannot have an effect
on them. Concretely, Pathak et al. learn a state representations ¢(s) = femp(8; Gemp) of a state
s using an inverse and a forward dynamics model (see Figure 1). The forward dynamics model
is a neural network parametrized by 6,, that takes as inputs ¢(s;) and a,, predicts the next state
representation: <;A$(st+1) = frw(¢e, ar; Opy), and it is trained to minimize Ly, (01w, Oemp) =
l(s41) — H(se41)||2. The inverse dynamics model is also a neural network parameterized by
0;n. that takes as inputs ¢(s;) and ¢(sy41), predicts the agent's action: G; = finw(dt, Pri1; Ginw)s
and it is trained to minimize L;ny(0iny,Oems) = CrossEntropy(at, a;) when the action space
is discrete. Pathak et al.'s curiosity-based intrinsic reward is proportional to the squared Euclidean
distance between the actual embedding of the next state ¢(s;+1) and the one predicted by the forward

model G(s¢11).

4 IMPACT-DRIVEN EXPLORATION

Our main contribution is a novel intrinsic reward based on the change in the state representation
produced by the agent's action. The proposed method encourages the agent to try out actions that
have a significant impact on the environment. We demonstrate that this approach can promote
effective exploration strategies when the feedback from the environment is sparse.

We train a forward and an inverse dynamics model to learn a latent state representation ¢(s) as
proposed by Pathak et al. (2017). However, instead of using the Euclidean distance between the
predicted next state representation and the actual next state representation as intrinsic reward (R
in Figure 1), we define impact-driven reward as the Euclidean distance between consecutive state
representations (R;pg in Figure 1). Compared to curiosity-driven exploration, impact-driven ex-
ploration rewards the agent for very different state-actions, leading to distinct agent behaviors which
we analyze in Section 6.1.1.

Stanton & Clune (2018) categorize exploration into: across-training and intra-life and argue they are
complementary. Popular methods such as count-based exploration (Bellemare et al., 2016) encour-
age agents to visit novel states in relation to all prior training episodes (i.e. across-training novelty),
but they do not consider whether an agent visits novel states within some episode (i.e. intra-life
novelty). As we will see, RIDE combines both types of exploration.

Formally, RIDE is computed as the Ly-norm ||¢(s¢+1) — ¢(s¢)]|2 of the difference in the learned
state representation between consecutive states. However, to ensure that the agent does not go back
and forth between a sequence of states (with a large difference in their embeddings) in order to gain
intrinsic reward, we discount RIDE by episodic state visitation counts. Concretely, we divide the
impact-driven reward by \/Nep($i+1), where Ngp(s441) is the number of times that state has been
visited during the current episode, which is initialized to 1 in the beginning of the episode. In high-

Published as a conference paper at ICLR 2020

dimensional regimes, one can use episodic pseudo-counts instead (Bellemare et al., 2016; Ostrovski
et al., 2017). Thus, the overall intrinsic reward provided by RIDE is calculated as:

) = [¢(st+1) — B(se)ll2
Nep(st+1)

where ¢(s;+1) and ¢(s;) are the learned representations of consecutive states, resulting from the
agent transitioning to state sy, after taking action ay in state s;. The state is projected into a latent
space using a neural network with parameters 0.,,,.

Ripe(se,ar) = ri(se, a0

The overall optimization problem that is solved for training the agent is

ememf{gﬁuﬂemb [wﬂ'LRL (077) + Owawa (efwa eemb) + winvLinv(einvz eemb)]

where 6 are the parameters of the policy and value network (a; ~ m(s¢; 0)), and wy, Wi, and wyy,
are scalars that weigh the relative importance of the reinforcement learning (RL) loss to that of the
inverse and forward dynamics losses which are used for learning the intrinsic reward signal. Note
that we never update the parameters of the inverse (6;,,,), forward (0y,,), or embedding networks
(Bemp) using the signal from the intrinsic or extrinsic reward (i.e. the RL loss); we only use these
learned state embeddings for constructing the exploration bonus and never as part of the agent's
policy (Figure 1 highlights that the policy learns its own internal representation of the state vy, which
is only used for control and never for computing the intrinsic reward). Otherwise, the agent can
artificially maximize its intrinsic reward by constructing state representations with large distances
among themselves, without grounding them in environment observations.

Note that there is no incentive for the learned state representations to encode features of the envi-
ronment that cannot be influenced by the agent's actions. Thus, our agent will not receive rewards
for reaching states that are inherently unpredictable, making exploration robust with respect to dis-
tractor objects or other inconsequential sources of variation in the environment. As we will later
show, RIDE is robust to the well-known noisy-TV problem in which an agent, that is rewarded for
errors in the prediction of its forward model (such as the one proposed in Pathak et al. (2017)), gets
attracted to local sources of entropy in the environment. Furthermore, the difference of consecutive
state representations is unlikely to go to zero during learning as they are representations of actual
states visited by the agent and constrained by the forward and inverse model. This is in contrast to
Pathak et al. (2017) and Burda et al. (2019b) where the intrinsic reward goes to zero as soon as the
forward model becomes sufficiently accurate or the agent's policy only explores well known parts of
the state space.

5 EXPERIMENTS

We evaluate RIDE on procedurally-generated environments from
MiniGrid, as well as on two existing singleton environments with
high-dimensional observations used in prior work, and compare it
against both standard RL and three commonly used intrinsic re-
ward methods for exploration. For all our experiments, we show
the mean and standard deviation of the average return across 5 dif-
ferent seeds for each model. The average return is computed as the
rolling mean over the past 100 episodes.

5.1 ENVIRONMENTS

The first set of environments are procedurally-generated grid-
worlds in MiniGrid (Chevalier-Boisvert et al., 2018). We consider)
three types of hard exploration tasks: MultiRoomNXSY, KeyCorri- Figure 2: Rendering of a

dorS3R3, and ObstructedMaze2Dlh. procedurally-generated ~ en-
N vironment from MiniGrid's
In MiniGrid, the world is a partially observable grid of size N X N. MultiRoomN12S10 task.

Each tile in the grid contains at most one of the following objects:

wall, door, key, ball, box and goal. The agent can take one of seven actions: turn left or right, move
forward, pick up or drop an object, toggle or done. More details about the MiniGrid environment
and tasks can be found in A.3.

Published as a conference paper at ICLR 2020

10 MultiRoom-N7-54 (a) MultiRoom-NoisyTV-N7-54 (b) KeyCorridor-S3-R3 (c) MultiRoom-N10-510 (d)
08— ———— - (—f 7’
£ 06 f A.U | I
% ! j —— RIDE /'
oat—f r' - Ezgm I
5 —_—
202 —cm / I
BT = ens [) C
0.0 t)
0 2 3 0 2 3 0 1 2 3 0.00 0.25 0.50 0.75 1.00
le7 le7 le7 le8
10 MultiRoom-N7-S8 (e) MultiRoom-N10-54 (f) ObstructedMze-2Dlh (g) MultiRoom-N12-510 (h)
- 08 _ /
£ Y
: - ‘ []
S 06
: 2 N
go4
[| /
0.2
i J g V
0.0 ‘
2 3 0 1 2 3 0 2 4 6 0.00 0.25 0.50 0.75 1.00
Number of Frames 1le7 Number of Frames 1e7 Number of Frames 1le7 Number of Frames 1e8

Figure 3: Performance of RIDE, Count, RND, ICM and IMPALA on a variety of hard exploration
problems in MiniGrid. Note RIDE is the only one that can solve the hardest tasks.

For the sole purpose of comparing in a fair way to the curiosity-driven exploration work by Pathak
et al. (2017), we ran a one-off experiment on their Mario (singleton) environment (Kauten, 2018).
We train our model with and without extrinsic reward on the first level of the game.

The last (singleton) environment we evaluate on is VizDoom (Kempka et al., 2016). Details about
the environment can be found in A .4.

5.2 BASELINES

For all our experiments, we use IMPALA (Espeholt et al., 2018) following the implementation of
Kiittler et al. (2019) as the base RL algorithm, and RMSProp (Tieleman & Hinton, 2012) for op-
timization. All models use the same basic RL algorithm and network architecture for the policy
and value functions (see Appendix A.2 and Appendix A.l for details regarding the hyperparameters
and network architectures), differing only in how intrinsic rewards are defined. In our experiments
we compare with the following baselines: Count: Count-Based Exploration by Bellemare et al.
(2016) which uses state visitation counts to give higher rewards for new or rarely seen states. RND:
Random Network Distillation Exploration by Burda et al. (2019b) which uses the prediction error
of a random network as exploration bonus with the aim of rewarding novel states more than previ-
ously encountered ones. ICM: Intrinsic Curiosity Module by Pathak et al. (2017) (see Section 3).
IMPALA: Standard RL approach by Espeholt et al. (2018) that uses only extrinsic reward and en-
courages random exploration by entropy regularization of the policy.

6 RESULTS AND DISCUSSION

We present the results of RIDE in comparison to popular exploration methods, as well as an analysis
of the learned policies and properties of the intrinsic reward generated by different methods.

6.1 MINIGRID

Figure 3 summarizes our results on various hard MiniGrid tasks. Note that the standard RL approach
IMPALA (purple) is not able to learn in any of the environments since the extrinsic reward is too
sparse. Furthermore, our results reveal that RIDE is more sample efficient compared to all the other
exploration methods across all MiniGrid tasks considered here. While other exploration bonuses
seem effective on easier tasks and are able to learn optimal policies where IMPALA fails, the gap
between our approach and the others is increasing with the difficulty of the task. Furthermore, RIDE
manages to solve some very challenging tasks on which the other methods fail to get any reward even
after training on over 100M frames (Figure 3).

Published as a conference paper at ICLR 2020

-0.020
I— 0.016
-0.012
-0.008
-0.004
-0.000
-0.020
-0.016
L} -0.012
1
1 -0.008
]
L}

-0.004

-0.000

-0.020

1 1

" H 0016

] pnnnnEn foo12

] 1

] -0.008

]

H -0.004
-0.000

Figure 4: Intrinsic reward heatmaps for RND, ICM, and RIDE (from left to right) for opening doors
(green), moving forward (blue), or turning left or right (red) on a random environment from the
MultiRoomN7S54 task. A is the agent's starting position, G is the goal position and D are doors that
have to be opened on the way.

| Open Door Turn Left / Right | Move Forward

Model | Mean Std Mean Std Mean Std
RIDE | 0.0490 0.0019 | 0.0071 0.0034 | 0.0181 0.0116
RND | 0.0032 0.0018 | 0.0031 0.0028 | 0.0026 0.0017
ICM 0.0055 0.0003 | 0.0052 0.0003 | 0.0056 0.0003

Table 1: Mean intrinsic reward per action over 100 episodes on a random maze in MultiRoomN7S4.

In addition to existing MiniGrid tasks, we also tested the model’s ability to deal with stochasticity
in the environment by adding a “noisy TV” in the MiniGridN7S4 task, resulting in the new Mini-
GirdN7S4NoisyTV task (left-center plot in the top row of Figure 3). The noisy TV is implemented
as a ball that changes its color to a randomly picked one whenever the agent takes a particular action.
As expected, the performance of ICM drops as the agent becomes attracted to the ball while obtain-
ing intrinsic rewarded for not being able to predict the next color. The Count model also needs more
time to train, likely caused by the increasing number of rare and novel states (due to the changing
color of the ball).

We include results for ablations to our model in Appendix A.5, highlighting the importance of
combining impact-driven exploration with episodic state visitation discounting.

6.1.1 ANALYSIS OF THE INTRINSIC REWARD

To better understand the effectiveness of different exploration methods, we investigate the intrinsic
reward an agent receives for certain trajectories in the environment.

Figure 4 shows a heatmap of the intrinsic reward received by RND, ICM, and RIDE on a sam-
pled environment after having been trained on procedurally-generated environments from the Mul-
tiRoomN7S4 task. While all three methods can solve this task, the intrinsic rewards received are
different. Specifically, the RIDE agent is rewarded in a much more structured manner for opening
doors, entering new rooms and turning at decision points. Table 1 provides quantitative numbers
for this phenomenon. We record the intrinsic rewards received for each type of action, averaged
over 100 episodes. We found that RIDE is putting more emphasis on actions interacting with the
door than for moving forward or turning left or right, while the other methods reward actions more
uniformly.

Published as a conference paper at ICLR 2020

Figure 12 and Table 3 in A.6.2 show a similar pattern for the intrinsic rewards for agents trained on
the MultiRoomN 12510 task, while Figure 13 and Table 4 in A.6.3 contain the equivalent analysis for
agents trained on ObstructedMaze2Dlh. As emphasized there, RIDE is rewarding the agent more
for interactions with objects as opposed to actions for moving around in the maze, a characteristic
which is not as prevalent in the other models.

MultiRoom-N12-S10

—— RIDE
COUNT

—— RND |

— ICM

Figure 5 shows the mean intrinsic reward of all models while 0.010
training on the MultiRoomN12S10 task. While the ICM,
RND, and Count intrinsic reward converges to very low val-
ues quite early in the training process, the RIDE bonus keeps
changing and has a higher value even after training on 100M
frames. Hence, RIDE constantly encourages the agent to
take actions that change the local environment. In contrast,
Count, RND, and Curiosity may not consider certain states to
be “novel” or “surprising” after longer periods of training as
they have seen similar states in the past or learned to almost 0.00 035 050 075 1.00
perfectly predict the next state in a subset of the environment Number of Frames 1e8
states. Consequently, their intrinsic rewards diminish during
training and the agent struggles to distinguish between actions
that lead to novel or surprising states from those that do not,
thereby getting trapped in some parts of the state space (see
Figure 12).

o o o o
o o o o
o o o o
N £y ()} [e¢]

Average Intrinsic Reward

NS

L

Figure 5: Mean Iintrinsic re-
ward for models trained on Multi-
RoomN12S10.

6.1.2 SINGLETON VERSUS PROCEDURALLY-GENERATED ENVIRONMENTS

It is important to understand and quantify how much harder it
is to train existing deep RL exploration methods on tasks in
procedurally-generated environments compared to a singleton Fixed ObstructedMaze2DIh
environment.

=
o

To investigate this dependency, we trained the models on a
singleton environment of the the ObstructedMaze2DIh task so
that at the beginning of every episode, the agent is spawned
in exactly the same maze with all objects located in the same
positions. In this setting, we see that Count, RND, and IM-
PALA are also able to solve the task (see Figure 6 and com-
pare with the center-right plot in the bottom row of Fig-
ure 3 for procedurally-generated environments of the same |
. 0 2 6
task). As expected, this emphasizes that training an agent in Number of Frames 1e7
procedurally-generated environments creates significant chal-
lenges over training on a singleton environment for the same
task. Moreover, it highlights the importance of training on
a variety of environments to avoid overfitting to the idiosyn-
crasies of a particular environment.

Average Return
o
3]

—— RIDE
COUNT
RND

— ICM
—— IMPALA
4

o
=)

Figure 6: Training on a singleton
instance of ObstructedMaze2Dlh.

6.1.3 NO EXTRINSIC REWARD

To analyze the way different methods explore environments without depending on the chance of run-
ning into extrinsic reward (which can dramatically change the agent's policy), we analyze agents that
are trained without any extrinsic reward on both singleton and procedurally-generated environments.

The top row of Figure 7 shows state visitation heatmaps for all the models in a singleton environment
on the MultiRoomN10S6 task, after training all of them for SOM frames with intrinsic reward only.
The agents are allowed to take 200 steps in every episode. The figure indicates that all models have
effective exploration strategies when trained on a singleton maze, the 10th, 9th and 6th rooms are
reached by RIDE, Count/RND, and ICM, respectively. The Random policy fully explores the first
room but does not get to the second room within the time limit.

When trained on procedurally-generated mazes, existing models are exploring much less efficiently
as can be seen in the bottom row of Figure 7. Here, Count, RND, and ICM only make it to the 4th,
3rd and 2nd rooms respectively within an episode, while RIDE is able to explore all rooms. This

Published as a conference paper at ICLR 2020

Count RND ICM Random RIDE

9.0
7.5
6.0

4.5

Figure 7: State visitation heatmaps for Count, RND, ICM, Random, and RIDE models (from left
to right) trained for 50m frames without any extrinsic reward on a singleton maze (top row) and on
procedurally-generated mazes (bottom row) in MultiRoomN10S6.

Mario Intrinsic (a) Mario Intrinsic and Extrinsic (b) VizDoom (c)
800 800
A 2 U RO A Ay 1.00
600 [T i s L ALl 600 e Vo PR R P A A
=4
2 400 400 07
2
& o 050
g 200 200 .
© —— RIDE
g 0 —— COUNT 0 W 0.25 M
b4
—— RND
200 T icm 200 0.00 m!,}j}f
- —— IMPALA | —
400 ‘ 400‘ ‘ _0.25 ! !
0 1 2 3 0 2 3 0.0 0.2 0.4 0.6 0.8 1.0
Number of Frames [1e6] Number of Frames [1e6] Number of Frames [1e7]

Figure 8: Performance on Mario with intrinsic reward only (a), with intrinsic and extrinsic reward
(b), and VizDoom (c). Note that IMPALA is trained with extrinsic reward only in all cases.

further supports that RIDE learns a state representation that allows generalization across different
mazes and is not as distracted by less important details that change from one procedurally-generated
environment to another.

6.2 MARIO AND VIZDOOM

In order to compare to Pathak et al. (2017), we evaluate RIDE on the first level of the Mario envi-
ronment. Our results (see Figure 8 a and b) suggest that this environment may not be as challenging
as previously believed, given that all the methods evaluated here, including vanilla IMPALA, can
learn similarly good policies after training on only 1m frames even without any intrinsic reward (left
figure). Note that we are able to reproduce the results mentioned in the original ICM paper (Pathak
et al., 2017). However, when training with both intrinsic and extrinsic reward (center figure), the
curiosity-based exploration bonus (ICM) hurts learning, converging later and to a lower value than
the other methods evaluated here.

For VizDoom (see Figure 8 c¢) we observe that RIDE performs as well as ICM, while all the other
baselines fail to learn effective policies given the same amount of training. Note that our ICM
implementation can reproduce the results in the original paper on this task, achieving a 100% success
rate after training on approximately 60m frames (Pathak et al., 2017).

Published as a conference paper at ICLR 2020

7 CONCLUSION AND FUTURE WORK

In this work, we propose Rewarding Impact-Driven Exploration (RIDE), an intrinsic reward bonus
that encourages agents to explore actions that substantially change the state of the environment, as
measured in a learned latent space. RIDE has a number of desirable properties: it attracts agents
to states where they can affect the environment, it provides a signal to agents even after training
for a long time, and it is conceptually simple as well as compatible with other intrinsic or extrinsic
rewards and any deep RL algorithm.

Our approach is particularly effective in procedurally-generated sparse-reward environments where
it significantly outperforms IMPALA (Espeholt et al., 2018), as well as some of the most popu-
lar exploration methods such as Count (Bellemare et al., 2016), RND (Burda et al., 2019b), and
ICM (Pathak et al., 2017). Furthermore, RIDE explores procedurally-generated environments more
efficiently than other exploration methods.

However, there are still many ways to improve upon RIDE. For example, one can make use of sym-
bolic information to measure or characterize the agent's impact, consider longer-term effects of the
agent's actions, or promote diversity among the kinds of changes the agent makes to the environ-
ment. Another interesting avenue for future research is to develop algorithms that can distinguish
between desirable and undesirable types of impact the agent can have in the environment, thus con-
straining the agent to act safely and avoid distractions (i.e. actions that lead to large changes in the
environment but that are not useful for a given task). The different kinds of impact might corre-
spond to distinctive skills or low-level policies that a hierarchical controller could use to learn more
complex policies or better exploration strategies.

ACKNOWLEDGMENTS

We would like to thank Heinrich Kiittler, Edward Grefenstette, Nantas Nardelli, Jakob Foerster,
Kyunghyun Cho, Arthur Szlam, Rob Fergus, Victor Zhong and Léon Bottou for insightful discus-
sions and valuable feedback on this work.

REFERENCES

Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep reinforcement
learning. CoRR, abs/1703.01732,2017. URL http://arxiv.org/abs/1703.01732.

Yusuf Aytar, Tobias Pfaff, David Budden, Thomas Paine, Ziyu Wang, and Nando de Freitas. Playing
hard exploration games by watching youtube. In Advances in Neural Information Processing
Systems, pp. 2930-2941, 2018.

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Kiittler,
Andrew Lefrancq, Simon Green, Victor Valdés, Amir Sadik, Julian Schrittwieser, Keith Ander-
son, Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis
Hassabis, Shane Legg, and Stig Petersen. Deepmind lab. CoRR, abs/1612.03801, 2016. URL
http://arxiv.org/abs/1612.03801.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems, pp. 1471-1479, 2016.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Yuri Burda, Harrison Edwards, Deepak Pathak, Amos J. Storkey, Trevor Darrell, and Alexei A.
Efros. Large-scale study of curiosity-driven learning. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019a. URL https:
//openreview.net/forum?id=rJNwD jAqYX.

Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random net-
work distillation. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019, 2019b. URL https://openreview.net/forum?id=
H11JJnR5Ym.

10

http://arxiv.org/abs/1703.01732
http://arxiv.org/abs/1612.03801
https://openreview.net/forum?id=rJNwDjAqYX
https://openreview.net/forum?id=rJNwDjAqYX
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym

Published as a conference paper at ICLR 2020

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

Jongwook Choi, Yijie Guo, Marcin Moczulski, Junhyuk Oh, Neal Wu, Mohammad Norouzi, and
Honglak Lee. Contingency-aware exploration in reinforcement learning. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019,
2019. URL https://openreview.net/forum?id=HyxGB2AcY7.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). In 4th International Conference on Learning Repre-
sentations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016. URL http://arxiv.org/abs/1511.07289.

Karl Cobbe, Oleg Klimov, Christopher Hesse, Tachoon Kim, and John Schulman. Quantifying
generalization in reinforcement learning. In Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, pp. 1282—-1289,
2019. URL http://proceedings.mlr.press/v97/cobbel9a.html.

Nat Dilokthanakul, Christos Kaplanis, Nick Pawlowski, and Murray Shanahan. Feature control as
intrinsic motivation for hierarchical reinforcement learning. [EEE transactions on neural net-
works and learning systems, 2019.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a
new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IM-
PALA: scalable distributed deep-rl with importance weighted actor-learner architectures. In
Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmdssan, Stockholm, Sweden, July 10-15, 2018, pp. 1406-1415, 2018. URL http:
//proceedings.mlr.press/v80/espeholtl8a.html.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. In 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019. URL https:
//openreview.net/forum?id=SJIx63JRgFm.

John Foley, Emma Tosch, Kaleigh Clary, and David Jensen. Toybox: Better atari environments for
testing reinforcement learning agents. CoRR, abs/1812.02850, 2018. URL http://arxiv.
org/abs/1812.02850.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Os-
band, Alex Graves, Volodymyr Mnih, Rémi Munos, Demis Hassabis, Olivier Pietquin, Charles
Blundell, and Shane Legg. Noisy networks for exploration. In 6th International Confer-
ence on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings, 2018. URL https://openreview.net/forum?
id=rywHCPkAW.

Anirudh Goyal, Riashat Islam, Daniel Strouse, Zafarali Ahmed, Hugo Larochelle, Matthew
Botvinick, Yoshua Bengio, and Sergey Levine. Infobot: Transfer and exploration via the in-
formation bottleneck. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019, 2019. URL https://openreview.net/forum?
id=rJg8yhAgKm.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Workshop Track Proceedings, 2017. URL https://openreview.net/forum?id=
Skc-Fo4dYgq.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. In Advances in Neural Information Processing
Systems, pp. 1109-1117, 2016.

11

https://github.com/maximecb/gym-minigrid
https://openreview.net/forum?id=HyxGB2AcY7
http://arxiv.org/abs/1511.07289
http://proceedings.mlr.press/v97/cobbe19a.html
http://proceedings.mlr.press/v80/espeholt18a.html
http://proceedings.mlr.press/v80/espeholt18a.html
https://openreview.net/forum?id=SJx63jRqFm
https://openreview.net/forum?id=SJx63jRqFm
http://arxiv.org/abs/1812.02850
http://arxiv.org/abs/1812.02850
https://openreview.net/forum?id=rywHCPkAW
https://openreview.net/forum?id=rywHCPkAW
https://openreview.net/forum?id=rJg8yhAqKm
https://openreview.net/forum?id=rJg8yhAqKm
https://openreview.net/forum?id=Skc-Fo4Yg
https://openreview.net/forum?id=Skc-Fo4Yg

Published as a conference paper at ICLR 2020

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
Sth International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings,2017. URL https://openreview.net/forum?
1d=SJ6yPD5xqg.

Max Jaderberg, Wojciech M Czarnecki, lain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-
level performance in 3d multiplayer games with population-based reinforcement learning. Sci-
ence, 364(6443):859-865, 2019.

Yacine Jernite, Kavya Srinet, Jonathan Gray, and Arthur Szlam. Craftassist instruction pars-
ing: Semantic parsing for a minecraft assistant. CoRR, abs/1905.01978, 2019. URL http:
//arxiv.org/abs/1905.01978.

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The malmo platform for artifi-
cial intelligence experimentation. In Proceedings of the Twenty-Fifth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pp. 42464247,
2016. URL http://www.ijcai.org/Abstract/16/643.

Arthur Juliani, Ahmed Khalifa, Vincent-Pierre Berges, Jonathan Harper, Ervin Teng, Hunter Henry,
Adam Crespi, Julian Togelius, and Danny Lange. Obstacle tower: A generalization challenge in
vision, control, and planning. In Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IICAI 2019, Macao, China, August 10-16, 2019, pp. 2684-2691, 2019.
doi: 10.24963/ijcai.2019/373. URL https://doi.org/10.24963/13cai.2019/373.

Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed Khalifa, Julian Togelius, and
Sebastian Risi. Illuminating generalization in deep reinforcement learning through procedural
level generation. arXiv preprint arXiv:1806.10729, 2018.

Christian Kauten. Super Mario Bros for OpenAl Gym. GitHub, 2018. URL https://github.
com/Kautenja/gym-super—-mario-bros.

Michat Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaskowski. Viz-
doom: A doom-based ai research platform for visual reinforcement learning. In 2016 IEEE
Conference on Computational Intelligence and Games (CIG), pp. 1-8. IEEE, 2016.

Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. All else being equal be empow-
ered. In European Conference on Artificial Life, pp. 744—753. Springer, 2005.

Heinrich Kiittler, Nantas Nardelli, Thibaut Lavril, Marco Selvatici, Viswanath Sivakumar,
Tim Rocktidschel, and Edward Grefenstette. = TorchBeast: A PyTorch Platform for Dis-
tributed RL. arXiv preprint arXiv:1910.03552, 2019. URL https://github.com/
facebookresearch/torchbeast.

Jan Leike, Miljan Martic, Victoria Krakovna, Pedro A Ortega, Tom Everitt, Andrew Lefrancq, Lau-
rent Orseau, and Shane Legg. Ai safety gridworlds. arXiv preprint arXiv:1711.09883,2017.

Timothée Lesort, Natalia Diaz Rodriguez, Jean-Francois Goudou, and David Filliat. State represen-
tation learning for control: An overview. Neural Networks, 108:379-392, 2018. doi: 10.1016/j.
neunet.2018.07.006. URL https://doi.org/10.1016/j.neunet.2018.07.006.

Daniel Ying-Jeh Little and Friedrich Tobias Sommer. Learning and exploration in action-perception
loops. Frontiers in neural circuits, 7:37, 2013.

Marlos C Machado, Marc G Bellemare, and Michael Bowling. Count-based exploration with the
successor representation. arXiv preprint arXiv:1807.11622, 2018a.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523-562, 2018b.

12

https://openreview.net/forum?id=SJ6yPD5xg
https://openreview.net/forum?id=SJ6yPD5xg
http://arxiv.org/abs/1905.01978
http://arxiv.org/abs/1905.01978
http://www.ijcai.org/Abstract/16/643
https://doi.org/10.24963/ijcai.2019/373
https://github.com/Kautenja/gym-super-mario-bros
https://github.com/Kautenja/gym-super-mario-bros
https://github.com/facebookresearch/torchbeast
https://github.com/facebookresearch/torchbeast
https://doi.org/10.1016/j.neunet.2018.07.006

Published as a conference paper at ICLR 2020

Kenneth Marino, Abhinav Gupta, Rob Fergus, and Arthur Szlam. Hierarchical RL using an
ensemble of proprioceptive periodic policies. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019. URL https:
//openreview.net/forum?id=SJz1x20cFQ.

Jarryd Martin, Suraj Narayanan Sasikumar, Tom Everitt, and Marcus Hutter. Count-based explo-
ration in feature space for reinforcement learning. In Proceedings of the Twenty-Sixth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August
19-25, 2017, pp. 2471-2478, 2017. doi: 10.24963/ijcai.2017/344. URL https://doi.org/
10.24963/1jcai.2017/344.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928—-1937, 2016.

Nirbhay Modhe, Prithvijit Chattopadhyay, Mohit Sharma, Abhishek Das, Devi Parikh, Dhruv Ba-
tra, and Ramakrishna Vedantam. Unsupervised discovery of decision states for transfer in rein-
forcement learning. CoRR, abs/1907.10580, 2019. URL http://arxiv.org/abs/1907.
10580.

Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John Schulman. Gotta learn fast: A
new benchmark for generalization in rl. arXiv preprint arXiv:1804.03720, 2018.

Brendan O’Donoghue, Ian Osband, Rémi Munos, and Volodymyr Mnih. The uncertainty bellman
equation and exploration. In Proceedings of the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmdssan, Stockholm, Sweden, July 10-15, 2018, pp. 38363845, 2018.
URL http://proceedings.mlr.press/v80/o-donoghuel8a.html.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. In Advances in neural information processing systems, pp. 4026—4034, 2016.

Georg Ostrovski, Marc G Bellemare, Adron van den Oord, and Rémi Munos. Count-based ex-
ploration with neural density models. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 2721-2730. JIMLR. org, 2017.

Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of computa-
tional approaches. Frontiers in neurorobotics, 1:6, 2009.

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for au-
tonomous mental development. IEEE transactions on evolutionary computation, 11(2):265-286,
2007.

Pierre-Yves Oudeyer, Frederic Kaplan, et al. How can we define intrinsic motivation. In Proc. of
the 8th Conf. on Epigenetic Robotics, volume 5, pp. 29-31, 2008.

Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krihenbiihl, Vladlen Koltun, and Dawn Song.
Assessing generalization in deep reinforcement learning. arXiv preprint arXiv:1810.12282, 2018.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 16-17,2017.

Sébastien Racaniére, Theophane Weber, David P. Reichert, Lars Buesing, Arthur
Guez, Danilo Jimenez Rezende, Adria Puigdoménech Badia, Oriol Vinyals, Nico-
las Heess, Yujia Li, Razvan Pascanu, Peter W. Battaglia, Demis Hassabis, David
Silver, and Daan Wierstra. Imagination-augmented agents for deep reinforcement
learning. In Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, pp. 5690-5701, 2017. URL http://papers.nips.cc/paper/
7152-imagination—-augmented-agents—-for-deep-reinforcement-learning.

Aravind Rajeswaran, Kendall Lowrey, Emanuel V Todorov, and Sham M Kakade. Towards gen-
eralization and simplicity in continuous control. In Advances in Neural Information Processing
Systems, pp. 6550-6561, 2017.

13

https://openreview.net/forum?id=SJz1x20cFQ
https://openreview.net/forum?id=SJz1x20cFQ
https://doi.org/10.24963/ijcai.2017/344
https://doi.org/10.24963/ijcai.2017/344
http://arxiv.org/abs/1907.10580
http://arxiv.org/abs/1907.10580
http://proceedings.mlr.press/v80/o-donoghue18a.html
http://papers.nips.cc/paper/7152-imagination-augmented-agents-for-deep-reinforcement-learning
http://papers.nips.cc/paper/7152-imagination-augmented-agents-for-deep-reinforcement-learning

Published as a conference paper at ICLR 2020

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows.
In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015, pp. 1530-1538, 2015. URL http://proceedings.mlr.press/
v37/rezendel5.html.

Jirgen Schmidhuber. Curious model-building control systems. In Proc. international joint confer-
ence on neural networks, pp. 1458-1463, 1991a.

Jiirgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neu-
ral controllers. In Proc. of the international conference on simulation of adaptive behavior: From
animals to animats, pp. 222-227, 1991b.

Jirgen Schmidhuber. Developmental robotics, optimal artificial curiosity, creativity, music, and the
fine arts. Connection Science, 18(2):173-187, 2006.

Jiirgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990-2010). /[EEE
Transactions on Autonomous Mental Development, 2(3):230-247, 2010.

David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354, 2017.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Christopher Stanton and Jeff Clune. Deep curiosity search: Intra-life exploration can improve perfor-
mance on challenging deep reinforcement learning problems. arXiv preprint arXiv:1806.00553,
2018.

Susanne Still and Doina Precup. An information-theoretic approach to curiosity-driven reinforce-
ment learning. Theory in Biosciences, 131(3):139-148, 2012.

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences, 74(8):1309-1331, 2008.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAl Xi Chen, Yan Duan, John Schul-
man, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for

deep reinforcement learning. In Advances in neural information processing systems, pp. 2753—
2762, 2017.

T Tieleman and G Hinton. Rmsprop: Divide the gradient by a running average of its recent mag-
nitude. coursera: Neural networks for machine learning. Tech. Rep., Technical report, pp. 31,
2012.

Amy Zhang, Nicolas Ballas, and Joelle Pineau. A dissection of overfitting and generalization in
continuous reinforcement learning. arXiv preprint arXiv:1806.07937, 2018a.

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. arXiv preprint arXiv:1804.06893, 2018b.

Jingwei Zhang, Niklas Wetzel, Nicolai Dorka, Joschka Boedecker, and Wolfram Burgard. Sched-
uled intrinsic drive: A hierarchical take on intrinsically motivated exploration. arXiv preprint
arXiv:1903.07400, 2019.

14

http://proceedings.mlr.press/v37/rezende15.html
http://proceedings.mlr.press/v37/rezende15.html

Published as a conference paper at ICLR 2020

A APPENDIX

A.1 NETWORK ARCHITECTURES

All our models use the same network architecture for the policy and value networks. The input is
passed through a sequence of three (for MiniGrid) or four (for the environments used by Pathak
et al. (2017)) convolutional layers with 32 filters each, kernel size of 3x3, stride of 2 and padding of
1. An exponential linear unit (ELU; (Clevert et al. (2016))) is used after each convolution layer. The
output of the last convolution layer is fed into a LSTM with 256 units. Two separate fully connected
layers are used to predict the value function and the action from the LSTM feature representation.

For the singleton environments used in prior work, the agents are trained using visual inputs that are
pre-processed similarly to Mnih et al. (2016). The RGB images are converted into gray-scale and
resized to 42 x 42. The input given to both the policy and the state representation networks consists
of the current frame concatenated with the previous three frames. In order to reduce overfitting,
during training, we use action repeat of four. At inference time, we sample the policy without any
action repeats.

A.2 HYPERPARAMETERS

We ran grid searches over the learning rate € [0.0001, 0.0005, 0.001], batch size € [8, 32] and unroll
length € [20, 40,100, 200]. The best values for all models can be found in Table 2. The learning
rate is linearly annealed to O in all experiments.

Parameter Value
Learning Rate 0.0001
Batch Size 32
Unroll Length 100
Discount 0.99
RMSProp Momentum 0.0
RMSProp € 0.01

Clip Gradient Norme ~ 40.0

Table 2: Hyperparameters common to all experiments.

We also ran grid searches over the intrinsic reward coefficient € [1.0, 0.5, 0.1, 0.05, 0.01, 0.005,
0.001] and the entropy coefficient € [0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005] for all the models
on all environments. The best intrinsic reward coefficient was 0.1 for ICM and RND, and 0.005 for
Count on all environments. The best entropy coefficient was 0.0001 for ICM, RND, and Count on
all environments. For RIDE, we used an intrinsic reward coefficient of 0.1 and entropy coefficient
of 0.0005 for MultiRoomN7S4, MultiRoomNoisyTVN7S4, MultiRoomN10S4, KeyCorridorS3R3
and 0.5, 0.001 for MultiRoomN7S8, MultiRoomN10S10, MultiRoomN12S10, and Obstructed-
Maze2Dlh. The ablations use the same hyperparameters as RIDE. In all experiments presented
here, we use the best values found for each model.

A.3 MINIGRID ENVIRONMENT

In MiniGrid, the world is a partially observable grid of size NxN. Each tile in the grid contains
exactly zero or one objects. The possible object types are wall, door, key, ball, box and goal.

Each object in MiniGrid has an associated discrete color, which can be one of red, green, blue,
purple, yellow or grey. By default, walls are always grey and goal squares are always green. Rewards
are sparse for all MiniGrid environments.

There are seven actions in MiniGrid: turn left, turn right, move forward, pick up an object, drop an
object, toggle and done. The agent can use the turn left and turn right action to rotate and face one
of 4 possible directions (north, south, east, west). The move forward action makes the agent move
from its current tile onto the tile in the direction it is currently facing, provided there is nothing on

15

Published as a conference paper at ICLR 2020

that tile, or that the tile contains an open door. The agent can open doors if they are right in front of
it by using the toggle action.

Observations in MiniGrid are partial and egocentric. By default, the agent sees a square of 7x7 tiles
in the direction it is facing. These include the tile the agent is standing on. The agent cannot see
through walls or closed doors. The observations are provided as a tensor of shape 7x7x3. However,
note that these are not RGB images. Each tile is encoded using 3 integer values: one describing the
type of object contained in the cell, one describing its color, and a flag indicating whether doors are
open or closed. This compact encoding was chosen for space efficiency and to enable faster training.
For all tasks, the agent gets an egocentric view of its surroundings, consisting of 3x3 pixels. A neural
network parameterized as a CNN is used to process the visual observation.

The MultiRoomNXSY environment consists of X rooms, with size at most Y, connected in random
orientations. The agent is placed in the first room and must navigate to a green goal square in
the most distant room from the agent. The agent receives an egocentric view of its surrounding,
consisting of 3x3 pixels. The task increases in difficulty with X and Y. Episodes finish with a
positive reward when the agent reaches the green goal square. Otherwise, episodes are terminated
with zero reward after a maximum of 20xN steps.

In the KeyCorridorS3R3 environment, the agent has to pick up an object which is behind a locked
door. The key is hidden in another room, and the agent has to explore the environment to find it.
Episodes finish with a positive reward when the agent picks up the ball behind the locked door or
after a maximum of 270 steps.

In the ObstructedMaze2DIh environment, the agent has to pick up a box which is placed in a corner
of a 3x3 maze. The doors are locked, the keys are hidden in boxes and the doors are obstructed by
balls. Episodes finish with a positive reward when the agent picks up the ball behind the locked door
or after a maximum of 576 steps.

In the DynamicObstacles environment, the agent has to navigate to a fixed goal location while
avoiding moving obstacles. In our experiments, the agent is randomly initialized to a location in
the grid. If the agent collides with an obstacles, it receives a penalty of -1 and the episode ends.

A.4 VizDooM ENVIRONMENT

We consider the Doom 3D navigation task where the action space of the agent consists of four
discrete actions: move forward, move left, move right and no-action. Our testing setup in all the
experiments is the DoomMyWayHome-v0 environments which is available as part of OpenAl Gym
(Brockman et al., 2016). Episodes are terminated either when the agent finds the vest or if the
agent exceeds a maximum of 2100 time steps. The map consists of 9 rooms connected by corridors
and the agent is tasked to reach some fixed goal location from its spawning location. The agent is
always spawned in Room-13 which is 270 steps away from the goal under an optimal policy. A
long sequence of actions is required to reach the goals from these rooms, making this setting a hard
exploration problem. The agent is only provided a sparse terminal reward of +1 if it finds the vest
and 0 otherwise. While this environment has sparse reward, it is not procedurally-generated, so the
agent finds itself in exactly the same environment in each episode and does not need to generalize
to different environment instantiations. This environment is identical to the "sparse" setting used in
Pathak et al. (2017).

A.5 ABLATIONS

In this section, we aim to better understand the effect of using episodic discounting as part of the
intrinsic reward, as well as that of using entropy regularization as part of the IMPALA loss.

Figure 9 compares the performance of our model on different MiniGrid tasks with that of three abla-
tions. The first one only uses episodic state counts as exploration bonus without multiplying it by the
impact-driven intrinsic reward (OnlyEpisodicCounts), the second one only uses the impact-driven
exploration bonus without multiplying it by the episodic state count term (NoEpisodicCounts), while
the third one is the NoEpisodicCounts model without the entropy regularization term in the IMPALA
loss (NoEntropyNoEpisodicCounts).

16

Published as a conference paper at ICLR 2020

OnlyEpisodicCounts does not solve any of the tasks. NoEntropyNoEpisodicCounts either converges
to a suboptimal policy or completely fails. In contrast, NoEpisodicCounts can solve the easier
tasks but it requires more interactions than RIDE and fails to learn on the hardest domain. During
training, NoEpisodicCounts can get stuck cycling between two states (with a large distance in the
embedding states) but due to entropy regularization, it can sometimes escape such local optima
(unlike NoEntropyNoEpisodicCounts) if it finds extrinsic reward. However, when the reward is too
sparse, NoEpisodicCounts is insufficient while RIDE still succeeds, indicating the effectiveness of
augmenting the impact-driven intrinsic reward with the episodic count term.

10 MultiRoom-NoisyTV-N7-54 MultiRoom-N10-54
. 1.0 ‘
0.8 0.8 s
S 0.6 / E 0.6
2 ~ 1 2
[} (V]
>4 /’/—_ [~4
o 04 o 04
)] ‘ D)
© ©
E / f—/ E 0.2 A /7
S o2 2 o
E / E I %,
0.0 0.0 —
-0.2 -0.2
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Number of Frames le7 Number of Frames le7
ObstructedMaze-2Dlh MultiRoom-N12-S10
1.2
I
0.6
1.0
/ 0.5
Cos £
5 / S5 04
k] ° —— RIDE
< 0.6 < 03 - NoEpisodicCounts 1
% g, —— OnlyEpisodicCounts
g 0.4 . g 0.2 —— NoEntropyNoEpisodicCounts
= Z o1
0.2 I
‘// 0.0
0.0
-0.1
0 1 2 3 4 5 6 0.0 0.2 0.4 0.6 0.8 1.0
Number of Frames le7 Number of Frames les

Figure 9: Comparison between the performance of RIDE and three ablations: OnlyEpisodicCounts,
NoEpisodicCounts, and NoEntropyNoEpisodicCounts.

Figure 10 shows the average number of states visited during an episode of MultiRoomN12S10,
measured at different training stages for our full RIDE model and the NoEpisodicCounts ablation.
While the NoEpisodicCounts ablation always visits a low number of different states each episode
(£ 10), RIDE visits an increasing number of states throughout training (converging to ~ 100 for an
optimal policy). Hence, it can be inferred that NoEpisodicCounts revisits some of the states. This
claim can be further verified by visualizing the agents’ behaviors. After training, NoEpisodicCounts
goes back and forth between two states, while RIDE visits each state once on its path to the goal.
Consistent with our intuition, discounting the intrinsic reward by the episodic state-count term does
help to avoid this failure mode.

A.6 ANALYSIS

A.6.1 STATE VISITATION IN MULTIROOMN12S10

In this section, we analyze the behavior learned by the agents. Figure 11 shows the state visitation
heatmaps for all models trained on 100m frames of MultiRoomN12S10, which has a very sparse
reward. Note that while our model has already reached the goal in the farthest room of the maze,
Count has explored about half of the maze, while RND and ICM are still in the first two rooms.

17

Published as a conference paper at ICLR 2020

s RIDE
120 No Episodic Counts

; m
mm B

Im 5m 10m 15m
Number of Training Frames

Number of Visited States
(o)) o«
o o
N
o
g | _§

Figure 10: Average number of states visited during an episode of MultiRoomN12S10, measured
at different training stages for our full RIDE model (blue) and the NoEpisodicCounts ablation (or-
ange).

o

o
IIIIIII:IIID n

Figure 11: State visitation heatmaps for Count, RND, ICM, and RIDE (from left to right) trained
for 100m frames on MultiRoomN12S10.

ARRNEERNND - NRRNEEEND - NERRNEEEEND
(11] 1 1 N [} N (1]] [} [}
(1111] 1 [LLL]] [}
] 1 1 [} 1 1
[} 1 [} [} [} [}
o D [} IF. ol []
NERENNNERENECHER AN NNNNNNNNEENEOHER
C | [} [} . [| [] n
[} 1 [} [. | [} [}
(111 1 1 [1] 1 1
[} [} = [} [
[111]] ERRECEHEEND oms s [11]] EERECHEEND
I.-IIIIIII [} [} 2 apEEEEn 1 H [
[[| [} pom [y | | | []
[} | I ENERECHER i [} IIIIIiIII
[l (| Al | I | | Al [|
LTIy | I | EREEEER | |
NoNN NENNNNENERECEHER HPEN NENNNEEEEEEONER
[T | [} [} L | 101
(111] D [} (11 1] Hon []
DRNND [LLLL]] Ho Hpo B nnnnna
L1 N | [} L L] B | [}
[111]] [111]]

Figure 12: Intrinsic reward heatmaps for RND, ICM, and RIDE (from left to right) on Multi-
RoomN12S10.

A.6.2 INTRINSIC REWARD IN MULTIROOMN12S20

Figure 12 shows a heatmap of the intrinsic reward received by RIDE, RND, and ICM agents trained
on the procedurally-generated MultiRoomN12S10 environment. Table 3 shows the corresponding
intrinsic rewards received for each type of action, averaged over 100 episodes, for the trained models.
This environment is very challenging since the chance of randomly stumbling upon extrinsic reward
is extremely low. Thus, we see that while the intrinsic reward provided by RIDE is still effective at
exploring the maze and finding extrinsic reward, the exploration bonuses used by RND and ICM are
less useful, leading to agents that do not go beyond the second room, even after training on 100m
frames.

18

Published as a conference paper at ICLR 2020

Open Door Turn Left / Right | Move Forward

Model | Mean Std Mean Std Mean Std
RIDE | 0.0116 0.0011 | 0.0042 0.0020 | 0.0032 0.0016
RND | 0.0041 0.0016 | 0.0035 0.0013 | 0.0034 0.0012
ICM 0.0082 0.0003 | 0.0074 0.0005 | 0.0086 0.0002

Table 3: Mean intrinsic reward per action computed over 100 episodes on a random map from
MultiRoomN12S10.

pegspEnmnmEnnnng 00030 pepEnEEEEEEnEnpg 00006
]]]]] 1] N |

H H - 5 Jooozs - - H % Joooos
i i I 1 [0.0020 1 I i 1 [0.0004
]]]]] 1]]
EREEENECERNENENNE | 00015 EERREECEEREEREEE 00003
i B T 00010 i “HER 1 00002
] 1 . 0.

] bem D] 1 IDI o]

[B A 1 g 0.0005] B A~ & g 0.0001
nEEEEEERERRERERD o000 nREEERERRRRERRED 000
pemsnEnmnnEnnnnp 00030 pepEnEEEEEEnEnnpp [O0006
]]]] i i] i

H H - 1 fJooozs - - H 1 Jo.oo0s
1]] 1 [0.0020] 1] 1 [0.0004
]]]] 1 1]]
EREERECERNENERNE | 00015 EEEEREOREEEREREE 00003
i 2 mm i T 00010 - HE 1 00002
] 1 1 1o .

1 u o 1 [) 0 1

[" | 1 0.0005 1 1 A~ 1 1 0.0001
nEEERERERERRRERERD o000 nEEEERERRRRERNED o000
sesnnmnnnnnnnnnn 00030 segmmnnnnnnnnnnn [OO006
]]]]] 1] ' |

. . - 5 fJooozs - . : 5 Jo.oo0s
i i 1 1 0.0020 1 1 i 1 §0.0004
]]]]] 1]]
EEEEEECENNENEEEE 100015 EEEEEECNEEEEEEEE 00003
] om ¢ 1]] om o &]

] " 1 ' 0.0010 ' -] I 0.0002
] D D D D

1 s A 1 g 0.0005 1 e A 1 g 0.0001
nEREEEERERRRERERD o000 nEEEERERRRRENRNED o000

Figure 13: Intrinsic reward heatmaps for RND (left) and RIDE (right) for interacting with objects
(i.e. open doors, pick up / drop keys or balls) (green), moving forward (blue), or turning left or right
(red) on a random map from ObstructedMaze2Dlh. A is the agent's starting position, K are the keys
hidden inside boxes (that need to be opened in order to see their colors), D are colored doors that
can only be opened by keys with the same color, and B is the ball that the agent needs to pick up in
order to win the game. After passing through the door the agent also needs to drop the key in order
to be able to pick up the ball since it can only hold one object at a time.

A.6.3 INTRINSIC REWARD IN OBSTRUCTEDMAZE2DLH

In order to understand how various interactions with objects are rewarded by the different exploration
methods, we also looked at the intrinsic reward in the ObstructedMaze2Dlh environment which
contains multiple objects . However, the rooms are connected by locked doors and the keys for
unlocking the doors are hidden inside boxes. The agent does not know in which room the ball is
located and it needs the color of the key to match that of the door in order to open it. Moreover, the
agent cannot hold more than one object so it needs to drop one in order to pick up another.

Figure 13 and Table 4 indicate that RIDE rewards the agent significantly for interacting with various
objects (e.g. opening the box, picking up the key, opening the door, dropping the key, picking up
the ball) relative to other actions such as moving forward or turning left and right. In contrast, RND
again rewards all actions much more uniformly and often times, within an episode, it rewards the
interactions with objects less than the ones for moving around inside the maze.

19

Published as a conference paper at ICLR 2020

Open Door Pick Ball Pick Key Drop Key Other

Model | Mean Std Mean Std Mean Std Mean Std Mean Std

RIDE | 0.0005 0.0002 | 0.0004 0.0001 | 0.0004 0.00001 | 0.0004 0.00007 | 0.0003 0.00001
RND | 0.0034 0.0015 | 0.0027 0.0006 | 0.0026 0.0060 | 0.0030 0.0010 | 0.0025 0.0006

Table 4: Mean intrinsic reward per action computed over 100 episodes on a random map from
ObstructedMaze2Dlh.

DynamicObstacles5x5 DynamicObstacles6x6 DynamicObstacles8x8 DynamicObstacles16x16

08 L 075 e

06
050
04
02 — RIDE 025 — RIDE |
COUNT COUNT

0.0 — RND 000 ——"TRND |
— Icm
-02 — IMPALA

— M
025 — MPALA

Average Return
Average Return
Average Return
Average Return

-0.50

-0.75

05 10 15 2.0 00 05 10 15 05 10 15 05 10 15 20
Number of Frames le7 Number of Frames ~ 1e7 Number of Frames =~ 1e7 Number of Frames le7

Figure 14: Performance on DynamicObstacles with varying degrees of difficulty.

Randomized Wall Colors

0.8 —
S o6

2 —— RIDE

2 COUNT
o 04 A

2 — IcM

o 02 | | —— IMPALA |
>

<

-0.2
0.0 0.5 1.0 15 2.0 2.5
Number of Frames le7

Figure 15: Performance on a version of the MiniGridRoomN7S4 in which the colors of the walls
and goals are randomly picked from a set of 4 colors at the beginning of each episode.

A.7 DYNAMIC OBSTACLES ENVIRONMENT

One potential limitation of RIDE is that it may be drawn to take actions that significantly change
the environment, even when those actions are undesirable. In order to test the limits of RIDE, we
ran experiments on the DynamicObstacles environment in MiniGrid. As seen in Figure 14, RIDE
learns to solve the task of avoiding the moving obstacles in the environment, even if chasing them
provides large intrinsic rewards. Hence, RIDE is still able to learn effectively in certain scenarios
in which high-impact actions are detrimental to solving the task.

A.8 GENERALIZATION TO UNSEEN COLORS

In order to test generalization to unseen colors, we also ran experiments on a version of Multi-
RoomN7S4 in which the colors of the walls and the goal change at each episode. The models are
trained on a set of 4 colors and tested on a held-out set of 2 colors. As seen in Figure 15 and Table 5,
RIDE and Count learn to solve this task and can generalize to unseen colors at test time without any
extra fine-tuning. RND and ICM perform slightly worse on the test environments, and only one out
of five seeds of ICM converges to the optimal policy on the train environments. The best seed for
each model was used to evaluate on the test set.

20

Published as a conference paper at ICLR 2020

Test Return

Model Mean Std

RIDE 0.77 0.02
Count 0.77 0.02
RND 076 0.11
ICM 0.73 0.03
IMPALA | 0.00 0.00

Table 5: Average return over 100 episodes on a version of MultiRoomN7S4 in which the colors of
the walls and goals change with each episode. The models were trained until convergence on a set
of 4 colors and tested on a held-out set of 2 colors.

A.9 OTHER PRACTICAL INSIGHTS

While developing this work, we also experimented with a few other variations of RIDE that did
not work. First, we tried to use observations instead of learned state embeddings for computing the
RIDE reward, but this was not able to solve any of the tasks. Using a common state representation
for both the policy and the embeddings also proved to be ineffective.

21

	Introduction
	Related Work
	Background: Curiosity-Driven Exploration
	Impact-Driven Exploration
	Experiments
	Environments
	Baselines

	Results and Discussion
	MiniGrid
	Analysis of the Intrinsic Reward
	Singleton versus Procedurally-Generated Environments
	No Extrinsic Reward

	Mario and Vizdoom

	Conclusion and Future Work
	Appendix
	Network Architectures
	Hyperparameters
	MiniGrid Environment
	VizDoom Environment
	Ablations
	Analysis
	State Visitation in MultiRoomN12S10
	Intrinsic Reward in MultiRoomN12S20
	Intrinsic Reward in ObstructedMaze2Dlh

	Dynamic Obstacles Environment
	Generalization to Unseen Colors
	Other Practical Insights

