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ABSTRACT

We consider the large-scale query-document retrieval problem: given a query
(e.g., a question), return the set of relevant documents (e.g., paragraphs contain-
ing the answer) from a large document corpus. This problem is often solved in
two steps. The retrieval phase first reduces the solution space, returning a subset
of candidate documents. The scoring phase then re-ranks the documents. Criti-
cally, the retrieval algorithm not only desires high recall but also requires to be
highly efficient, returning candidates in time sublinear to the number of docu-
ments. Unlike the scoring phase witnessing significant advances recently due to
the BERT-style pre-training tasks on cross-attention models, the retrieval phase
remains less well studied. Most previous works rely on classic Information Re-
trieval (IR) methods such as BM-25 (token matching + TF-IDF weights). These
models only accept sparse handcrafted features and can not be optimized for dif-
ferent downstream tasks of interest. In this paper, we conduct a comprehensive
study on the embedding-based retrieval models. We show that the key ingredient
of learning a strong embedding-based Transformer model is the set of pre-training
tasks. With adequately designed paragraph-level pre-training tasks, the Trans-
former models can remarkably improve over the widely-used BM-25 as well as
embedding models without Transformers. The paragraph-level pre-training tasks
we studied are Inverse Cloze Task (ICT), Body First Selection (BFS), Wiki Link
Prediction (WLP), and the combination of all three.

1 INTRODUCTION

We consider the large-scale retrieval problem: given a query, return the most relevant documents
from a large corpus, where the size of the corpus can be hundreds of thousands or more. One can
view this problem as learning a scoring function f : X × Y → R, that maps a pair of a query and
a document (q,d) ∈ X × Y to a score f(q,d). The function should be designed such that the
relevant (q,d) pairs have high scores, whereas the irrelevant ones have low scores. Many real-world
applications besides query-document retrieval can be cast into this form. For example, in recommen-
dation systems, q represents a user query and d represents a candidate item to recommend (Krichene
et al., 2019). In extreme multi-label classification, q represents a web-page document and d repre-
sents the categories or hashtags of interests (Jain et al., 2019; Chang et al., 2019). In open-domain
question answering, q represents a question and d represents an evidence passage containing the
answer (Chen et al., 2017; Hu et al., 2019; Lee et al., 2019).

Central to the above is designing the scoring function f . Recently, BERT (Devlin et al., 2019),
along with its many successors such as XLNet (Yang et al., 2019b) and RoBERTa (Liu et al., 2019),
has led to significant improvements to many NLP tasks such as sentence pairs classification and
question-answering. In BERT, the scoring function f is a pre-trained deep bidirectional Transformer
model. While BERT-style cross-attention models are very successful, it cannot be directly applied
to large-scale retrieval problems because computing f(q,d) for every possible document can be
prohibitively expensive. Thus, one typically first uses a less powerful but more efficient algorithm
(another scoring function f ) to reduce the solution space (the “retrieval phase”), and then use the
BERT-style model to re-rank the retrieved documents (the “scoring phase”).

∗work performed when interning at Google.
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The retrieval phase is critical. Ideally speaking, the algorithm should have a high recall; otherwise,
many relevant documents won’t even be considered in the scoring phase. The algorithm also needs
to be highly efficient: it should return a small subset of relevant documents in time sublinear to the
number of all documents. Although significant developments are advancing the scoring algorithms,
the retrieval algorithms remain less studied, and this is the focus of this paper.

The retrieval algorithm can be put into two categories. The first type is classic information retrieval
(IR) algorithms relying on token-based matching. One example is BM-25 (Robertson et al., 2009),
which remains to be the most commonly-used (Nguyen et al., 2016; Yang et al., 2017; 2019a) and
hard to beat (Chapelle & Chang, 2011; Lee et al., 2019) algorithm. Here the scoring function f
is based on token-matching between the two high-dimensional sparse vectors with TF-IDF token
weights, and retrieval can be done in sublinear time using the inverted index. Despite the wide
usage, these algorithms are handcrafted and therefore cannot be optimized for a specific task.

The second option is an embedding-based model that jointly embeds queries and documents in the
same embedding space and use an inner product or cosine distance to measure the similarity between
queries and documents. Let the query embedding model be φ(·) and the document embedding model
be ψ(·). The scoring function is

f(q,d) = 〈φ(q), ψ(d)〉.

In the inference stage, retrieving relevant documents then becomes finding the nearest neighbors
of a query in the embedding space. Since the embeddings of all candidate documents can be pre-
computed and indexed, the inference can be done efficiently with approximate nearest neighbor
search algorithms in the embedding space (Shrivastava & Li, 2014; Guo et al., 2016).

In this paper, we refer to the above embedding-based model as the two-tower retrieval model, be-
cause the query and document embeddings are coming from two separate “towers” of neural net-
works. In the literature, it is also known as the Siamese network (Das et al., 2016; Triantafillou
et al., 2017) or dual-encoder model (Cer et al., 2018; Mazaré et al., 2018). Compared to the sparse
token-based models, the two-tower models can capture deeper semantic relationships within queries
and documents, and the models can be optimized specifically for the task being considered.

In the heart of two-tower models is the embedding functions φ(·) and ψ(·). A modern choice is
using Transformers to model the attention within queries and within documents, rather than the
cross-attention between them as in the BERT model. The token-level masked-LM (MLM) pre-
training task is crucial to the success of BERT-style cross-attention models. Nevertheless, what
pre-training tasks are useful for improving two-tower Transformer models in large-scale retrieval,
remains a crucial yet unsolved research problem. In this paper, we aim to answer this question
by studying different pre-training tasks for the two-tower Transformer models. We contribute the
following insight:

• The two-tower Transformer models with proper pre-training can significantly outperform
the widely used BM-25 algorithm;

• Paragraph-level pre-training tasks such as Inverse Cloze Task (ICT), Body First Selection
(BFS), and Wiki Link Prediction (WLP) hugely improve the retrieval quality, whereas the
most widely used pre-training task (the token-level masked-LM) gives only marginal gains.

• The two-tower models with deep transformer encoders benefit more from paragraph-level
pre-training compared to its shallow bag-of-word counterpart (BoW-MLP).

To the best of our knowledge, this is the first comprehensive study on pre-training tasks for efficient
large-scale retrieval algorithms. The rest of the paper is organized as follows. We start by introduc-
ing the two-tower retrieval model in Section 2. The pre-training tasks are presented in 3, and the
experiments and analysis are presented in Section 4. Finally, we conclude this work in Section 5.

2 THE TWO-TOWER RETRIEVAL MODEL

Given a query q ∈ X and a document d ∈ Y , we consider two-tower retrieval models that consist of
two encoder functions, φ : X → Rk and ψ : Y → Rk which map a sequence of tokens in X and Y
to their associated embeddings φ(q) and ψ(d), respectively. The scoring function f : Rk×Rk → R
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Figure 1: Difference between two-tower models and cross-attention models. Following previous
works, we consider [CLS] embedding and average pooling as the aggregator’s output for the two-
tower Transformer model and the two-tower MLP model, respectively.

is then defined to be the inner product1 of the embeddings

f(q,d) = 〈φ(q), ψ(d)〉. (1)

In this paper, we are interested in parameterizing the encoders φ, ψ as deep Transformer mod-
els (Vaswani et al., 2017) due to its expressive power in modeling natural language.

In the rest of this section, we illustrate the advantage of two-tower models in the inference phase; dis-
cuss the pros and cons of two-tower models in comparison with BERT-like cross-attention models;
present the learning procedure of estimating model parameters under maximum likelihood principle;
and review the related works.

Inference The difference between two-tower models and cross-attention models is shown in Fig-
ure 1. The advantage of two-tower models is the efficiency in the inference time. First, all the
document embeddings can be pre-computed. Then, given an unseen query q, we only need to rank
the document based on its inner product with the query embedding. This is way more efficient than
running inference on a cross-attention BERT-style model (often used in the scoring stage). To see
this, the scoring function of BERT-style model is with the form

fθ,w(q,d) = ψθ(q ⊕ d)Tw, (2)

where ⊕ denotes the concatenate operation of the query and the document sequence and w ∈ Rk
is an additional model parameters. In BERT, for each query, one has to make the above expensive
inference on all documents. For example, with the 128-dimensional embedding space, inner prod-
uct between 1000 query embeddings with 1 million document embeddings only takes hundreds of
milliseconds on CPUs, while computing the same scores with cross-attention models takes hours if
not more even on GPUs.

Furthermore, retrieving the closest documents in the embedding space can be performed in sublin-
ear time with the well-studied maximum inner product (MIPS) algorithms with almost no loss in
recall (Shrivastava & Li, 2014; Guo et al., 2016).

Learning One unique advantage of the two-tower retrieval model in comparison with classic
IR algorithms is the ability to train it for specific tasks. In this paper, we assume that the train-
ing data is presented as relevant “positive” query-document pairs T = {(qi,di)}|T |i=1. Let θ
be the model parameters. We estimate the model parameters by maximizing the log likelihood

1This also includes cosine similarity scoring functions when the embeddings φ(q), ψ(d) are normalized.
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maxθ
∑

(q,d)∈T log pθ(d|q) where the conditional probability is defined by the Softmax:

pθ(d|q) =
exp

(
fθ(q,d)

)∑
d′∈D exp

(
fθ(q,d′)

) , (3)

and D is the set of all possible documents. The Softmax involves computing the expensive denomi-
nator of Equation (3), a.k.a, the partition function, that scales linearly to the number of documents.
In practice, we use the Sampled Softmax, an approximation of the full-Softmax where we replaceD
by a small subset of documents in the current batch, with a proper correcting term to ensure the un-
biasedness of the partition function (Bengio & Senécal, 2008). Sampled Softmax has been widely
used in language modeling (Chen et al., 2016; Grave et al., 2017), recommendation systems (Yu
et al., 2017; Krichene et al., 2019) and extreme classification (Blanc & Rendle, 2018; Reddi et al.,
2019).

Since we often have a limited amount of supervised data from the downstream task, it is important to
first train the retrieval model with positive pairs T from a set of pre-training tasks. We then fine-tune
it with positive pairs T from the downstream task. We will present the set of pre-training tasks we
study in Section 3.

Related Works Cer et al. (2018) study the two-tower Transformer model as a universal sen-
tence encoder. The model is learned with multiple tasks including the unsupervised Skip-Thought
task (Kiros et al., 2015), the supervised conversation input-response task (Henderson et al., 2017),
and the supervised sentence classification SNLI task (Bowman et al., 2015). Humeau et al. (2019)
propose the Poly-encoders architecture to balance the computation/expressiveness tradeoff between
two-tower models and cross-attention models. Reimers & Gurevych (2019) fine-tune the deep two-
tower models on two supervised datasets, SNLI and MNLI (Williams et al., 2018), then apply it in
solving other downstream tasks. Unlike all the above works that consider training the two-tower
Transformer models on a limited amount of supervised corpus for the sentence classification tasks,
we study different pre-training tasks and their contributions in the large-scale retrieval settings.

Another closely related topic is the open-domain question answering. Previous works consider using
BM25 or other lexical matching methods to retrieve the top-k relevant passages efficiently and then
deploy the more expensive cross-attention scoring function to find the answer (Chen et al., 2017;
Yang et al., 2017; 2019a). Das et al. (2019) encode query and document separately with LSTM
encoders. They employ a training procedure different from ours and do not consider pre-training.
Very recently, Lee et al. (2019) propose to pre-train two-tower Transformer models with the Inverse
Cloze Task (ICT) to replace BM25 in the passage retrieval phase. The advantage is that the retriever
can be trained jointly with the reader/scorer. Nevertheless, their pre-trained two-tower models do
not outperform BM25 on the SQuAD dataset, potentially because the fine-tuning is only performed
on the query-tower.

Model distillation (Hinton et al., 2015) can be used to compress expensive BERT-like cross-attention
models into efficient two-tower Transformer models for large-scale retrieval problems. For example,
Tang et al. (2019) demonstrate initial success in distilling the BERT model into a two-tower model
with BiLSTM as encoders. The pre-training tasks we study in this paper can be used as additional
supervision in the distillation process, and therefore complementary to model distillation.

3 PRE-TRAINING TASKS OF DIFFERENT SEMANTIC GRANULARITIES

As mentioned in Section 2, due to the limited amount of supervised data from downstream tasks, a
crucial step of learning deep retrieval models is to pre-train the model with a set of pre-training tasks
(we will verify this in Section 4). Sentence-level pre-training tasks have been studied before. One
example is reconstructing the surface form of surrounding sentences given the encoded sentence (Le
& Mikolov, 2014; Kiros et al., 2015), and another one is discriminating the next sentence from
random candidates (Jernite et al., 2017; Logeswaran & Lee, 2018).

In this paper, we assume that the pre-training data is defined as positive query-document (q,d) pairs.
A good pre-training task should have the following two properties. 1) It should be relevant to the
downstream task. For example, when solving the question-answering retrieval problem, the model
should capture different granularities of semantics between the query and document. The semantics
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Figure 2: An illustrative example of the three pre-training tasks where each query q is highlighted
in different colors. All queries are paired with the same text block d. Concretely, (q1,d) of ICT is
defined locally within a paragraph; (q2,d) of BFS is defined globally within an article; (q3,d) of
WLP is defined distantly across two related articles hyper-linked by the Wikipedia entity.

can be the local context within a paragraph, global consistency within a document, and even semantic
relation between two documents. 2) It should be cost-efficient to collect the pre-training data, ideally
not requiring additional human supervision.

In light of the above requirements, we present three pre-training tasks that emphasize different as-
pects of semantics between queries and documents: Inverse Cloze Task (ICT), Body First Selection
(BFS), and Wiki Link Prediction (WLP). In specific, BFS and WLP are newly proposed in this
paper. The training data for all these tasks can be freely obtained based from Wikipedia without an
additional manual labeling process. Figure 2 provides illustrative examples of these tasks.

Inverse Cloze Task (ICT) Given a passage p consisting of n sentences, p = {s1, . . . , sn}, the
query q is a sentence randomly drawn from the passage, q = si, i ∼ [1, n], and the document d is
the rest of sentences, d = {s1, . . . , si−1, si+1, . . . , sn}. See (q1,d) in Figure 2 as an example. This
task captures the semantic context of a sentence and was originally proposed by Lee et al. (2019).

Body First Selection (BFS) We propose BFS to capture semantic relationship outside of the local
paragraph. Here, the query q2 is a random sentence in the first section of a Wikipedia page, and the
document d is a random passage from the same page (Figure 2). Since the first section of a Wikipedia
article is often the description or summary of the whole page, we expect it to contain information
central to the topic.

Wiki Link Prediction (WLP) We propose WLP to capture inter-page semantic relation. The
query q3 is a random sentence in the first section of a Wikipedia page, and the document d is a
passage from another page where there is a hyperlink link to the page of q3 (Figure 2). Intuitively,
a hyperlink link indicates relationship between the two Wikipedia pages. Again, we take a sentence
from the first section because it is often the description or summary of the topic.

Masked LM (MLM) In addition to the above tasks, we also consider the classic masked language
model (MLM) pre-training task as a baseline: predict the randomly masked tokens in a sentence.
MLM is the primary pre-training task used in BERT (Devlin et al., 2019).
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Pre-training tasks #tokens #pairs avg. #query tokens #doc tokens

ICT 11.2B 50.2M 30.41 193.89
BFS 3.3B 17.5M 28.02 160.46
WLP 2.7B 24.9M 29.42 82.14

Table 1: Data statistics of three pre-training tasks. #query tokens represent average number of tokens
per query, and #doc tokens represent average number of tokens per passage.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

The two-tower retrieval model Each tower of the retrieval model follows the architecture and
hyper-parameters of the 12 layers BERT-base model. For both towers, the final embedding is gen-
erated by applying a linear layer on the hidden state of the [CLS] token. The embedding dimension
is 512. The sequence length for the query encoder and document encoder are set to be 64 and 288,
respectively. We pre-train the model on 32 TPU v3 chips for 100K steps with an Adam optimizer
and batch size of 8192. This process takes about 2.5 days. We use the Adam optimizer with an
initial learning rate 1 × 10−4 with the warm-up ratio 0.1, followed by a linear learning rate decay.
For fine-tuning, the learning rate of Adam is set to 5× 10−5 with 2000 training steps and batch size
512.

Pre-training tasks We compare the token-level pre-training task MLM with the three paragraph-
level pre-training tasks, ICT, BFS and WLP. The data of ICT, BFS and WLP are generated from
the Wikipedia corpus. The data statistics are reported in Table 1. Note that #tokens represents the
number of sub-words tokenized by WordPiece (Wu et al., 2016). The pre-training tasks define the
positive (q,d) pair for learning the two-tower Transformer models. For ICT, the d is a pair of article
title and passage separated by [SEP] symbol as input to the doc-tower.

We propose to pre-train the two-tower Transformer models jointly with all three paragraph-level pre-
training tasks, hence the name ICT+BFS+WLP. Here the model is pre-trained on one combined set
of (q,d) pairs, where each pair is uniformly sampled from the three pre-training tasks in Table 1.
See Section 4.2 and 4.3 for its outstanding performance over other baselines.

Downstream tasks We consider the Retrieval Question-Answering (ReQA) benchmark, proposed
by Ahmad et al. (2019).2 The two QA datasets we consider are SQuAD and Natural Questions.
Note that each entry of QA datasets is a tuple (q,a,p), where q is the question, a is the answer span,
and p is the evidence passage containing a. Following Ahmad et al. (2019), we split a passage into
sentences, p = s1s2 . . . sn and transform the original entry (q,a,p) to a new tuple (q, si,p) where
si is the sentence contains the answer span a.

The retrieval problem is that given a question q, retrieve the correct sentence and evidence passage
pair (s,p) from all candidates. For each passage p, we create a set of candidate pairs (si,p) where
i = 1 . . . n, and the retrieval candidate set is built by combining such pairs for all passages. This
problem is more challenging than retrieving the evidence passage only since the larger number of
candidates to be retrieved. The data statistics of the downstream ReQA benchmark are shown in
Table 2. Note that, similar to Ahmad et al. (2019), the ReQA benchmark is not entirely open-
domain QA retrieval as the candidates (s,p) only cover the training set of QA dataset instead of
entire Wikipedia articles. For the open-domain retrieval experiment, see details in Section 4.4.

Evaluation For each dataset, we consider different training/test split of the data (1%/99%,
5%/95% and, 80%/20%) in the fine-tuning stage and the 10% of training set is held out as the
validation set for hyper-parameter tuning. The split is created assuming a cold-start retrieval sce-
nario where the queries in the test (query, document) pairs are not seen in training.

2Different from (Ahmad et al., 2019), whose goal is to use other large-scale weakly-supervised query-
answer pair datasets (e.g. reddit data) to improve the model, the goal of this paper is to study different un-
supervised pre-training tasks not identical to the downstream task. Therefore our approaches are not directly
comparable to the results presented in their paper.
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ReQA Dataset #query #candidate #tuples #query tokens #doc tokens

SQuAD 97,888 101,951 99,024 11.55 291.35
Natural Questions 74,097 239,008 74,097 9.29 352.67

Table 2: Data statistics of ReQA benchmark. candidate represents all (sentence, passage) pairs.

train/test ratio Encoder Pre-training task R@1 R@5 R@10 R@50 R@100

1%/99%

BM-25 No Pretraining 41.86 58.00 63.64 74.15 77.91
BoW-MLP No Pretraining 0.14 0.35 0.49 1.13 1.72
BoW-MLP ICT+BFS+WLP 22.55 41.03 49.93 69.70 77.01

Transformer No Pretraining 0.02 0.06 0.08 0.31 0.54
Transformer MLM 0.18 0.51 0.82 2.46 3.93
Transformer ICT+BFS+WLP 37.43 61.48 70.18 85.37 89.85

5%/95%

BM-25 No Pretraining 41.87 57.98 63.63 74.17 77.91
BoW-MLP No Pretraining 1.13 2.68 3.62 7.16 9.55
BoW-MLP ICT+BFS+WLP 26.23 46.49 55.68 75.28 81.89

Transformer No Pretraining 0.17 0.36 0.54 1.43 2.17
Transformer MLM 1.19 3.59 5.40 12.52 17.41
Transformer ICT+BFS+WLP 45.90 70.89 78.47 90.49 93.64

80%/20%

BM-25 No Pretraining 41.77 57.95 63.55 73.94 77.49
BoW-MLP No Pretraining 19.65 36.31 44.19 62.40 69.19
BoW-MLP ICT+BFS+WLP 32.24 55.26 65.49 83.37 88.50

Transformer No Pretraining 12.32 26.88 34.46 53.74 61.53
Transformer MLM 27.34 49.59 58.17 74.89 80.33
Transformer ICT+BFS+WLP 58.35 82.76 88.44 95.87 97.49

Table 3: Recall@k on SQuAD. Numbers are in percentage (%).

For the evaluation metric, we focus on recall@k3 because the goal of the retrieval phase is to capture
the positives in the top-k results. The retrieval performance can be understood independently of the
scoring model used by measuring recall at different k. In fact, in the extreme cases when the scoring
model is either oracle or random, the final precision metric is proportional to recall@k.

4.2 MAIN RESULTS

Table 3 and Table 4 compare the proposed combination of pre-training tasks, ICT+BFS+WLP,
to various baselines on SQuAD and Natural Questions, respectively. In both benchmarks,
ICT+BFS+WLP notably outperforms all other methods. This suggests that one should use a two-
tower Transformer model with properly designed pre-training tasks in the retrieval stage to replace
the widely used BM-25 algorithm. We present some of the detailed findings below.

The BM-25 baseline In retrieval, BM-25 is a simple but tough-to-beat unsupervised baseline
using token-matching with TF-IDF weights as the scoring function. BM-25 performs especially well
for the SQuAD benchmark, as the data collection process and human annotations of this dataset are
biased towards question-answer pairs with overlapping tokens (Rajpurkar et al., 2016; Kwiatkowski
et al., 2019). For instance, in the limited fine-tuning data scenario (e.g., 1% and 5%), BM-25
outperforms the two-tower transformer models with no pre-training (No Pretraining) or with less-
effective pre-training tasks (MLM). This result verifies that BM-25 is a robust retrieval model and
therefore widely used in recent works (Chen et al., 2017; Yang et al., 2017; Lee et al., 2019)4.

3The correctness is based on when the system retrieves the gold sentence and evidence paragraph pair , not
just any paragraph containing the answer text.

4Our BM-25 results are consistent with Ahmad et al. (2019). Their numbers are slightly higher because
they consider passage-level retrieval, which has smaller candidate set compared to our sentence-level retrieval.
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Encoder architecture We justify the use of Transformer as encoders by comparing it with a
shallow bag-of-word MLP model (BoW-MLP). Specifically, BoW-MLP looks up uni-grams from
the embedding table5, aggregates the embeddings with average pooling, and passes them through
a shallow two-layer MLP network with tanh activation to generate the final 512-dimensional
query/document embeddings. For fair comparison, the BoW-MLP encoder has a comparable model
size to the Transformer encoder (i.e., 128M v.s. 110M parameters, slightly favorable to BoW-MLP
encoder).

With a properly designed pre-training task (e.g., ICT+BFS+WLP), the Transformer encoder con-
siderably outperforms its shallow counterpart (BoW-MLP), suggesting that the former benefits more
from the unsupervised pre-training tasks. On the other hand, without any pre-training, the perfor-
mance of the Transformer encoder is worse than BoW-MLP encoder, possibly because the former
is over-fitting on the limited amount of labeled fine-tuning data.

Pre-training tasks When pre-training the two-tower Transformer model, we compare the pre-
training tasks to two baselines: No Pretraining and MLM. No Pretraining represents random ini-
tializing the model, and MLM is the token-level masked-LM task introduced in Section 3.

On both datasets, the token-level pre-training task MLM only marginally improves over the no-
pretraining baseline (No Pretraining). In contrast, combining the paragraph-level pre-training
tasks ICT+BFS+WLP provides a huge boost on the performance. This verifies our assumption
that the design of task-related pre-training tasks is crucial. The performance of adding individual
pre-training tasks is presented in the next section.

train/test ratio Encoder Pre-training task R@1 R@5 R@10 R@50 R@100

1%/99%

BM-25 No Pretraining 4.99 11.91 15.41 24.00 27.97
BoW-MLP No Pretraining 0.28 0.80 1.08 2.02 2.66
BoW-MLP ICT+BFS+WLP 9.22 24.98 33.36 53.67 61.30

Transformer No Pretraining 0.07 0.19 0.28 0.56 0.85
Transformer MLM 0.18 0.56 0.81 1.95 2.98
Transformer ICT+BFS+WLP 17.31 43.62 55.00 76.59 82.84

5%/95%

BM-25 No Pretraining 5.03 11.96 15.47 24.04 28.00
BoW-MLP No Pretraining 1.36 3.77 4.98 8.56 10.77
BoW-MLP ICT+BFS+WLP 11.40 30.64 40.63 62.95 70.85

Transformer No Pretraining 0.37 1.07 1.40 2.73 3.82
Transformer MLM 1.10 3.42 4.89 10.49 14.37
Transformer ICT+BFS+WLP 21.46 51.03 62.99 83.04 88.05

80%/20%

BM-25 No Pretraining 4.93 11.52 14.96 23.64 27.77
BoW-MLP No Pretraining 9.78 26.76 34.16 50.34 56.44
BoW-MLP ICT+BFS+WLP 13.58 37.78 50.40 76.11 82.98

Transformer No Pretraining 7.49 20.11 25.40 38.26 43.75
Transformer MLM 16.74 40.48 49.53 67.91 73.91
Transformer ICT+BFS+WLP 30.27 63.97 75.85 91.84 94.60

Table 4: Recall@k on Natural Questions. Numbers are in percentage (%).

4.3 ABLATION STUDY

We conduct a more thorough ablation study on Natural Questions involving (1) the number of
layers in Transformer; (2) different pre-training tasks; and (3) dimension of the embedding space.
The result is presented in Table 5.

Index 1, 2, and 3 show the individual performance of three pre-training tasks. All of these tasks are
much more effective than MLM. Among them, ICT has the best performance, followed by BFS, and
then WLP. This suggests that the (query, document) pairs defined by local context within passage
are suitable for the ReQA task.

5We empirically found that adding bi-grams does not further improve the performance on these tasks possi-
bly due to over-fitting.
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Index Ablation Configuration R@100 on different train/test ratio
#layer Pre-training task emb-dim 1% 5% 10% 80%

1 4 ICT 128 77.13 82.03 84.22 91.88
2 4 BFS 128 72.99 78.34 80.47 89.82
3 4 WLP 128 56.94 68.08 72.51 86.15

4 12 No Pretraining 128 0.72 3.88 6.94 38.94
5 12 MLM 128 2.99 12.21 22.97 71.12
6 12 ICT 128 79.80 85.97 88.13 93.91
7 12 ICT+BFS+WLP 128 81.31 87.08 89.06 94.37

8 12 ICT+BFS+WLP 256 81.48 87.74 89.54 94.73
9 12 ICT+BFS+WLP 512 82.84 88.05 90.03 94.60

Table 5: Ablation study on Natural Questions based on Recall@100. Index 9 represents the pro-
posed method in Table 4.

Also note from Index 6 and 7, ICT+BFS+WLP pre-training is better than ICT with 1.5% absolute
improvement over ICT in the low-data regime. This reflects that, when there’s no sufficient down-
stream training data, more globally pre-training tasks is beneficial as it encodes multi-hop reasoning
priors such as different passages within the same article (BFS) or even going beyond to different
articles linked by the same entities (WLP).

Finally, The advantage of increasing number of layers is manifest by comparing Index 1 and Index
6, while Index 7, 8 and 9 show the benefit of increasing the dimension of the embedding space.

4.4 EVALUATION OF OPEN-DOMAIN RETRIEVAL

We consider the open-domain retrieval setting by augmenting the candidate set of the ReQA bench-
mark with large-scale (sentence, evidence passage) pairs extracted from general Wikipedia articles.
In particular, we preprocess/sub-sample the open-domain Wikipedia retrieval set of the DrQA pa-
per (Chen et al., 2017) into one million (sentence, evidence passage) pairs, and add this external 1M
candidate pairs into the existing retrieval candidate set of the ReQA benchmark.

train/test ratio Pre-training task R@1 R@5 R@10 R@50 R@100

1%/99%
BM-25 3.70 9.58 12.69 20.27 23.83

ICT 14.18 37.36 48.08 69.23 76.01
ICT+BFS+WLP 13.19 37.61 48.77 70.43 77.20

5%/95%
BM-25 3.21 8.62 11.50 18.59 21.78

ICT 17.94 45.65 57.11 76.87 82.60
ICT+BFS+WLP 17.62 45.92 57.75 78.14 83.78

80%/20%
BM-25 3.12 8.45 11.18 18.05 21.30

ICT 24.89 57.89 69.86 87.67 91.29
ICT+BFS+WLP 25.41 59.36 71.12 88.25 91.71

Table 6: Open-domain retrieval results of Natural Questions dataset, where existing candidates
are augmented with additional 1M retrieval candidates (i.e., 1M of (s,p) candidate pairs) extracted
from open-domain Wikipedia articles.

The results of open-domain retrieval on Natural Questions are presented in Table 6. Firstly, we see
that the two-tower Transformer models pretrained with ICT+BFS+WLP and ICT substantially out-
perform the BM-25 baseline. Secondly, ICT+BFS+WLP pre-training method consistently improves
the ICT pre-training method in most cases. Interestingly, the improvements are more noticeable at
R@50 and R@100, possibly due to that the distant multi-hop per-training supervision induces better
retrieval quality at the latter part of the rank list. Finally, we conclude that the evaluation results of
the 1M open-domain retrieval are consistent with our previous empirical evaluation on the ReQA
benchmark with smaller retrieval candidate sets (Section 4.2).
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5 CONCLUSION

We conducted a comprehensive study on how various pre-training tasks help in the large-scale re-
trieval problem such as evidence retrieval for question-answering. We showed that the two-tower
Transformer models with random initialization (No Pretraining) or the unsuitable token-level pre-
training task (MLM) are no better than the robust IR baseline BM-25 in most cases. With properly
designed paragraph-level pre-training tasks inlcuding ICT, BFS and WLP, the two-tower Trans-
former models can considerably improve over the widely used BM-25 algorithm.

For future works, we plan to study how the pre-training tasks apply to other types of encoders
architectures, generating the pre-training data from corpora other than Wikipedia, and how pre-
training compares with different types of regularizations.
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