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A Dual Camera System for High Spatiotemporal
Resolution Video Acquisition

Ming Cheng, Zhan Ma, M. Salman Asif, Yiling Xu, Haojie Liu, Wenbo Bao, and Jun Sun

Abstract—This paper presents a dual camera system for high spatiotemporal resolution (HSTR) video acquisition, where one camera
shoots a video with high spatial resolution and low frame rate (HSR-LFR) and another one captures a low spatial resolution and high
frame rate (LSR-HFR) video. Our main goal is to combine videos from LSR-HFR and HSR-LFR cameras to create an HSTR video. We
propose an end-to-end learning framework, AWnet, mainly consisting of a FlowNet and a FusionNet that learn an adaptive weighting
function in pixel domain to combine inputs in a frame recurrent fashion. To improve the reconstruction quality for cameras used in
reality, we also introduce noise regularization under the same framework. Our method has demonstrated noticeable performance gains
in terms of both objective PSNR measurement in simulation with different publicly available video and light-field datasets and subjective
evaluation with real data captured by dual iPhone 7 and Grasshopper3 cameras. Ablation studies are further conducted to investigate
and explore various aspects (such as noise regularization, camera parallax, exposure time, multiscale synthesis, etc) of our system to
fully understand its capability for potential applications.

Index Terms—Dual camera system, high spatiotemporal resolution, super-resolution, optical flow, spatial information, end-to-end
learning
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1 INTRODUCTION

High-speed cameras play an important role in various modern
imaging and photography tasks including sports photography, film
special effects, scientific research, and industrial monitoring. They
allow us to see very fast phenomena that are easily overlooked and
can not be captured at ordinary speed, such as a droplet, full-speed
fan rotation, or even a gun fire. These cameras can capture videos
at high frame-rates that range from several hundred to several
thousand frames per second (FPS), while an ordinary camera
operates at 30 to 60 FPS. The high frame-rates often come at the
expense of spatial resolution; especially, consumer-level cameras
that sacrifice the spatial resolution to maintain the high frame
rate acquisition. For example, popular iPhone 7 can capture 4K
videos at 30 FPS, but can only offer 720p resolution at 240 FPS
because of the limitation of the data I/O throughput. Some special-
purpose and professional high-speed cameras can capture high
spatiotemporal resolution (HSTR) videos, but they are typically
very expensive (e.g., Phantom Flex4K1 with price starting at
$110K) and beyond the budget of a majority of consumers.

A naı̈ve solution to obtain a HSTR video from a video with
high spatial resolution and low frame rate (HSR-LFR) or low
spatial resolution and high frame rate (LSR-HFR) is to upsample
along temporal or spatial direction, respectively. Upsampling in
temporal resolution or frame rate upconversion of an HSR-LFR
video (e.g., 4K at 30FPS) involves imputing missing frames
by interpolating motion between the observed frames, which
is challenging because of the motion blur introduced by long
exposure and inaccuracies in motion representation under the
commonly-used uniform translational motion assumption [40].
On the other hand, upsampling spatial resolution of a LSR-HFR
video can be performed using a variety of existing super-resolution
methodologies [28], [43], but they often provide smoothed images
in which high frequency spatial details of the captured scene

1. https://www.phantomhighspeed.com/products/cameras/4kmedia/flex4k
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Fig. 1. Snapshots of high spatial resolution-low frame rate (HSR-
LFR) and low spatial resolution-high frame rate (LSR-HFR) videos and
synthesized high spatiotemporal resolution (HSTR) video. A woman
is throwing a ping-pong ball in indoor space. (a) HSR-LFR frame
4K@30FPS with zoomed-in region showing motion blur; (b) LSR-HFR
frame 720p@240FPS with zoomed-region showing spatial blur; (c)
HSTR frame 4k@240FPS.

are missing. Figure 1 highlights these effects, where HSR-LFR
(4K at 30FPS) video contains motion blur in the regions of fast
motion and LSR-HFR (720p at 240FPS) has a uniform spatial blur
because of limited spatial resolution.

In this paper, we propose a dual camera system for HSTR
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Fig. 2. A Dual Camera System for High Spatiotemporal Acquisition: (a) dual camera setup with one LSR-HFR video capture (e.g., xLSR−HFR(t)
with h×w at mf FPS), the other HSR-LFR video shooting (e.g., XHSR−LFR(t) with nh× nw at f FPS) and synthesized HSTR video (e.g., YHSTR(t)
with nh × nw at mf FPS); (b) Recurrent RefSR structure for Y synthesis using ILSR and Iref at each time instant; (c) Proposed AWnet for dual
camera input with cascaded FlowNet and FusionNet to learn adaptive weights for final synthesis; (d) An U-net style [33] FusionNet structure for
dynamic filter and mask generation.

⊕
and

⊗
are element-wise addition and multiplication.

video YHSTR(t) acquisition, as shown in Fig. 1, where one cam-
era captures a HSR-LFR video XHSR−LFR(t) with rich spatial
information (i.e., sharp spatial details for textures and edges),
and the other one records a HFR-LSR video xLSR−HFR with fine-
grain temporal information (i.e., intricate motion flows). We then
fuse these two videos via a learning-based approach to produce a
final HSTR video with both appealing spatial details and smooth
motion. In another words, we aim to transfer the rich spatial details
from HSR-LFR frame to the associated LSR-HFR frames while
retaining smooth and accurate motion in the entire sequence.

Our method performs spatiotemporal super-resolution in a
frame recurrent manner within a synchronized GoP (group of
pictures) to exploit the spatial-temporal priors in Fig. 2(a). A
detailed block diagram of our proposed method is shown in
Fig. 2(b). The synthesis process has two main parts: FlowNet
and FusionNet, which are placed consecutively in Fig. 2(c). ILSR
denotes a frame captured with LSR-HFR camera. The FlowNet
accepts an upsampled spatial image (ILSR↑) and a reference image
(Iref) to provide the optical flow (denoted as F ) and a warped
reference image (Iwref). The reference image can either be a
frame from the HSR-LFR camera at a synchronized time instant
or a synthesized frame Y . Our dual camera based system can
be viewed as a method in the class of ”super-resolution with
reference” (RefSR) methods [6], [43]. The FusionNet accepts
the optical flow, upsampled spatial image, and warped reference

image, and learns dynamic filters and masking pattern that are used
to adaptively weigh the contribution of ILSR and Iref for a high-
quality reconstruction Y . We use PwC-net [36] as our FlowNet
and a U-net as our FusionNet [33]. More details about network
architecture are provided in Section 3 and in Fig. 2(d). Our method
learns adaptive weights to combine the hybrid inputs, therefore, we
refer to it as an adaptive weighting network (AWnet).

Our proposed AWnet is trained using Vimeo90K dataset. We
first evaluate the performance of our method using simulations
on publicly available datasets. Then we measure the performance
of our method on videos captured with our custom dual-camera
prototype. In our experimental evaluations, we observed that the
quality of HSTR video degrades when we directly use models
trained with Vimeo90K training images. One reason for the
performance degradation is the presence of large sensor noise in
ILSR when LSR-HFR video is captured with short exposure time
(especially under low light conditions). Vimeo90K training data is
virtually free of noise and other nonidealities that a real data cap-
ture encounters. To make our system robust to noise, we introduce
noise at various levels in original Vimeo90K training data when
performing the end-to-end learning. Such noise regularization can
intelligently shift weights between ILSR and Iref, offering much
better reconstruction quality, under the same framework.

Extensive simulations have been conducted using both simula-
tion data from publicly accessible videos, dual-camera captures,
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and light field datasets (such as Vimeo90K [40], KITTI [31],
Flower [35], LFVideo [37] and Stanford Light Field [1] datasets2),
and real data (captured with custom-built dual iPhone 7 or
Grasshopper3 cameras). Our proposed AWnet demonstrates no-
ticeable performance gains over the existing super-resolution and
frame interpolation methods, in objective and subjective measures.
In our tests with simulations using Vimeo90K testing samples,
our proposed model offers ∼ 0.7 dB PSNR gain compared to the
state-of-the-art CrossNet [43] and ∼ 6 dB PSNR compared to the
popular single-image super-resolution (SISR) method EDSR [28].
Our proposed AWnet provided best performance on other video
and lightfield datasets. In our tests with real data, we observed
perceptual enhancements for various scenarios with indoor and
outdoor activities under different lighting conditions.

We also offer ablation studies to fully understand the capability
of our dual camera AWnet system, by analyzing various aspects in
practice, such as the impacts of different upscaling filters, various
camera parallaxes, exposure time, noise regularization fine-tuning,
and multiscale synthesis scheme. All these tests demonstrate
the efficiency of our dual camera system for super-resolution
and frame interpolation, to maintain sharp spatial details and
smooth temporal motions jointly, leading to the state-of-the-art
performance.

Main contributions of this work are highlighted below.

• A practical system for high spatiotemporal video acquisition
uses a dual off-the-shelf camera setup. Videos from two cam-
eras, operating at different spatial and temporal resolution,
are combined using an end-to-end learning-based adaptive
weighting to preserve spatial and temporal information in
both inputs for a high-quality reconstruction.

• Cascaded FlowNet and FusionNet are applied to learn em-
bedded spatial and temporal features for adaptive weights
derivation in a frame recurrent way. These weights can be
regularized using added noise to efficiently handle noise
and other nonidealities in real data captured with consumer
cameras.

• Our dual camera AWnet system demonstrates the state-of-
the-art performance for super-resolution and frame interpo-
lation, using both simulation data from public and real data
captured by cameras.

• We have analyzed the robustness and efficiency of our system
through a series of ablation studies to explore the impacts of
camera parallax, multiscale synthesis, upscaling filter, which
promises generalization in a variety of practical scenarios.

The remainder of this paper is structured as follows. Section 2
provides a brief overview of related work in literature, including
system prototypes and applications. Section 3 details our proposed
system and associated learning algorithms, followed by training
processing in Section 4. The experimental results on simulation
data and real data captured by cameras are shown in Section 5.
We further break down our system to analyze and study its
various aspects, such as the camera parallax, scaling filters, etc
in Section 6. Finally, conclusion is drawn in Section 7. Table 1
contains a list of all the notions and acronyms used throughout
this paper.

2. Note that these datasets are widely used in literature for performance
benchmark [43].

TABLE 1
Notations and Abbreviations

Abbr. Description
HSTR High Spatiotemporal Resolution
HFR High Frame Rate (or Temporal Resolution)
LFR Low Frame Rate (or Temporal Resolution)
HSR High Spatial Resolution (or Frame Size)
LSR Low Spatial Resolution (or Frame Size)

YHSTR(t) Output HSTR Video
Yti = YHSTR(ti) A Frame of HSTR Video at time ti

xLSR−HFR(t) Input LSR-HFR Video
xti = xLSR−HFR(ti) A Frame of LSR-HFR Video at time ti

XHSR−LFR(t) Input HSR-LFR Video
Xti = XHSR−LFR(ti) A Frame of HSR-LFR Video at time ti

X̄LSR−HFR(t) Upscaled xLSR−HFR(t)
Iref A Frame from either XHSR−LFR(t) or YHSTR(t)
ILSR A Frame from xLSR−HFR(t)
ILSR↑ A Frame from X̄LSR−HFR(t)
Iwref warped Iref
h, w Height & width of xti
f frame rate of XHSR−LFR(t)

n, m scaling factor of respective SR & FR
SISR Single-Image Super Resolution

RefSR Super Resolution with Reference
SNR Signal-to-Noise Ratio

PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity

2 RELATED WORK

This work is closely related to the high-speed video acquisition,
multi-camera (or array) system, super-resolution, and frame inter-
polation. we will briefly review these topics below.

High-speed Cameras. High-speed (or slow-motion) video
capturing has been widely used these days. For example, iPhone
Xs Max can capture a slow-motion video with 1080p at 240FPS,
and Samsung Galaxy S10 offers 720p at 960FPS for a short time
(0.2s). Consumer mobile devices often sacrifice spatial resolution
and other image quality-related factors to ensure the high frame
rate throughput. Professional high-speed cameras can support both
high spatial and temporal resolution, typically coming along with
a bulky body and an inconvenient price. Professional i-SPEED
726 can shoot 2K at 8512FPS and 1080p at 12742FPS, but its
price range is above USD100,000. In recent years, we have noticed
the increasing adoptions of multi-camera design from professional
device to mobiles, such as dual camera iPhone or four camera
Huawei P30. Thus, we have new opportunities to combine inputs
from hybrid cameras operating at different speeds and synthesize
high spatiotemporal resolution video.

Multi-Camera System. In pursuit of ultra-high spatial reso-
lution, such as gigapixel, multi-camera systems and arrays have
been developed [7], [8], [30]. In particular, cameras with different
properties have been combined in a hybrid setup to sample and
synthesize images from a variety of light components, such as
hyperspectral imaging [11], low light imaging [27], and light
fields [39], [43]. Pelican imaging and Light are two recent compa-
nies that launched products with multiple cameras on board that
capture a diverse set of images and synthesize a desired image
with high dynamic range, long-range depth, or light field [39] .
The hybrid camera or multi-camera systems have also been used
to combine different imaging sources to perform super-resolution
and frame interpolation (for frame rate up-conversion) [43]. Our
proposed work also belongs to the hybrid camera setup that
captures two video streams, one at HSR-LFR and the other one at
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LSR-HFR, and combine them to synthesize a final HSTR video.
Super-Resolution Single image super resolution (SISR) meth-

ods upscale individual images, which include traditional meth-
ods based on bilinear and bicubic filters and recently-introduced
learning-based techniques [26], [28]. SISR methods can be easily
extended to support video or multi-frame super-resolution [10],
[22], [34]. In the case of multi-camera setup, super-resolution
can be performed using some source as a reference [6], [14].
Low resolution images/videos can be upscaled with references
(e.g., RefSR) from other viewpoints, leading to significant quality
improvement [6], [41]–[43]. Such RefSR approaches have also
been widely used in lightfield imaging [6], [43].

Frame Interpolation. Linear translation motion is a con-
ventional assumption that has been extensively used in different
interpolation-based methods to impute missing frames for frame
rate up-conversion. Motion estimation can be performed using
classical block-based or dense optical flow-based methods [2]–[5],
[21], [32], [32], [40], [40]. Classical optimization-based and mod-
ern learning-based methods mainly try to retain smooth motion
along the temporal trajectory while resolving occlusion-induced
artifacts. Accurate motion flow estimation remains a challenging
task because of the inconsistent object movements and motion-
induced occlusion. As we discussed below, this issue can be
significantly alleviated with the help of a high frame-rate video
as a reference.

3 DUAL CAMERA SYSTEM FOR HIGH SPATIOTEM-
PORAL RESOLUTION VIDEO

We propose a dual camera system for HSTR video acquisition,
as illustrated in Fig. 2. One camera records a HSR-LFR video
XHSR−LFR(t) with nh×nw at f FPS, while the other one captures
a LSR-HFR video xLSR−HFR(t) with h×w atmf FPS. We learn an
adaptive model to weigh contributions from the two input videos
and synthesize a final HSTR output video YHSTR(t) with nh×nw
at mf FPS. We use integer multipliers, m and n, for simplicity
in this work, but different multipliers can be easily used. In
subsequent sections, we first offer experimental observations that a
single camera setup could not provide high-quality reconstruction
of HSTR video via naı̈ve spatial super-revolution or temporal
frame interpolation. Then we discuss our dual camera system
and algorithm development. Note that even though we particularly
emphasize current work in a dual camera setup, this work can be
generalized to other multi-camera configurations since the RefSR
structure can be flexibly extended.

3.1 Single Camera System
Let us consider the following model for an image frame capture
at time instance t of a camera as

I(t) =

∫ t

t−T
S(τ)dτ + n(t), (1)

where S(τ) is the instantaneous photon density reflected from
the physical scene, T denotes the exposure time, and n(t) is
the noise accumulated in the camera during a single exposure
and the subsequent readout process. In other words, image is
represented as the accumulated photons during the exposure time
(according to the shutter speed). A typical consumer camera used
in mobile devices3 usually automatically adjusts the aperture size,

3. We use mobile phone camera as an example for its massive market
adoption.

ISO settings, and shutter speed according to a specific “shooting
mode”. Thus, exposure time duration T is uncertain and changes
according to the scene content.

For example, normal video capture in iPhone 7 offers HSR
(e.g., 4K) at f = 30FPS (i.e., HSR-LFR video), leading to rich
spatial details but blurred motion. On the other hand, the slow-
motion mode provides LSR (e.g.,< 720p) atmf = 240FPS (LSR-
HFR video), resulting in smooth motion acquisition at the expense
of spatial information, dynamic range, and SNR. Figure 1 shows
two snapshots for respective HSR-LFR and LSR-HFR videos. As
we can see, the spatial quality of the LSR-HFR frame is poor
because some spatial information is missing in the slow-motion
mode. Similarly, motion blur is clearly observed for the HSR-LFR
frame because of insufficient temporal sampling.

These observations suggest that we are not capable of recon-
structing high-quality HSTR video by applying spatial interpola-
tion on the LSR-HFR video or temporal interpolation on HSR-
LFR video. Therefore, we propose to use a dual camera system in
which the main problem is to synthesize two input videos while
preserving the sharp spatial details from the HSR-LFR video and
smooth motions from the LSR-HFR video.

3.2 Dual Camera System

For a dual camera system setup, given a LSR-HFR video
xLSR−HFR(t) recorded at mf FPS and an additional HSR-LFR
video XHSR−LFR(t) recorded at f FPS from another view, we
wish to generate a final HSTR video YHSTR(t) at mf FPS. To
recover high-quality HSTR video, we seek to preserve the smooth
motion field from the LSR-HFR camera input and the detailed
spatial information from the HSR-LSR input. To do that, we
need to design an effective mechanism to extract, transfer, and
fuse appropriate information or features intelligently from the two
inputs.

Dual cameras are configured and synchronized with a certain
baseline distance to capture the instantaneous frames of the same
scene. Because of the different frame rates for the respective HSR-
LFR and LSR-HFR cameras, the exposure time of the HSR-
LFR frame are often much longer than the LSR-HFR frames,
especially in the low-light settings. Based on the imaging model
in (1), we can also consider the HSR-LFR frame as the high-
spatial-resolution version of the summation of associated LSR-
HFR frames, which will model the motion blur.

We divide the entire processing into two major steps: (1)
optical flow estimation to compensate for motion and parallaxes to
facilitate image fusion; (2) fusion processing to compute appropri-
ate weighting functions (e.g., dynamic filter and mask in our work)
through extensive feature learning. We propose to apply learned
networks to perform aforementioned temporal and spatial feature
extraction, transfer, and fusion. For convenience, we note them as
“FlowNet” and “FusionNet” respectively, shown in Fig. 2(c).

We will synthesize the HSTR video in batches of group-of-
pictures (GoP), as shown in Fig. 2(a). Because the same processing
pattern is applied in each GoP, we will explain the specific steps
for a single GoP. A GoP is a set of frames from the LSR-HFR
video that are aligned to a specific time stamp of the HSR-LFR
video. Since we assume that the LSR-HFR video is recorded at
mf FPS and the HSR-LFR at f FPS, we find it convenient to
use a GoP with m frames that we call GoP-m in the remainder
of this paper. A GoP-m consists of m LSR-HFR frames that are
aligned with one HSR-LFR frame. In particular, we assume that
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the HSR-LFR frame timestamp is in the middle of the timestamps
for all the LSR-HFR frames in a GoP-m. For instance, a GoP-m
that contains LSR-HFR frames at times [t− k′∆t, . . . , t+ k∆t]
are synchronized with HSR-LFR frame at t, where k′ = dm2 e−1,
k = bm2 c, and ∆t is the time interval between two adjacent HSR-
LFR frames. To maximize the use of spatial information from
synchronized HSR-LFR frames, we use the synchronized HSR-
LFR frame at t to first super-resolve its synchronized LSR-HFR
frame at time t and then super-resolve its adjacent m − 1 frames
in a frame-recurrent manner.

3.2.1 Updating Synchronization Frame
We start with the synchronization frame for every HSR-LFR video
frame. Let us denote an HSR-LFR frame at time ti as Xti =
XHSR−LFR(ti). We upscale the LSR-HFR video to the same spatial
size as HSR-LFR, i.e.,

X̄(t) = U(xLSR−HFR(t)), (2)

where U(·) denotes a spatial upscaling operator that either per-
forms bilinear/bicubic interpolation or some other type of SISR
methods (e.g., EDSR [28]). Let us denote the upscaled LSR-HFR
frames as X̄ti = X̄(ti). At synchronization time ti, we use the
X̄ti and Xti to produce an HSTR frame Yti = YHSTR(ti), as
shown in Fig. 2(b).

The remaining HSTR frames in the GoP-m, are then generated
in a frame-recurrent manner to fully exploit and leverage temporal
priors of reconstructions. In other words, we first create super-
resolved version of the synchronization frame and then reconstruct
one HSTR frame at a time using its immediate super-resolved
neighbor. The GoP-m centered at timestamp ti can be written as
[X̄ti−k′∆t, . . . , X̄ti+k∆t], where k′ = dm2 e − 1, k = bm2 c, and
∆t = (ti+1 − ti)/m. Thus, we start at the center and estimate
Yti+∆t and Yti−∆t using Yti ; then we estimate Yti+k∆t using
Yti+(k−1)∆t and Yti−k′∆t using Yti−(k′−1)∆t for all the frames
in the GoP-m.

The entire process described above is analogous to a RefSR
method, where the reference is a high spatial resolution frame
either from a snapshot captured by a HSR-LFR camera or from
a synthesized HSTR frame. We use a frame-recurrent method for
super-resolution because the motion between two adjacent frames
in LSR-HFR video is often small and the estimates are reliable,
which provides a robust recovery. In comparison, motion estimates
between the synchronization frame and all the other frames in a
GoP-m can be large and unreliable, which seriously affects the
performance of RefSR [43].

3.2.2 FlowNet
A popular approach to obtain the temporal motion fields or
features is by using the optical flow [9]. Let us assume that we
can compute optical flow between two frames Iref, ILSR↑ as

F = FlowNet (Iref, ILSR↑) , (3)

where Iref refers to a reference frame and ILSR↑ denote the
upscaled LSR-HFR frame at any specific time stamp. For the
synchronization timestamp ti, ILSR↑ = X̄ti and Iref = Xti .
For the frames at timestamp ti + k∆t, ILSR↑ = X̄t=ti+k∆t and
Iref = Yti+(k−1)∆t with 1 ≤ k ≤ bm/2c. Similarly for the
frames at timestamps ti − k′∆t, ILSR↑ = X̄LSR−HFR(ti − k′∆t)
and Iref = Yti−(k′−1)∆t with 1 ≤ k′ ≤ dm/2e − 1.

A number of deep neural networks have been proposed to
deal with the optical flow [18], [32], [36]. We adopt a pretrained

optical flow model PWC-net [36] as the FlowNet in our frame
recurrent AWnet, and then use our data to fine-tune the model
through retraining. Pretraining the optical flow network with mass
labeled data greatly improves the convergence speed and accuracy
of the flow calculation in our work. The size of the estimated
optical flow by PWC-net is 1

4 th of the input image size along both
spatial dimensions. We use a simple bilinear upsampling method
to upscale the low-resolution optical flow field to the same size of
the input images.

Spatial details of the reference frame can be transferred using
extracted optical flow through the warping operation.Let us denote
the warped reference image as Iwref. Since the optical flow is up-
sampled using a bilinear filter, it often leads to an over-smoothed
output.

3.2.3 FusionNet

To preserve the fine motion details, we borrow the idea of dynamic
filtering to refine our flow. Dynamic filtering for motion estimation
and motion compensation has been recently used in [20]. It esti-
mates an independent convolution kernel for each pixel, which can
correctly describe the motion behaviors of each pixel individually.
It especially shows accurate estimation of small motions, but it
is not as effective as global optical flow for estimating large
motion because of the limit size of convolutional filters. Thus
we use dynamic filters to complement the optical flow devised in
FlowNet for better performance. As far as we know, we are the
first to combine flow network for flow estimation and dynamic
filter network for motion refinement.

We observed in our experiments that even with the refinement
of the optical flow using dynamic filters, the warped Iwref fails
in region with occlusions and suffers from motion and warping
artifacts. In such regions, we need the information from ILSR↑.
Therefore, we learn a mask to create a weighted combination of
the warped reference image and ILSR↑ for every pixel. Our Fu-
sionNet is designed to perform motion refinement using dynamic
filters and provide an adaptive weighting mask as an output. The
structure of FusionNet is illustrated in Fig. 2(d).

To utilize all the information in the available frames, we
explicitly feed warped reference frame Iwref = Warp(Iref,F ),
upscaled LSR-HFR frame ILSR↑, optical flow F , residual between
warped reference and upscaled LSR-HFR frame r = Iwref−ILSR↑,
to the FusionNet as inputs. We can describe the FusionNet as the
following function:

Fm = FusionNet(Iwref, ILSR↑,F , r), (4)

whose output has 26 channels that we use to calculate the dynamic
filter and adaptive weighting mask.

We use the popular U-net architecture [33] for our FusionNet,
as shown in Fig. 2(d). We downscale the feature maps by a factor
of two in each of the three downscaling layers and then upscale the
features using bilinear interpolation for computational efficiency.
In contract, existing approaches use transposed convolution layers
for upscaling, which is computationally expensive and also causes
some checkerboard artifacts. We do not use any skip connec-
tion in conventional U-net, which greatly reduces the memory
requirements of our network. The output of FusionNet is a three-
dimensional tensor of feature maps that has 26-channels and same
spatial size as the input image frame. We use the first 25 channels
to produce 5× 5 dynamic filters (one filter per pixel), and the last
one to produce the weighted mask for every pixel. Let us denote
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the dynamic filter for pixel (x, y) as a 5× 5 Kx,y matrix that can
be written as

Kx,y(i, j) = Fm(x, y, 5(i−1)+j), for i, j = 1, . . . , 5. (5)

Let us denote the weighted mask for the entire image as a matrix
M with same size as input image whose value at pixel (x, y) can
be written as

M(x, y) = sigmoid[Fm(x, y, 25)]. (6)

To summarize, an output frame Y of the reconstructed HSTR
video can be synthesized for pixel (x, y) as

Y (x, y) = M(x, y)Iwk
ref(x, y) + (1−M(x, y))ILSR↑(x, y),

(7)

where

Iwk
ref(x, y) =

5∑
i,j=1

Kx,y(i, j)Iwref(x− 3 + i, y − 3 + j). (8)

The reconstructed Y in (7) (together with ILSR↑ from next time
instant) will be fed into our AWnet module (as a typical RefSR) in
a recurrent manner to recover other HSTR frames reconstruction
as exemplified in Fig. 2(b).

4 TRAINING

4.1 Training Dataset
We use the Vimeo90K dataset [40] to train our model. The
Vimeo90K dataset has 64,612 septuplets for training, where
each septuplet contains 7 consecutive video frames at a size of
256 × 448 pixels. For each septuplet, we randomly select two
consecutive frames as a pair for training. Specifically, one frame
is used as the reference Iref to mimic the input image from a HSR-
LFR camera, and a downscaled version of the next frame is used
as the target frame. We apply a native bicubic downsampling filter
offered by the open source FFmpeg4 to mimic the input image
ILSR from a LSR-HFR camera. And, we randomly crop each frame
from its original resolution to a size of 256 × 384 on-the-fly for
training data augmentation.

4.2 Training Strategy and Loss Function
Training process for our network has four main steps. We use the
Adam [24] optimizer by setting its parameters β1 and β2 to 0.9
and 0.999, respectively. We use a batch size of 4. Details of every
training step are as follows.
• Step 0: FlowNet Initialization. We use a pretrained PwC-

Net [36] to initialize our FlowNet, which is trained with a
large set of data with ground truth optical flow. The inputs of
PWC-net are two consecutive frames at the same resolution.

• Step 1: FlowNet Fine-tuning. The reference frame Iref and
low-resolution target frame ILSR have a large gap in their
sizes. Thus, we implement a fine-tuning step to improve the
FlowNet. First, we upscale ILSR to ILSR↑ with the same size
as Iref. Then we compute optical flow between ILSR↑ and
Iref using PwC-Net. The computed optical flow F is then
used to warp Iref and produce Iwref. Then we apply an `1
norm-based warping loss to fine-tune the FlowNet, which is
shown below:

Lwarp = ||Igt − Iwref||1. (9)

4. www.ffmpeg.org

TABLE 2
Objective Performance Comparison of Super-Resolution Methods on

Vimeo90K Dataset [40].

Methods 4× 8×
PSNR SSIM PSNR SSIM

SR EDSR [28] 33.11 0.9413 28.20 0.8702
ToFlow-SR [40] 33.08 0.9417 - -

RefSR
PM [6] 35.06 0.9670 31.30 0.9380

CrossNet [43] 39.17 0.9852 36.15 0.9766
AWnet 39.88 0.9862 36.63 0.9768

TABLE 3
Objective Performance Comparison of Frame Interpolation using

Vimeo90K [40] (downscaled 4th frame used as reference in AWnet).

PSNR SSIM
ToFlow-Intp. [40] 33.46 0.9615

AWnet with 1/64 reference 36.63 0.9768
AWnet with 1/16 reference 39.88 0.9862

where Igt is the high-resolution ground truth of ILSR. A small
learning rate of 1e− 6 is used to fine-tune the FlowNet with
40k iterations. A similar loss function has been used in [19].

• Step 2: FusionNet Pretraining. A pretraining step is also
used for FusionNet. To train the FusionNet, we fix the
FlowNet and let the network select appropriate parameters
for FusionNet during training. We use an `1 loss between the
output Y and the ground truth Igt, given as

Lrec = ||Igt − Y ||1. (10)

We set the learning rate to 1e − 4 and train the network for
100k iterations, according to our extensive simulation studies.

• Step 3: End-to-End Joint Training. Starting with our
pretrained models, we jointly train FlowNet and FusionNet
by minimizing the same end-to-end `1 loss in (10). In this
step, we set learning rate to 10−5 for FusionNet and 3×10−6

for FlowNet over 100k iterations. With such pre- and joint-
training, network model can converge faster with more robust
and reliable behavior.

All networks are implemented and verified using PyTorch. In
subsequent sections, we describe the experiments we performed to
evaluate different aspects of proposed AWnet for our dual camera
system..

5 EXPERIMENTS

We conducted experiments on two types of videos. One type is
the “simulation data” that has images/videos from the existing
and public accessible datasets (e.g., Vimeo90K, KITTI, Flower,
LFVideo and Stanford Light Field datasets); the other type is
the “real data” captured by real cameras (e.g., iPhone 7 and
Grasshopper3 cameras) under different settings.

5.1 Performance Comparison using Simulation Data

We first compare our method with the state-of-the-art SISR
method EDSR [28], task-oriented video super-resolution method
ToFlow-SR [40], conventional RefSR patchmatch (PM) [6], and
the state-of-the-art learning-based RefSR CrossNet [43]. To be
fair, we have retrained CrossNet with our dataset following the
training strategy suggested in [43].

www.ffmpeg.org
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Super-resolution: We first use the test set with 7,824 septu-
plets from Vimeo90K [40] for performance comparison. We select
the fourth image in each septuplet for evaluation following the
suggestion in [4], [40]. For video super-resolution method, the
input is the downscaled septuplet sequence and the target is the
super-resolved fourth frame. For a single frame or image RefSR,
we downscale the fourth frame and use the fifth frame as the
reference frame. The results are presented in Table 2. We use
PSNR and Structural Similarity (SSIM) [38] as our performance
metrics for evaluation. Results show that our method has superior
performance in both PSNR and SSIM for 4× super-resolution
along both spatial dimensions. For PSNR, it yields ≈ 0.7 dB, 4.8
dB, 6.8 dB, and 6.7 dB gains against CrossNet, PM, ToFlow-SR,
and EDSR, respectively. Similar gains are produced for 8× super-
resolution factor, demonstrating the generalization of our work to
various application scenarios.

In addition to the experiments using Vimeo90K testing sam-
ples, we also tested other datasets such as KITTI, Flower, LFVideo
and Stanford Light Field data to evaluate the performance of our
proposed AWnet. We discuss those experiments in Section 6 where
we analyze the impact of camera parallax.

Frame interpolation: Our AWnet can also be used to inter-
polate missing intermediate frames (usually at high spatial reso-
lution) with the help from another LSR-HFR input. Such frame
interpolation is also supported by optical flow based methods,
such as ToFlow-Intp in [40]. We use the third and the fifth
frames from the testing septuplets to interpolate missing fourth
frame. But for our method, we downscaled fourth frame (e.g., 8×
resolution downscaling at both spatial dimension) as another input.
The results in Table 3 suggest that even a thumbnail-size image
of its original source (e.g., 1/8 × 1/8 the size of the original
image), can improve the quality of the interpolated intermediate
frame significantly. A remarkable 6.4 dB PSNR gain is recorded
compared to ToFlow-Intp [40] when scaling the fourth image to
its 1/4×1/4 size (i.e., 16× fewer pixels) and 3.2 dB PSNR gains
for the case when scaling fourth image to its 1/8× 1/8 size (i.e.,
64× fewer pixels).

Model efficiency: Our AWnet demands less system resource
with less space and time complexity requirements. For example,
AWnet model has 109.5 MB parameters, about 25% reduction
when compared with the CrossNet model at a size of 140.8 MB
parameters. When upscaling a snapshot at a factor of 8× spatially
to the size of 640×448, AWnet consumes about 0.12 second with
1499 MB running memory (e.g., about 60% reduction against
the running memory consumption of CrossNet), while CrossNet
is about 0.18 second with 4511 MB running memory. As an
comparative anchor, traditional PM [6] uses 55.9 seconds due to
iterative patch match.

5.2 Performance Studies using Real Data

We perform the real video data capture using dual iPhone 7 and
Grasshopper3 cameras. One represents a consumer mobile camera
used massively and the other one a camera commonly used for
scientific or industrial imaging applications.

5.2.1 Camera Calibration
Dual camera setup requires careful calibration to map their relative
coordinates and poses; especially, if we move the system around
for shooting different scenes. As suggested by [29], we choose
mesh-based homography for calibration, which greatly improves

(a) (b) (c) (d)

Fig. 3. Dual camera calibration. (a) HSR-LFR frame Iref; (b) LSR-HFR
frame ILSR; (c) Warped frame only using optical flow; (d) Warped frame
using both mesh-based homography and optical flow. (a) and (b) are
captured using our dual iPhone 7 with different views.

(a) (b)

(g) (h)(e) (f)

(c) (d)

Fig. 4. Synthesized Quality and Weighting Map W . (a) to (d) are ex-
emplified for Vimeo90K simulation data: (a) is the up-scaled ILSR↑ using
bicubic method from ILSR by 8× for both spatial dimensions; (b) is the
warped reference frame Iwref; (c) is the output synthesized frame Y ; (d)
is the adaptive weighting mapW on (b); (e) to (h) are the visualization for
camera captured real data with 3× resolution scaling from ILSR to ILSR↑:
(e) is the up-scaled image ILSR↑ from the captured LSR-HFR frame; (f)
is the warped reference frame Iwref; (g) is the output synthesized frame
Y ; (h) is the adaptive weighting map W on (f).

the accuracy of subsequent optical flow derivation as shown in
Fig. 3.

For dual iPhone 7 configuration, we use a millisecond timer to
synchronize two cameras. Synchronization with industrial cameras
is much easier where we can apply the hardware clock timer.

Our dual camera system is connected to a high performance
computer for both HSR-LFR and LSR-HFR video caching. The
computer is using an Intel Xeon E5-2620 running at 2.10 GHz
with a GeForce GTX 1080Ti GPU. Without any platform and
algorithmic optimization, it now takes about 7.4 seconds to syn-
thesize a 3840 × 2160 frame from a pair of 1280 × 720 frames
at 240FPS and 3840× 2160 at 30FPS videos.

5.2.2 Noise Regularization
We first directly applied our model on data captured with real
camera, but we found that the quality of synthesized images was
not as good as we had in the case of simulation data, as shown
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(a) Y with σ2 = 0 (b) Y with σ2 = 0.001 (c) Y with σ2 = 0.01

(d) W with σ2 = 0 (e) W with σ2 = 0.001 (f) W with σ2 = 0.01

Fig. 5. Noise Regularization. (a)-(c) Reconstructions of synthesized
Y with noise level σ2 at 0, 0.001 and 0.01; (d)-(f) Weighting map W
with noise level σ2 at 0, 0.001 and 0.01. Video frames are captured
using dual iPhone 7. Noise regularization shits more weights to Iwref in
general to improve the image quality, especially for those background
stationary areas. But for those regions with occlusions (edge of the
athletes), motion blurs (soccer ball) and warping artifacts (grassland),
reconstruction still prefers pixels from ILSR↑ to minimize the training loss.

in Fig. 4 (see (c) versus (g)). We observe that the reconstruction
of data captured with iPhone 7 camera is blurry in Fig. 4(g), even
though the reference image after warping retains sharp details, as
shown in Fig. 4(f).

Recall that the synthesized video frame Y in (7) is a weighted
combination of the warped reference Iwref and upscaled LSR-HFR
input ILSR↑. The relative weighting factor describing the weight
contribution from the warped reference for a pixel at (x, y)-th
position can be written as

W (x, y) =

M(x, y)
∑5

i,j=1Kx,y(i, j)

(1−M(x, y)) +M(x, y)
∑5

i,j=1Kx,y(i, j)
. (11)

Note that the value of W (x, y) lies within [0, 1]. The larger
the W (x, y) is, the more the Iwref contributes and vice versa. As
revealed in Fig. 4(e), and Fig. 4(f), our model shifts more weights
to ILSR↑, rather Iwref for captured real image synthesis, resulting in
over smoothed reconstruction of Y .

We also observed that Iwref in Fig. 4(f) not only preserves the
sharp details but also the rich colors compared to Y in Fig. 4(g).
One potential cause for this is that the camera parameters adjust
automatically during recording to improve the image quality (e.g.,
ISO setting, aperture size, etc.). Therefore, the resulting LSR-HFR
video has a narrow dynamic range and low SNR, as shown in
Fig. 4(e) versus Fig. 4(f) from an associated HSR-LFR camera. In
another words, the overall quality of ILSR (or ILSR↑) is much worse
compared to the corresponding Iref (or Iwref).

In the case of simulation data, we do not face this problem
because both ILSR and Iref are generated from the same ground
truth. Such phenomena are also observed when using other RefSR
methods (e.g., PM, CrossNet) to super-resolve real data. The
differences between the simulated data and the real sensor data
affects the accuracy of optical flow and the performance of
FusionNet. The FusionNet relies on the similarity between ILSR↑
and Iwref to combine them. The higher resolution of real sensor
data and the difference between camera parameters causes errors
in optical flow estimation and misleads the FusionNet to pay less
attention to Iwref as shown in Fig. 4(h). Thus, it seems that models
trained using “clean” simulation data can not be directly extended
to camera captured real data.

To apply our model on real data, we formulate a “regular-
ization” problem that searches for a better weighting factor W
between ILSR↑ and Iwref in (7). We propose to add noise n in ILSR↑
for regularization during the training progress. Thus, end-to-end
learning optimization in (10) can be updated using regularized
Y and Iwref. The only difference here is that instead of using
noiseless ILSR↑, we inject noise and use ILSR↑ + n in all the
computations. With such noise regularization on ILSR↑, network
learns to shift more weights to Iwref to improve the quality of
synthesized reconstruction. Without losing generality, we train our
network with added Gaussian noise at different variances σ2s,
e.g., 0.001, 0.005, and 0.01. Snapshots of reconstructed Y and
weighting factor W with various σ2s are shown in Fig. 5. More
comparisons can be seen in the supplementary material. We can
see that reconstruction shifts more weights to Iwref (e.g., elements
in W gets closer to 1 in Fig. 5(d)–(f) as the noise gets stronger
(e.g., σ2 increases), yielding better image quality with higher
dynamic range, better color and sharper details (see Fig. 5(a)–(c)).

5.2.3 Subjective Evaluation
For data captured with the real cameras, we compare the per-
formance of our method with the EDSR [28], PM [6]5, and
CrossNet [43].

Super-Resolution: Dual iPhone 7 cameras are used in this
study. One camera captures a 4K video at 30FPS as the HSR-LFR
input, and the other synchronized camera records 720p video at
240FPS as the LSR-HFR input.

We shoot videos for different scenes to validate the efficiency
and generalization of our system. These scenes include indoor and
outdoor activities with different illumination conditions, as illus-
trated in Figs. 6, and 7. We can observe the quality improvements
of our proposed method when compared with the CrossNet [43],
PM [6], and EDSR [28]. With appropriate noise regularization
(e.g., σ2 = 0.01 as exemplified), we could clearly observe that
both the spatial details of Iref and smooth motions from ILSR are
well retained and synthesized in the final reconstruction. We also
notice that the subjective quality improvement is perceivable in
our method with low and medium light illumination. With strong
light illumination, the state-of-the-art CrossNet also provides good
reconstruction, but our method still provides the best results, as
shown in supplemental material.

Frame Interpolation: We extend our evaluations to frame
interpolation. We present the entire GoP reconstructions in Fig.
8 for subjective comparison. Iref-0 and Iref-1 are the original
frames from our HSR-LFR camera, while the frames in-between
interpolated using ToFlow-Intp [40] are presented in the upper
rows (highlighted with the green box). For comparison, recon-
structed Y frames using our model are placed in the bottom rows.
As we can see, ToFlow-Intp shows ghosting and motion blurring
(e.g., almost invisible fast-dropping ping-pong ball in the upper
part of Fig. 8). Our proposed method recovers the high-fidelity
spatial details (see the woman’s face and the texts on the wall)
and smooth motions (see the fast-moving ping-pong ball and the
woman’s hands) at the same time.

6 ABLATION STUDIES

In this section we investigate different parameters of our system
individually to understand the system capability and the source of

5. Because the size of camera captured video frame is larger than the
simulation content in Vimeo90K, we enlarge the patch size from 8 to 16 and
search range from 16 to 64 for patch matching.
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(d) ILSR↑ (e) EDSR (f) PM (g) CrossNet (h) AWnet
2=0

(i) AWnet
2=0.01

(b) I LSR↑(a) Iref (c) Iref

Fig. 6. Super-Resolution: Indoor activity with medium light illumination. Iref is the captured 4k frame from the HSR-LFR camera, and synchronized
ILSR↑ is the up-scaled frame from the captured 720p frame of the LSR-HFR camera. Zoomed-regions are visualized for (c) Iref, (d) ILSR↑, and super-
resolved reconstructions using (e) EDSR, (f) PM, (g) CrossNet, (h) AWnet with σ2 = 0 (no noise regularization), and (i) AWnet with σ2 = 0.01.

(e) EDSR (f) PM (g) CrossNet (h) AWnet
2 =0

(i) AWnet 
2=0.01

(a) Iref

(c) Iref  (d) ILSR↑(b) ILSR↑

Fig. 7. Super-Resolution: Outdoor activity with low light illumination. Iref is the captured 4k frame from the HSR-LFR camera, and synchronized
ILSR↑ is the up-scaled frame from the captured 720p frame of the LSR-HFR camera. Zoomed-regions are visualized for (c) Iref, (d) ILSR↑, and super-
resolved reconstructions using (e) EDSR, (f) PM, (g) CrossNet, (h) AWnet with σ2 = 0 (no noise regularization), and (i) AWnet with σ2 = 0.01.

TABLE 4
Performance Impact of Different Upscaling Filter

SISR 4× 8×
PSNR SSIM PSNR SSIM

EDSR [28] 39.88 0.9862 36.63 0.9768
bicubic 39.75 0.9862 36.47 0.9766

efficiency.
Upscale Filter: We upscale the ILSR in Fig. 2(c) to the

same resolution as the Iref for subsequent processing. Previous
explorations assume the state-of-the-art SISR method EDSR [28].
Here, we replace it with a straightforward bicubic filter. Models
are re-trained with this new upscaling filter, and performance
comparison is evaluated on the efficiency of respective 4× and 8×
super-resolution application using the Vimeo90K testing dataset.
Averaged PSNR and SSIM are listed in Table 6, showing that
different upscaling method does not affect the overall performance

noticeably, e.g., ≈ 0.1 dB PSNR and <= 0.002 SSIM index
variations reported. This observation suggests that we can use
simple upsampling filters to scale up ILSR instead of complex
super-resolution methods. In principle, this is mainly due to the
fact that our AWnet-based dual camera system could learn and
embed high frequency spatial information from its HSR-LFR input
for final reconstruction synthesis. Thus, complex super-resolution
method used to estimate high frequency component is not an
inevitable step any more.

Camera Parallax: Dual camera setup is used in our system.
Thus camera parallax could be an issue that affects the system
performance. We show in our studies below by using simulation
data from available KITTI [31], Flower [35], LFVideo [37],
Stanford light field [1] datasets, and real data captured by our
dual camera system with various parallax settings to demonstrate
the robustness of our method.

Comparison Using Simulation Data: We test our AWnet
on Flower [35], LFVideo [37] and Stanford light field (Lego
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AWnet σ2=0.01

Iref‐0 Iref‐1ToFlow‐Intp

Fig. 8. Frame interpolation. Indoor activity with medium light illumination. The most left and the most right of first rows are the captured HSR-
LFR frames. Seven frames in-between are interpolated using ToFlow-Intp [40]; The second rows are the synthesized HSTR frames using our
AWnet, which is trained with noise regularization with the variance of 0.01. Zoom in the pictures, and you will see more image details. (More in
supplemental material.)

TABLE 5
Objective Performance Comparison of 4× and 8× Super-Resolution Methods on Flower and LFVideo Datasets

Methods Scale Flower(1,1) Flower(7,7) LFVideo(1,1) LFVideo(7,7)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRCNN [13] 4× 32.76 0.89 32.96 0.90 32.98 0.86 33.27 0.86
VDSR [23] 4× 33.34 0.90 33.58 0.91 33.58 0.87 33.87 0.88
MDSR [28] 4× 34.40 0.92 34.65 0.92 34.62 0.89 34.91 0.90

PM [6] 4× 38.03 0.97 35.23 0.94 38.22 0.95 37.08 0.94
CrossNet [43] 4× 41.23 0.9625 38.09 0.9475 41.57 0.9758 39.17 0.9627

AWnet 4× 41.33 0.9631 38.31 0.9492 41.63 0.9757 39.36 0.9635
SRCNN [13] 8× 28.17 0.77 28.25 0.77 29.43 0.75 29.63 0.76
VDSR [23] 8× 28.58 0.78 28.68 0.78 29.83 0.77 30.04 0.77
MDSR [28] 8× 29.15 0.79 29.26 0.80 30.43 0.78 30.65 0.79

PM [6] 8× 35.26 0.95 30.41 0.85 36.72 0.94 34.48 0.91
CrossNet [43] 8× 39.35 0.9571 34.11 0.9149 40.63 0.9727 36.97 0.9465

AWnet 8× 39.29 0.9571 34.53 0.9199 40.48 0.9725 37.25 0.9487

TABLE 6
Objective Performance (PSNR) Comparison of 8× Super-Resolution

Methods on Stanford Light Field Dataset

Methods parallax = (1,0) (3,0) (5,0)
MDSR [28] 29.66 29.66 29.67

PM [6] 34.61 32.55 30.42
CrossNet [43] 39.33 36.77 35.15

AWnet 39.53 37.65 36.47

TABLE 7
Performance Evaluation Using KITTI dataset for Super-Resolution

4× 8×
PSNR SSIM PSNR SSIM

EDSR [28] 27.03 0.8519 23.47 0.7377
CrossNet [43] 27.43 0.8631 24.92 0.7981

AWnet 28.19 0.8882 26.01 0.8356

Gantry) [1] datasets following the same configuration in [43].
The Flower and LFVideo datasets are light field images cap-
tured using Lytro ILLUM camera. Each light field image has
376×541 spatial samples and 14×14 angular samples (grid).
The same as the methods applied in [35], [43], we extract the
central 8×8 grid of angular samples to avoid invalid images.
Parallax is offered by setting the reference image Iref at (0,
0), and associated low-resolution correspondence at (i, i), with
0 < i ≤ 7 by shifting position to another different angular
sample. For example, Flower(1,1) and LFVideo(7,7) in Table 5,
represent low-resolutions at (1,1) and (7,7) with respect to the
respective references at (0,0). Images in both Flower and LFVideo
datasets exhibit small parallax settings [35], [43]. On the other
hand, Stanford light field dataset contains the light field images
shot using a Canon Digital Rebel XTi with a canon 10-22 mm
lens. It is placed using a movable Mindstorms motor on the
Lego gantry, where the parallax is introduced by the baseline
distances along with the camera movement. Under such equipment
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settings, the captured light-field images have much larger parallax
than those captured by Lytro ILLUM camera. Both Table 5 and
Table 6 also shows the leading performance of our proposed
AWnet at a variety of parallax between testing and reference
images, further demonstrating the generalization of our network
in different application scenarios. Especially, on average, up to
1.3 dB PSNR improvement is obtained of our AWnet against the
CrossNet in Table 6 for large parallax setting. This is mainly due to
the reason that CrossNet was not initially designed for RefSR with
larger parallax. Thus, additional parallax augmentation procedure
was suggested in [43] for re-training.

KITTI dataset has 54cm baseline distance for two cameras.
We apply our method and CrossNet with pretrained models
using Vimeo90K dataset directly to KITTI test data with 400
stereo image pairs. We use the high-resolution left-view images
as the reference for the low-resolution right-view images. Since
both CrossNet and our method expect the image resolution to
be divisible by 64, thus, we crop images to 1216 × 320 for
testing. Table 7 gives the PSNR and SSIM for super-resolution
evaluation. Our method still offers better PSNR (e.g., > 1 dB
gain for 8× resolution scaling factor) and SSIM compared to the
CrossNet. EDSR results are offered as a reference point, revealing
that RefSR still exhibits superior performance, even with a large
camera parallax (i.e., 54cm baseline in KITTI data). Results in
Table 7 and Table 2 suggest that both PSNR and SSIM are dropped
significantly when evaluating models on KITTI compared to the
Vimeo90K test data. This is because the introduction of the (large)
camera parallax leads to the inaccurate flow estimation for later
processing. Similar observations are reported in CrossNet [43]
where PSNR and SSIM drop as the camera parallax increases.

Comparison Using Real Data: We choose a pair of Grasshop-
per3 cameras to perform more parallax studies due to its easy
setup using industrial cameras. We use two Grasshopper3 GS3-
U3-51S5C cameras with respective 20mm and 6mm lens installed.
There is nearly 4× resolution gap between these two cameras, e.g.,
one is at 2304×2048, and the other one is at 576×512. We fix the
frame rate of the HSR-LFR camera at 240FPS and the frame rate
of the LSR-HFR camera at 30FPS. Viewing distance from the
cameras to the scene is about 2 meters, and the baseline distance
between these two cameras are adjusted at 5cm, 10cm, 15cm,
20cm and 25cm for a variety of parallax configurations. Figure 9
plots the reconstructed images at different baseline distances. As
we can see, our system has reliable performance at a variety of
parallax settings. Image quality can be enhanced noticeably with
noise regularization, as shown in enlarged thumbnails in Figure 9.
And in the region with repeated patterns, the checkerboard, there
are some ghosts on the results of CrossNet, but our network
does not have this problem. Timer digits are over-smoothed by
CrossNet, especially for the scenarios with larger baseline distance
(e.g., 25cm), but ours still retain the sharp presentation.

Exposure time. The exposure time affects the number of
arrival photons, thus having impacts on the image quality for each
snapshot and subsequent synthesis performance. Identical dual
camera setup is used as in parallax study, but with the baseline
distance fixed at 4.4CM. We fix the aperture sizes of the two
cameras and set the ISO gain to automatic mode.

The exposure time of the HSR-LFR camera is fixed as default
to record 30FPS reference video with 2304×1920 resolution at
30FPS. For comparative studies, We set the exposure time of the
LSR-HFR camera to 10ms, 5ms, 2.5ms , 1ms and 0.5ms respec-
tively, to record video with 576×480 resolution with 100FPS.

Both captured and reconstructed images are shown in Fig. 10.
From the captured LSR-HFR frames, we can see that the signal-
to-noise ratio (SNR) of the images decrease greatly (Fig. 10(d)) as
the decrease of the exposure time.

Experiments reveal that CrossNet can remove some noise but
the capacity is limited. This may be due to the smoothing effect
of global convolutions applied, leading to blurred timing digits
and jewelry contour (see Fig. 10(e)). Our AWnet can effectively
alleviate the noise (even with strong level) and maintain the
sharpness, yielding much high-quality HSTR frames. The noise
induced by the lower SNR (with shorter exposure time), is greatly
removed by our method (as illustrated in Fig. 10(d)-(e)), providing
visually pleasant reconstruction with appealing spatial and tempo-
ral details. From these snapshots (and zoomed thumbnails), we
can see that our system is robust and reliable to various exposure
settings as well.

Noise Fine-tuning. Previous studies have reported that noise
regularization could improve the efficiency of our model on
camera captured real data significantly. However, a heavy noise
with σ2 = 0.01 would deteriorate the reconstruction quality,
particularly in the motion occluded areas (e.g., head, and shoe
surroundings) shown in Fig. 11(e). Applying a light noise with σ2

= 0.001 could partially alleviate such degradation, but also lead
to over smoothed rendering in texture ground (e.g., grass field) in
Fig. 11(d). Thus, we suggest the progressive fine-tuning for noise
regularization, where we re-train a model that is already trained
at a heavy noise level, for a lighter noise distribution. With such
progressive approach, we could retain the sharp details in grass
field and remove artifacts greatly in motion occluded areas, shown
in Fig. 11(f). This validates the efficiency of the fine-tuning policy
used for noise regularization.

Multiscale Synthesis. An interesting observation is that our
model trained with image pairs (see Section 4) having 8× resolu-
tion gap (noted as 8×-Model) provides much better reconstruction
quality subjectively (Fig. 12(f)) compared to the model trained
using image pairs with 4× resolution gap (noted as 4×-Model)
(Fig. 12(e)). For both models, noise level is set with σ2 = 0.01 for
regularization. For illustrative comparison, we have downscaled
the Iref to its 1

16 th (e.g., 4× downscaling at each spatial dimen-
sion) and 1

64 th (e.g., 8× downscaling at each spatial dimension)
sizes. Perceptually, a snapshot from the LSR-HFR camera in
Fig. 12(d) is close to 8× downscaled Iref in Fig. 12(c), but worse
than 4× downscaled Iref in Fig. 12(b). Thus, when we use 4×-
Model, our network will evenly weigh information from Iref and
ILSR yielding a smooth reconstruction with moderate quality in
Fig. 12(e); but for 8×-Model, since the 8× downscaled version in
training is with pretty bad quality, more weights will be given to
Iref in stationary areas and to ILSR in motion areas for adaptive
fusion synthesis, leading to much sharp details in reconstruction
as shown in Fig. 12(f). In other words, this is another example of
adaptive weighting between the HSR-LFR and LSR-HFR camera
inputs for final reconstruction quality improvement, where those
weights can be regularized during training using sample pairs with
different resolution gaps.

Aforementioned is the synthesis at a single resolution resam-
pling scale. We have further found that reconstruction quality can
be greatly improved by implementing a (progressive) multiscale
synthesis procedure. An intuition behind such multiscale behavior
is to extract, embed and transfer more spatial information of
the HSR-LFR frame progressively to the final output, while
still retaining the motion information of the LSR-HFR frames.
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(a) Iref (b) ILSR↑ (d) AWnet σ2=0 (e) AWnet σ2=0.01(c) CrossNet

5
cm

2
5
cm

Fig. 9. Camera Parallax. Image reconstruction for our dual camera system when placing cameras with baseline distance at 5cm and 25cm. Our
LSR-HFR camera operates at 240FPS. These images are captured using dual Grasshopper3 GS3-U3-51S5C cameras. The frames in the first
column are the captured HSR-LFR frames. The frames in the second column are the captured LSR-HFR frames. Look at the repeated patterns on
the checkerboard snapshots, there are some ghosts on the results of CrossNet because its multi-scale warping in feature domain, but our method
does not have this problem. And our method has strong robustness when parallax is large. Zoom in the pictures, you will see more details in
the larger images. More parallax settings in supplemental material.

(c) Iref (d) ILSR↑ (f) AWnet σ2=0.01(e) CrossNet(a) Iref (b) ILSR↑

1
0
m
s

0
.5
m
s

Fig. 10. Exposure Time. Various exposure time exemplified using our dual camera system. These images are captured using dual Grasshopper3
GS3-U3-51S5C cameras. The frames in the first column are the captured HSR-LFR frames using default exposure, the frames in the second column
are the captured LSR-HFR frames with various exposure adjustments. Noise increases as exposure time decreases. CrossNet could remove some
noise but generally lead to blurred artifacts induced by the global convolutions. Our AWnet can effective remove noise and improve the picture
quality greatly. More exposure time settings in supplemental material.
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(d)(c) (e) (f)(b)(a)

Fig. 11. Noise Fine-tunning. (a) Iref, (b) ILSR↑, (c) reconstruction Y with σ2 = 0 (no noise), (d) Y with σ2 = 0.001 (light noise), (e) Y with σ2 = 0.01
(heavy noise), (f) Y with σ2 = 0.01 fine-tuned to 0.001. Zoom in the pictures, you will see more details in the larger images.

(a) (b) (c) (d) (e) (f)

Fig. 12. Resolution Gap Impact. (a) Iref, (b) Iref with 4× resolution downscaling and upscaling to original size by EDSR, (c) Iref with 8× resolution
downscaling and upscaling to original size by EDSR, (d) ILSR, (e) Y with 4×-Model, (f) Y with 8×-Model.

(a) (b)

(d)(c)

Fig. 13. Multiscale Synthesis. (a) Iref from a HSR-LFR camera; (b)
ILSR from a LSR-HFR camera; (c) Reconstruction Y with a single scale
RefSR based synthesis; (d) Reconstruction Y with a two-scale RefSR
based synthesis. Grasshopper3 GS3-U3-51S5C and GS3-U3-32S4C
cameras are used to offer 8× resolution gap. Zoom in the pictures, you
will see more details in the larger images.

We demonstrate this multiscale synthesis using Grasshopper3
GS3-U3-51S5C and GS3-U3-32S4C cameras. There is about 6×
resolution gap between these two Grasshopper3 cameras along
both spatial dimensions. In addition to performing the single
scale RefSR, we have applied a two-scale RefSR for our AWnet.
Previous 8×-Model is reused here. For this two-scale RefSR, we
first downscale the original Iref to its 1

4 size, which is synthesized
with the ILSR following the procedure in Fig. 2(c); and this
intermediate reconstruction is assigned as ILSR which is then fused
with original size Iref to derive the final Y . Figure 13 reports the
reconstructions with sub-regions zoomed-in. As clearly observed,
such multiscale synthesis offers much better quality, by preserving

the spatial details from Iref (e.g., doll and toy faces) and motion
information from ILSR (e.g., rotating fans) jointly.

7 CONCLUSION

A dual camera system is developed in this work for high spa-
tiotemporal resolution video acquisition where one camera cap-
tures the HSR-LFR video, and the other one records the LSR-
HFR video. An end-to-end learning framework, AWnet, is then
proposed to learn the spatial and temporal information from
both camera inputs, and drive the final appealing reconstruction
by intelligently synthesizing the content from either HSR-LFR
or LSR-HFR frame. Towards this goal, separable FlowNet and
FusionNet are devised in our framework, to explicitly exploit
the information from two cameras so as to derive the adaptive
weighting functions for reconstruction synthesis.

Our system has demonstrated the superior performance, in
comparison to the existing works, such as the state-of-the-art
CrossNet, PM, EDSR, and ToFlow-SR for super-resolution, and
ToFlow-Intp for frame interpolation, showing noticeable gains
both subjectively and objectively, using simulation data and cam-
era captured real data. ew We have also analyzed various aspects
of our system by breaking down its modular components, such
as upscaling filter, camera parallax, exposure time, multiscale
synthesis, etc. These studies pave the way for the application of
our model to different scenarios.

In general, our system belongs to a hybrid camera or multi-
camera category, even though our current emphasis is the pro-
duction of video at both high spatial resolution and high frame
rate. But this approach can be easily extended to view synthesis
since the different viewpoints can be also generalized using flow
representation. Another interesting avenue is to extend current
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RefSR mechanism in AWnet to include more cameras (e.g., > 2)
to enable the output video with more dimensional features, such as
dynamic range (for low light imaging) [12], multi-spectra (beyond
RGB), and depth (for 3D imaging) [15], etc.

Our AWnet could be further optimized towards the resource
constrained embedded platform for broader applications using
multi-camera equipped mobile phones, such as model compres-
sion [16], simple yet effective network structure [17], architecture-
driven software optimization [25], etc.
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