
A Review of Meta-Reinforcement Learning

for Deep Neural Networks Architecture Search

Anonymous

Abstract

Deep Neural networks are efficient and flexible models that perform well for
a variety of tasks such as image, speech recognition and natural language
understanding. In particular, convolutional neural networks (CNN) generate
a keen interest among researchers in computer vision and more specifically in
classification tasks. CNN architecture and related hyperparameters are gen-
erally correlated to the nature of the processed task as the network extracts
complex and relevant characteristics allowing the optimal convergence. De-
signing such architectures requires significant human expertise, substantial
computation time and doesn’t always lead to the optimal network. Model
configuration topic has been extensively studied in machine learning without
leading to a standard automatic method. This survey focuses on reviewing
and discussing the current progress in automating CNN architecture search.

Keywords: Deep Learning, Automatic Design, Reinforcement Learning,
Meta-Learning, AutoML.

1. Introduction

”A neuron is nothing more than a switch with information input and
output. The switch will be activated if there are enough stimuli of other
neurons hitting the information input. Then, at the information output, a
pulse is sent to, for example, other neurons ” [1]. Brain-inspired machine
learning imitates in a simplified manner the hierarchical operating mode
of biological neurons [2]. The concept of artificial neural networks (ANN)
achieved a huge progress from its first theoretical proposal in the 1950s until
the recent considerable outcomes of deep learning. In computer vision and
more specifically in classification tasks, CNN, which we will examine in this

Preprint submitted to Elsevier December 20, 2018



review, are among the most popular deep learning techniques since they are
outperforming humans in some vision complex tasks [3].

The origin of CNN that were initially established by [4] goes back to the
1950s with the advent of ”perceptron”, the first neural network prototyped
by Frank Rosenblatt. However, neural network models were not extensively
used until recently, after researchers overcame certain limits. Among these
advances we can mention the generalization of perceptrons to many layers
[5], the emergence of backpropagation algorithm as an appropriate training
method for such architectures [6] and, mainly, the availability of large training
datasets and computational resources to learn millions of parameters. CNN
differ from classical neural networks in the fact that the connectivity of a
hidden layer neuron is limited to a subset of neurons in the previous layer.
This selective connection endow the network with the ability to operate,
implicitly, hierarchical features extraction. For an image classification case,
the first hidden layer can visualize edges, the second a specific shape and so
on until the final layer that will identify the object.

CNN architecture consists of several types of layers including convolu-
tion, pooling, and fully connected. The network expert has to make multiple
choices while designing a CNN such as the number and ordering of layers,
the hyperparameters for each type of layer (receptive field size, stride, etc.).
Thus, selecting the appropriate architecture and related hyperparameters
requires a trial and error manual search process mainly directed by intu-
ition and experience. Additionally, the number of available choices makes
the selection space of CNN architectures extremely wide and impossible for
an exhaustive manual exploration. Many research effort in meta-modeling
tries to minimize human intervention in designing neural network architec-
tures. In this paper, we first give a general overview and define the field
of deep learning. We then briefly survey the history of CNN architectures.
In the following section we review several methods for automating CNN de-
sign according to three dimensions: search optimization, architecture design
methods (plain or modular) and search acceleration techniques. Finally, we
conclude the article with a discussion of future works.

2. Background

Before embarking with CNN, we will introduce in this section some basic
generalities about artificial networks and deep learning.

2



2.1. Artificial Neural Networks

ANN are a major field of artificial intelligence that attempts to replicate
human brain processing. Three types of neural layers distinguish an ANN:
input, output and hidden layers. The latter operate transitional representa-
tions of the input data evolving from low level features (lines and edges) to
higher ones (complex patterns) as far as deeper layers are reached. Figure 1
provide an example of ANN involving classical fully-connected layers where
every neuron is connected to all ones of the previous layer.

Figure 1: Artificial neural network, containing an input layer, an output layer and two
hidden layers.

During training, an ANN aims at learning two types of parameters that
will condition its predictive performance. First, connection weights that
assess to which extent a neuron result will impact the output of higher level
neuron. Second, the bias which is a global estimator of a feature presence
across all inputs. Hence, a neuron output can be formalized through a linear
combination of weighted inputs and associated bias:

output = (
∑
i

inputi ∗ weighti) + bias

In order to allow the network operating non-linear transformations, an
activation function is applied to the previous output. Equation 1 presents an

3



example of such transformation using one of the most common and efficient
activation function which is the Rectified Linear Unit (ReLU) [7]:

f(x) = max(x, 0) (1)

2.2. Deep learning

The concept of deep learning refers to machine learning processing within
multi-layer ANN [8]. The training of these networks relies on a loss function
evaluation. For example, in supervised learning the loss is assimilated to
the matching accuracy between ANN predictions and real expected outputs.
An iterative update procedure is implemented to adjust network parameters
according to loss function computed gradient. This procedure is called Back-
propagation since parameters updates are spread from final layers to initial
ones. Deep learning implies a certain number of challenges such as vanish-
ing/exploding gradient and overfitting. The solutions to these problems will
be discussed when developing CNN design architectures in next sections.

3. CNN Layers

CNN are widely used in a great number of pattern and image recognition
problems. Three main characteristics are making this deep learning technique
successful and suitable to visual data. First, local receptive fields perfectly
reflect image data specificity to be correlated locally and uncorrelated in
global segments. Second, shared weights allows a substantial parameter re-
duction without altering image processing since the convolution is applicable
to the whole image. Last, grid-structured image enable pooling operations
that simplify data without losing useful information [9].

3.1. Convolutional Layer

The convolutional layer is the basic CNN unit that has been inspired by
physiological research evidence of hierarchical processing in the visual cor-
tex of mammals [10]. Simple cells detect primitive attributes while more
compound structures are subsequently extracted by complex cells. Thus,
convolutional layer consists of a set of feature maps issued from convolving
different filters (kernels) with an input image or previous layer output [11].
The 2-dimensional maps are stacked together to produce the resulting vol-
ume of the convolutional layer. This process reduces drastically the network

4



complexity since the neurons of a same feature map share the same weights
and bias maintaining a low number of parameters to learn [12].

The hyperparameters characterizing a convolutional layer are the depth
F (number of filters), the stride S (filter movement from a receptive field to
the next one) and the zero padding P to control input size [13]. Assuming
that the filter size (height, width, depth) = (h,w,D), the dimensions of the
feature maps generated can be obtained according to:

(H1,W1, F ) = ((H + 2P − h)/S + 1, (W + 2P − w)/S + 1, F )
Where (H,W,D) is the size (height, width, depth) of the input image.

3.2. Pooling Layer

CNN architectures generally alternate convolution and pooling layers.
The latter have the purpose of reducing network complexity and avoid the
problem of overfitting. At biological level, pooling is assimilated to the behav-
ior of cortical complex cells that reveal a certain degree of position invariance.
A pooling layer neuron is connected to a region of the previous layer by per-
forming a non-parameterized function. Thus it differs from convolution as
it doesn’t have learnable weights or bias and additionally, it keeps the same
depth of the previous layer. Max pooling [14] is one of the most common
type of pooling that consists in retaining the maximum value of a neurons
cluster. It means that max pooling is detecting if a given feature has been
identified in a receptive field without recording the exact location [9].

3.3. Fully connected Layer

The convolution layers identify local features in the input data such as
edges and shapes. The Fully connected layer operates the high level reasoning
(classification for image case) by combining information from all the previous
layers. As in a regular ANN, neurons at this level are fully connected to all
ones in the previous layer. A softmax loss layer is then used to compute the
probability distribution of the CNN final outputs.

4. CNN Architecture History

This section presents the most influential hand-crafted CNN architectures
that have impacted the recent work on automatic architecture design. Most
of them won at least one of the ”ImageNet Large Scale Visual Recognition
Competition” (ILSVRC) challenges [3].

5



4.1. LeNet

As mentioned previously, LeNet [7] was the innovative work that intro-
duced convolutional networks. The model was experimented successfully to
classify handwritten digits without any preprocessing of the input image (of
size 32 ∗ 32 pixels). LeNet architecture is illustrated in figure 2. It consists
of an input and an output layers of respective sizes 32 ∗ 32 and 10 as well
as 6 hidden Layers. The basic idea of this design is to operate multiple con-
volutions (3) with pooling in-between (2) then transmitting the final signal
via a fully-connected layer toward the output layer. Unfortunately, due to
the lack of adequate training data and computing power, it wasn’t possible
to extend this architecture to more complex applications.

Figure 2: Architecture of LeNet-5 [7].

4.2. AlexNet

AlexNet [11] is one of the most influential deep CNN that won the
ILSVRC (Imagenet Large Scale Visual Recognition Challenge) competitions
in 2012. As shown in figure 3, it is not much different from LeNet. Never-
theless, the corresponding architecture is deeper with 8 layers in total, 5 con-
volutional and 3 fully connected. The effective contribution of AlexNet lies
in several design and training specificities. First, it introduced the Rectified
Linear Unit (ReLU) nonlinearity which helped to overcome the problem of
vanishing gradient and boosted a faster training. Furthermore, AlexNet im-
plements a dropout step [15] that consists in setting to zero a predefined per-
centage of layers’ parameters. This technique decreases learned parameters
and controls neurons correlation in order to limit overfitting impact. Third,
training process convergence is accelerated with momentum and conditional
learning rate decrease (e.g. when learning stagnates). Finally, training data
volume is increased artificially by generating variations of the original images

6



that are shifted randomly. Thus the network learning is enhanced with the
use of invariant representations of the data.

Figure 3: An illustration of AlexNet [11].

4.3. VGGNet

Submitted for the ILSVRC 2014, VGGNet [16] won the second place
and demonstrated that deeper architectures achieve better results. Indeed,
with its 19 hidden layers, it was much deeper than previous convolutional
networks. In order to allow an increase in depth without an exponential
growth of the parameters number, smaller convolution filters (3∗3) were used
in all layers (e.g. lower size than the 11 ∗ 11 filters adopted in AlexNet). An
additional advantage of using smaller filters consists in reducing overlapping
scanned pixels which results in feature maps with more local details [17].

4.4. GoogLeNet

Since it has been demonstrated that a CNN architecture size is positively
correlated to its performance, recent efforts focus on how to increase the
depth of a CNN while keeping an acceptable number of parameters. Winner
of ILSVRC 2014, GoogLeNet [18] innovated network design by replacing the
classical strategy of alternating convolutional and pooling layers with stacked
Inception Modules depicted in figure 4. Despite being deeper than VGGNet
with 22 hidden layers, GoogLeNet requires outstandingly fewer parameters
due to this sparse connection technique. Within an inception module, several
convolutions with different scales and pooling are performed in parallel then
concatenated in one single layer. This enables the CNN to detect patterns of
various sizes within the same layer and avoid heavy parameters redundancies
[18]. GoogLeNet hidden layers consist of 3 convolutions, 9 inception blocks
(2 layers deep each one) and one fully connected.

7



Figure 4: Inception module [18].

4.5. ResNet

Deep Residual Network (ResNet) [19], was the first neural network to ex-
ceed human-level accuracy in ImageNet Challenge (ILSVRC 2015). Thanks
to residual connections, such kind of architecture went deeper and was im-
plemented with multiple versions of 34, 50, 101 and 152 layers. Indeed, one
of the difficulties with very deep networks training is the vanishing gradi-
ent during error backpropagation which penalizes the appropriate update of
earlier layers weights. ResNet main contribution consists in dividing con-
volutional layers into residual blocks. Each block is bypassed by a residual
(skip) connection that forwards the block input using an identity mapping.
The final output is the summation of the block output and the mapped input
as illustrated in figure 5.

Figure 5: Residual learning: a building block [19]

By adding skip connections, backpropagation can be operated without

8



any interference with previous layers which allows to prevent vanishing gra-
dient and train very deep architectures. ResNet-101 consists of one convolu-
tional layer followed by 33 residual blocks (3 layers deep each one), and one
fully connected layer.

4.6. More Networks

After ResNet [19] success, which exceeded human-level accuracy in (ILSVRC
2015), the so-called modern hand-crafted CNN are still being designed on the
basis of previous models looking for more efficiency and lower training time.
Inception-v4 [20] is a new release of GoogLeNet that involved many more
layers than the initial version. Inception-ResNet [20] is built as a combi-
nation of an Inception network and a ResNet, joining inception blocks and
residual connections. The last example of this section is DenseNet (Dense
Convolutional Networks) [21] where each dense block layer is connected via
skip connections to all subsequent ones allowing the learning of new features.

5. Meta-modeling for CNN automatic architecture design

Meta-modeling for neural network architectures design aims at reduc-
ing the intervention of human expertise in this process. The earliest meta-
modeling methods were based on genetic algorithms and Bayesian optimiza-
tion then more recently, reinforcement learning became among the most im-
plemented approaches [22].

5.1. Context of automation

The performance of a neural network and particularly a CNN mainly
depends on the setting of the model structure, the training process, and the
data representation. All of these variables are controlled through a number
of hyperparameters and impact the learning process to a large extent. In
order to achieve an optimal performance of CNN, these hyperparameters
including the depth of the network, learning rates, layer type, number of
units per layer, dropout rates, etc., should be then carefully tuned. On the
other hand, the advent of deeper and more complex modern architectures
(see section 4) is increasing the number and the types of hyperparameters.
Hence, tuning step and more generally CNN architectures search become
very expensive and heavy for an expert trial-and-error procedure.

Additionally, CNN parameters setting is considered as a black-box [23]
optimization problem because of the unknown nature of the mapping between

9



the architecture, the performance, and the learning task. In this context, au-
tomatic design solutions are highly required and instigates a large volume
of research. The task of CNN hyperparameters tuning has been handled
through meta-modeling that consists in applying machine learning models
for designing CNN architectures. Three meta-modeling approaches are gen-
erally used in the literature of architecture search and will be described in
the next paragraph: bayesian optimization, evolutionary algorithms and re-
inforcement learning.

5.2. Meta-controllers

Meta-modeling approaches perform iterative selection from the hyperpa-
rameters space and build associated architectures that are then trained and
evaluated. Accuracies records are fed to meta-modeling controllers (meta-
controllers) to guide next architectures sampling. Meta-controllers for CNN
design are mainly based on bayesian optimization ([24], [25]), evolutionary
algorithms ([26], [27]) or more recently on reinforcement learning ([28], [29]).

Bayesian optimization is an efficient way to optimize black-box objective
functions f : X → R that are slow to evaluate [30]. It aims at finding an
input x = argminx∈X f(x) that globally minimizes f where in the context
of a machine learning algorithm, x refers to the set of hyperparameters to
optimize. The problem with this kind of optimization is that evaluating the
objective function is very costly due to the great number of hyperparameters
and the complex nature of models like deep neural networks. In order to
overcome this problem, bayesian approaches propose probabilistic surrogate
reconstruction of the objective function p(f |D) where D is a set of past
observations. The evaluation of the empirical function is much cheaper than
the true objective function [31]. Some of the most used probabilistic surrogate
(regression) models are gaussian processes [32], random forests [33] and tree-
structured Parzen estimator [24].

Briefly, the processing of a bayesian optimization consists in building an
empirical (probabilistic) model of the objective function. Then, iteratively,
the model identifies a set of optimal hyperparameters for which the objective
function returns corresponding results (e.g. loss values). Each feedback al-
lows the update of the surrogate model and the guidance of hyperparameters
predictions until the process reaches a termination condition.

Evolutionary algorithms present another strategy of hyperparameters op-
timization that modifies a set of candidate solutions (population) on the basis

10



of a number of rules (operators). Following an iterative procedure of muta-
tion, crossover and selection [34], an evolutionary algorithm initializes, in
a first step, a set of N random networks to create a primary population.
The second step consists in introducing a fitness function to score each net-
work through its classification accuracy and keep the top ranked networks
to construct the next generation. The evolutionary process continues until a
termination criteria is met, which is generally defined as the maximum num-
ber of allowed generations. One of the advantage of evolutionary algorithms
is the adaptation to complex combination of discrete (layer type) and contin-
uous (learning rate) hyperparameters which is suitable to neuronal network
optimization models [35].

An important approach for goal-oriented optimization is reinforcement
learning (RL) inspired from behaviorist psychology [36]. The frame of RL is
an agent learning through interaction with its environment (figure 6). Thus
the agent adapts its behavior (transition to a state st+1) on the basis of
observed consequences (rewards) of an action at taken in state st. The agent
purpose is to learn a policy π that is able to identify the optimal sequence
of actions maximizing the expected cumulative rewards. The environment
return reinforces the agent to select new actions to improve learning process,
hence the name of reinforcement learning.

Figure 6: Illustration of the RL process.

The methods developed to resolve reinforcement tasks are based on value
functions, policy search or a combination of both strategies (actor-critic
methods) [37]. Value function methods consist in estimating the expected
reward value R when reaching a given state s and following a policy π:

V π(s) = E[<|s, π]

11



A recursive form of this function is particularly used in recent Q-learning
[38] models assigned to CNN architecture design ([39], [40]):

Q(st, at) = Q(st, at) + α[rt+1 + γmaxaQ(st+1, a)−Q(st, at)]

Where st is a current state, at is a current action, α is the learning rate,
rt+1 is the reward earned when transitioning from time t to the next and γ
is the discount rate.

In contrast to value function methods, policy search methods do not
implement a value function and apply, instead, a gradient-based procedure
to identify directly an optimal policy π∗. In this context, deep reinforcement
learning is achieved when deep neural networks are used to approximate one
of the reinforcement learning components : value function, policy or reward
function [41].

Among the active fields of designing CNN architectures through deep
reinforcement learning, recurrent neural networks (RNN) arise as a valuable
model that handles a set of tasks such as hyperparameters prediction ([28],
[29]). In fact, a RNN operates sequentially involving hidden units to store
processing history, which allows the reinforcement learning to profit from
past observations. Long short term memory networks (LSTM), a variant of
RNN, offers a more efficient way of evolving conditionally on the basis of
previous elements.

6. Neural Architecture Search

Various strategies have been developed to operate CNN architectures de-
sign for the majority of which reinforcement learning has been selected as
meta-controller. This section is assigned to review in detail most recent
promising automatic search approaches differentiated according to search
spaces specificities and complexity level.

6.1. Plain Architecture Design

Some architecture search approaches focus on designing plain CNN which
consists exclusively of conventional layers, mainly convolution, pooling and
fully-connected. The resulting research space is relatively simple and the
approaches contribution lies almost entirely in the design strategy.

12



6.1.1. MetaQNN

MetaQNN model [39] relies on Q-learning, a type of reinforcement learn-
ing (refer to previous section for more details), to sequentially select network
layers and their parameters among a finite space. This method implies,
first, the definition of each learning agent state as a layer with all associated
relevant parameters. As an example, 5 layers are depicted in figure 7: convo-
lution (C), pooling (P), fully connected (FC), global average pooling (GAP),
and softmax (SM).

Figure 7: State space possible parameters [39].

Second, the agent action space is assimilated to the possible layers the
agent may move to given a certain number of constraints set intentionally, for
the majority, to enable faster convergence. Figure 8 illustrates a set of state
and action spaces and an eventual agent path to design a CNN architecture.
MetaQNN was evaluated competitive with similar and different hand-crafted
CNN architectures as with existing automated network design methods.

Figure 8: An illustration of the full state and action space (a) and a path that the agent
has chosen (b) [39].

13



6.1.2. NAS

Using reinforcement learning, [28] train a recurrent neural network to
generate convolutional architectures. Figure 9 shows a RNN controller gener-
ating sequentially CNN parameters associated to convolutional layers. Every
sequence output is predicted by a softmax classifier then used as input of the
next sequence. The parameters set consists of filter height and width, stride
height and width and the number of filters per layer. The design of an ar-
chitecture takes an end once the number of layers reaches a predefined value
that increases all along training. The accuracy of the designed architecture is
fed as a reward to train the RNN controller through reinforcement learning in
order to maximize the expected validation accuracy of the next architectures.
The experimentation of the global approach achieved competitive results on
CIFAR-10 and Penn Treebank datasets.

Figure 9: Illustration of the way the agent used to select hyperparameters [28].

6.1.3. EAS

In their very recent work Efficient Architecture Search, [42] implement
network transformation techniques that allow reusing pre-existing models
and efficiently exploring search space for automatic architecture design. This
novel approach differs from the previous ones in the definition of reinforce-
ment learning states and actions. The state is the current network archi-
tecture while the action involves network transformation operations such as
adding, enlarging and deleting layers. Starting point architectures used in ex-
periments are plain CNN which only consist of convolutional, fully-connected
and pooling layers. EAS approach is inspired from Net2Net technique intro-
duced in [43] and based on the idea of building deeper student network to
reproduce the same processing of an associated teacher network. As shown

14



in figure 10, an encoder network implemented with bidirectional recurrent
neural network [44] feeds actors network with given architectures. The se-
lected actor networks performs 2 types of transformation: widening layers in
terms of units and filters and inserting new layers. EAS outperforms sim-
ilar state-of-the-art models designed either manually or automatically with
the attractive advantage of using relatively much smaller computational re-
sources.

Figure 10: A meta-controller operation for network transformation [42].

6.2. Modular Architecture Design

Most of recent work on neural architecture search is based on more com-
plex modular (multi-branch) structures inspired by modern architectures pre-
sented in section 4. Rather than operating the tedious search over entire
networks, this second set of approaches focus on finding building blocks sim-
ilarly to the ones used in, e.g. GoogLeNet and ResNet models. These multi-
branch elements are then stacked repetitively involving skip connections to
build the final deep architecture. As we will see through the models detailed
in this section, ”block-wise” architecture design reduces drastically search
space speeding up search process, enhances generated networks performance
and gives them more transferable ability through minor adaptation.

6.2.1. BlockQNN

One of the first approaches implementing block-wise architecture search,
BlockQNN [40] automatically builds convolutional neworks using Q-Learning

15



reinforcement technique [45] with epsilon-greedy as exploration strategy [46].
The block structure is similar to ResNet and Inception (GoogLeNet) modern
networks since it contains shortcut connections and multi-branch layer com-
binations. The search space of the approach is reduced given that the focus is
switched to explore network blocks rather than designing the entire network.
The block search space is detailed in figure 11 and consists of 5 parameters:
a layer index (its position in the block), an operation type (selected among 7
types commonly used), a kernel size and 2 predecessors layers indexes. Fig-
ure 12 depicts 2 different samples of blocks, one with multi-branch structure
and the second showing a skip connection. As described in previous sections,
the Q-learning model includes an agent, states and actions, where the state
represents the current layer of the agent and the action refers to the transi-
tion to the next layer. On the basis of defined blocks, the complete network
is constructed by stacking them sequentially N times.

Figure 11: Network structure code space [40].

6.2.2. PNAS

Progressive neural architecture search [47] proposes to explore the space
of modular structures starting from simple models then evolving to more
complex ones, discarding underperforming structures as learning progresses.
The modular structure in this approach is called a cell and consists of a
fixed number of blocks. Each block is a combination of 2 operators among
8 selected ones such as identity, pooling and convolution. A cell structure is
learned first then it’s stacked N times in order to build the resulting CNN.
The main contribution of PNAS lies in the optimization of the search process
by avoiding direct search in the entire space of cells. This was made possible
with the use of a sequential model-based optimization (SMBO) strategy.

16



Figure 12: Representative block exemplars with their network structure codes [40].

The initial step consists in building, training and evaluating all possible 1-
block cells. Then the cell is expanded to 2-block size exploding the number
of total combinations. The innovation brought by PNAS is to predict the
performance of the second level cells by training a RNN (predictor) on the
performance of previous level ones. Only theK best cells (i.e. most promising
ones) are transferred to the next step of cell size expansion. This process is
repeated until the maximum allowed blocks number is reached. With an
accuracy comparable to NAS [28] approach, PNAS is up to 5 times faster
using a cell maximum size of 5 blocks and K equal to 256. This result is
due to the fact that performance prediction takes much less time than full
training of designed cells. The best cell architecture is shown in figure 13.

6.2.3. ENAS

Efficient neural architecture search [29] comes in the continuity of previous
work NAS [28] and PNAS [47]. It explores a cell-based search space through
a controller RNN trained with reinforcement learning. The cell structure is
similar to PNAS model where block concept is replaced with a node that
consists of 2 operations and two skip connections. The controller RNN man-
ages thus 2 types of decisions at each node. First it identifies 2 previous
nodes to connect to, allowing the cell to set skip connections. Second, the
controller selects 2 operations to implement among a set of 1 identity, 2 depth

17



Figure 13: The best selected cell architecture of PNAS [47].

wise-separable convolutions of filter sizes 3 ∗ 3 and 5 ∗ 5 [48], max pooling
and average pooling both of size 3 ∗ 3. Within each node, the operations
results are added in order to constitute an input for the next node. Figure
14 illustrates the design of a 4-node cell. At the end, the entire CNN is built
by stacking N times convolutional cells.

Another contribution of ENAS consists in sampling mini-batches from
validation dataset to train designed models. The models with the best ac-
curacy are then trained on the entire validation dataset. Additionally, the
approach efficiency is greatly improved by implementing a weight sharing
strategy. Each node has its own parameters (used when involved operations
are activated) that are shared through inheritance by the generated child
models. The latter are hence not trained from scratch saving a considerable
processing time. ENAS provides competitive results on CIFAR-10 and Penn
Treebank datasets. It specifically takes much less time to build the convolu-
tion cells than previous approaches that adopt the same strategy of designing
modular structures then stack them to obtain a final CNN.

6.2.4. EAS With Path Level Transformation

A developed version of EAS [42] which adopts network transformation
for efficient CNN architecture search is presented in [49]. The new ap-
proach tackle the constraint of only performing plain architecture modifi-
cation (layer-level), e.g. adding (removing) units, filters and layers, by using
path-level transformation operations. The proposed model is similar to ([42])

18



Figure 14: Illustration of 4-nodes cell [29].

where the reinforcement learning meta-controller samples network transfor-
mation actions to build new architectures. The latter are then trained and re-
sulting accuracies are used as reward to update the meta-controller. However,
certain changes have been implemented in order to adapt search methods to
the tree-structured architecture space: using a tree-structured LSTM, ([50])
as meta-controller, defining a new action space consisting of feature maps
allocation schemes (replication, skip), merge schemes (add, concatenation,
none) and primitive operations (convolution, identity, depthwise-separable
convolution, etc.). Figure 15 presents an example of transformation decisions
operated by the meta-controller. Experimenting with ResNet and DenseNet
architectures as base input, the path level transformation approach achieves
competitive performance with state-of-the-art models maintaining low com-
putational resources comparable to EAS approach ones.

19



Figure 15: Path-level transformation: from a single layer to a tree-structured motif [49].

6.3. Architecture search accelerators

Reinforcement learning methods have been applied successfully to design
neural networks. Although multi-branch structures and skip connections
improves the efficiency of architectures automatic search, the latter is still
computationally expensive (hundreds of GPU hours), time consuming and
requires further acceleration of learning process. Thus, in addition to the
methods assigned to architectural search optimization and complex compo-
nent building, some techniques are developed to speed up learning and are
depicted in the current section.

Early stopping strategy proposed in [40] enables fast convergence of the
learning agent while maintaining an acceptable level of efficiency. This is pos-
sible by taking into account intermediate rewards ignored in previous works
(set to zero delaying reinforcement learning convergence [36]. In such case,
the agent stops searching in an early training phase as the accuracy rewards
reach higher levels in fewer iterations. The reward function is redefined in
order to include designed block complexity and density and avoid possible
poor accuracy resulting from training early stopping.

A second technique is presented in [40] which consists of a distributed
asynchronous framework assembling 3 nodes with different functions. The
master node is the place where block structures are sampled by agent. Then,
in the controller node, the entire network is built from generated blocks and
transmitted to multiple compute nodes for training. The framework is a
kind of simplified parameter-server [51] and allows the parallel training of
designed networks in each compute nodes. Hence, the whole design and
learning processing is operated in multiple machines and GPUs. [28] uses
the same parameter server scheme with replication of controllers in order to

20



train various architectures in parallel.
As seen previously, reinforcement learning policies use explored architec-

tures performance as a guiding reward for controllers updates. Training and
evaluating every sampled architecture (among hundreds) on validation data
is responsible for most of computational load. Extracting architecture perfor-
mance was consequently subject to several estimation attempts. A number
of approaches focus on performance prediction on the basis of past observa-
tions. Most of such techniques are based on learning curve extrapolation [25]
and surrogate models using RNN predictor [52] that aim at predicting and
eliminating poor architectures before full training. Another idea to estimate
performance and rank designed architectures is to use simplified (proxy) met-
rics for training such as data subsets (mini-batches) [29] and down-sampled
data (like images with lower resolution) [53].

Network transformation is one of the more recent techniques assigned
to accelerate neural architecture search ([49], [54]). It consists in train-
ing explored architectures reusing previously trained or existing networks.
This modeling feature allows to address a limitation of reinforcement learn-
ing approaches where training is performed with a random initialization of
weights. Thus, extending network morphisms [55] to initiate architecture
search through the transfer of experience and knowledge reflected by reused
weights enables the framework to scrutinize the search space efficiently.

Although the techniques presented above have saved substantial compu-
tational resources for neural architecture search, there is still more effort
needed to examine the extent of bias impact of such techniques on the search
process. Indeed, it’s crucial to assure that modifications brought through
re-sampled data, discarded cases and early convergence do not influence the
models original predictions. Further studies are thus required to verify that
learning accelerators do not have amplified effect on approaches predictions
and validation accuracies.

7. Conclusion

The review of recent work trend on automatic design of CNN architectures
raised some methodological options that are adopted by the majority of built
approaches. Despite some attempts to use design meta-controllers based on
evolutionary algorithms ([26], [27]) and Bayesian optimization ([25], [56]),
reinforcement learning has shown promising empirical results and stands as
the preferred strategy to train design controllers [57].

21



Another common conception option is the introduction of multi-branch
(modular) structures as an elementary component of the entire network which
restricts the search space to block/cell level. The plain network design is
generally kept as a first step of proposed approaches application ([28], [42])
given that it leads to simple networks and allows to focus on the method itself
before switching to more complex structures with modular design ([29], [49]).
A third option used in design approaches at a lower scale is the prediction
of explored architectures rewards before full training the most promising
ones ([25], [29]). This training acceleration technique is implemented for
performance improvement purpose and requires further attention to control
possible bias impact on the models behavior.

The success of current reinforcement-learning-based approaches to design
CNN architectures is widely proven especially for image classification tasks.
However, it is achieved at the cost of high computational resources despite the
acceleration attempts of most of recent models. Such fact is preventing indi-
vidual researchers and small research entities (companies and laboratories)
from fully access to this innovative technology [42]. Hence, deeper and more
revolutionary optimizing methods are required to practically operate CNN
automatic design. Transformation approaches based on extended network
morphisms [49] are among the first attempts in this direction that achieved
drastic decrease in computational cost and demonstrated generalization ca-
pacity. Additional future directions to control automatic design complexity
is to develop methods for multi-task problems [58] and weights sharing [59]
in order to benefit from knowledge transfer contributions.

References

[1] D. Kriesel, A Brief Introduction to Neural Networks, 2007.

[2] V. Sze, Y. Chen, T. Yang, J. S. Emer, Efficient processing of deep neural
networks: A tutorial and survey, Proceedings of the IEEE 105 (12)
(2017) 2295–2329.

[3] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, L. Fei-Fei,
Imagenet large scale visual recognition challenge, Int. J. Comput. Vision
115 (3) (2015) 211–252.

22



[4] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. E. Hubbard, L. D. Jackel, Handwritten digit recognition with a back-
propagation network, in: D. S. Touretzky (Ed.), Advances in Neural
Information Processing Systems 2, Morgan-Kaufmann, 1990, pp. 396–
404.

[5] M. Minsky, S. Papert, Perceptrons: An Introduction to Computational
Geometry, MIT Press, Cambridge, MA, USA, 1969.

[6] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations
by back-propagating errors, Nature 323 (1986) 533–536.

[7] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning
applied to document recognition, Proceedings of the IEEE 86 (11) (1998)
2278–2324.

[8] K. Jarrett, K. Kavukcuoglu, M. Ranzato, Y. LeCun, What is the best
multi-stage architecture for object recognition?, in: 2009 IEEE 12th
International Conference on Computer Vision, 2009, pp. 2146–2153.

[9] M. A. Nielsen, Neural Networks and Deep Learning, Determination
Press, 2018.

[10] D. Hubel, T. Wiesel, Receptive fields, binocular interaction, and func-
tional architecture in the cat’s visual cortex, Journal of Physiology 160
(1962) 106–154.

[11] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with
deep convolutional neural networks, in: Proceedings of the 25th Interna-
tional Conference on Neural Information Processing Systems - Volume
1, Curran Associates Inc., USA, 2012, pp. 1097–1105.

[12] H. Wu, X. Gu, Max-pooling dropout for regularization of convolutional
neural networks, in: Neural Information Processing - 22nd International
Conference, ICONIP 2015, Istanbul, Turkey, November 9-12, 2015, Pro-
ceedings, Part I, 2015, pp. 46–54.

[13] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.

[14] M. Zeiler, R. Fergus, Stochastic pooling for regularization of deep con-
volutional neural networks, in: Proceedings of the International Confer-
ence on Learning Representations (ICLR), 2013.

23



[15] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
Dropout: A simple way to prevent neural networks from overfitting, J.
Mach. Learn. Res. 15 (1) (2014) 1929–1958.

[16] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-
scale image recognition, in: Proceedings of the International Conference
on Learning Representations (ICLR), 2015.

[17] M. D. Zeiler, R. Fergus, Visualizing and understanding convolutional
networks, in: D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars (Eds.), Com-
puter Vision – ECCV 2014, Springer International Publishing, Cham,
2014, pp. 818–833.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in:
2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 1–9.

[19] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image
recognition, in: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[20] C. Szegedy, S. Ioffe, V. Vanhoucke, A. A. Alemi, Inception-v4, inception-
resnet and the impact of residual connections on learning, in: S. P. Singh,
S. Markovitch (Eds.), Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, February 4-9, 2017, San Francisco, California,
USA., AAAI Press, 2017, pp. 4278–4284.

[21] G. Huang, Z. Liu, L. v. d. Maaten, K. Q. Weinberger, Densely connected
convolutional networks, in: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017, pp. 2261–2269.

[22] B. Baker, O. Gupta, R. Raskar, N. Naik, Accelerating neural architec-
ture search using performance prediction, in: International Conference
on Learning Representations, Workshop, 2018.

[23] Y. Bengio, A. Courville, P. Vincent, Representation learning: A review
and new perspectives, IEEE Trans. Pattern Anal. Mach. Intell. 35 (8)
(2013) 1798–1828.

24



[24] J. S. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for hyper-
parameter optimization, in: Advances in Neural Information Processing
Systems 24, Curran Associates, Inc., 2011, pp. 2546–2554.

[25] T. Domhan, J. T. Springenberg, F. Hutter, Speeding up automatic hy-
perparameter optimization of deep neural networks by extrapolation of
learning curves, in: Proceedings of the 24th International Conference on
Artificial Intelligence, IJCAI’15, AAAI Press, 2015, pp. 3460–3468.

[26] K. O. Stanley, D. B. D’Ambrosio, J. Gauci, A hypercube-based encoding
for evolving large-scale neural networks, Artif. Life 15 (2) (2009) 185–
212.

[27] M. Suganuma, S. Shirakawa, T. Nagao, A genetic programming ap-
proach to designing convolutional neural network architectures, in: Pro-
ceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’17, ACM, New York, NY, USA, 2017, pp. 497–504.

[28] B. Zoph, Q. V. Le, Neural architecture search with reinforcement learn-
ing, in: Proceedings of the International Conference on Learning Rep-
resentations (ICLR), 2017.

[29] H. Pham, M. Guan, B. Zoph, Q. Le, J. Dean, Efficient neural architec-
ture search via parameters sharing, in: J. Dy, A. Krause (Eds.), Proceed-
ings of the 35th International Conference on Machine Learning, Vol. 80,
PMLR, Stockholmsmässan, Stockholm Sweden, 2018, pp. 4095–4104.

[30] E. Brochu, T. Brochu, N. de Freitas, A bayesian interactive optimization
approach to procedural animation design, in: Proceedings of the 2010
ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
Eurographics Association, Goslar Germany, Germany, 2010, pp. 103–
112.

[31] A. Klein, S. Falkner, S. Bartels, P. Hennig, F. Hutter, Fast bayesian
optimization of machine learning hyperparameters on large datasets, in:
Proceedings of the 20th International Conference on Artificial Intelli-
gence and Statistics (AISTATS 2017), Vol. 54 of Proceedings of Machine
Learning Research, PMLR, 2017, pp. 528–536.

25



[32] C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning), The MIT
Press, 2005.

[33] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32.

[34] A. E. Eiben, J. E. Smith, Introduction to Evolutionary Computing, 2nd
Edition, Springer Publishing Company, Incorporated, 2015.

[35] E. Dufourq, B. A. Bassett, Eden: Evolutionary deep networks for ef-
ficient machine learning, in: 2017 Pattern Recognition Association of
South Africa and Robotics and Mechatronics (PRASA-RobMech), 2017,
pp. 110–115.

[36] R. S. Sutton, A. G. Barto, Reinforcement learning - an introduction,
Adaptive computation and machine learning, MIT Press, 1998.

[37] K. Arulkumaran, M. P. Deisenroth, M. Brundage, A. A. Bharath, Deep
reinforcement learning: A brief survey, IEEE Signal Processing Maga-
zine 34 (6) (2017) 26–38.

[38] C. J. C. H. Watkins, P. Dayan, Q-learning, Machine Learning 8 (3)
(1992) 279–292.

[39] B. Baker, O. Gupta, N. Naik, R. Raskar, Designing neural network
architectures using reinforcement learning, in: Proceedings of the Inter-
national Conference on Learning Representations (ICLR), 2017.

[40] Z. Zhong, J. Yan, W. Wu, J. Shao, C.-L. Liu, Practical block-wise neural
network architecture generation, in: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

[41] F. Tan, P. Yan, X. Guan, Deep reinforcement learning: From q-learning
to deep q-learning, in: D. Liu, S. Xie, Y. Li, D. Zhao, E.-S. M. El-Alfy
(Eds.), Neural Information Processing, Springer International Publish-
ing, Cham, 2017, pp. 475–483.

[42] H. Cai, T. Chen, W. Zhang, Y. Yu, J. Wang, Efficient architecture
search by network transformation, in: Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innova-
tive Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI

26



Symposium on Educational Advances in Artificial Intelligence (EAAI-
18), New Orleans, Louisiana, USA, February 2-7, 2018, pp. 2787–2794.

[43] T. Chen, I. Goodfellow, J. Shlens, Net2Net: Accelerating learning via
knowledge transfer, in: International Conference on Learning Represen-
tations (ICLR), 2016.

[44] M. Schuster, K. Paliwal, Bidirectional recurrent neural networks, Trans.
Sig. Proc. 45 (11) (1997) 2673–2681.

[45] C. J. C. H. Watkins, Learning from delayed rewards, Ph.D. thesis, King’s
College, Cambridge, UK (1989).

[46] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, D. Hassabis, Human-level control through deep
reinforcement learning, Nature 518 (2015) 529–533.

[47] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, K. Murphy, Progressive neural architecture search,
in: V. Ferrari, M. Hebert, C. Sminchisescu, Y. Weiss (Eds.), Computer
Vision – ECCV 2018, Springer International Publishing, Cham, 2018,
pp. 19–35.

[48] F. Chollet, Xception: Deep learning with depthwise separable convo-
lutions, in: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 1800–1807.

[49] H. Cai, J. Yang, W. Zhang, S. Han, Y. Yu, Path-level network trans-
formation for efficient architecture search, in: J. Dy, A. Krause (Eds.),
Proceedings of the 35th International Conference on Machine Learning,
Vol. 80 of Proceedings of Machine Learning Research, PMLR, Stock-
holmsmässan, Stockholm Sweden, 2018, pp. 678–687.

[50] K. S. Tai, R. Socher, C. D. Manning, Improved semantic representations
from tree-structured long short-term memory networks, in: Proceedings
of the 53rd Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), Association for Computational
Linguistics, 2015, pp. 1556–1566.

27



[51] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, A. Y. Ng, Large
scale distributed deep networks, in: Proceedings of the 25th Interna-
tional Conference on Neural Information Processing Systems - Volume
1, Curran Associates Inc., USA, 2012, pp. 1223–1231.

[52] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, K. Kavukcuoglu, Hierar-
chical representations for efficient architecture search, in: International
Conference on Learning Representations (ICLR), 2018.

[53] T. Hinz, N. Navarro-Guerrero, S. Magg, S. Wermter, Speeding up the
Hyperparameter Optimization of Deep Convolutional Neural Networks,
International Journal of Computational Intelligence and Applications
17 (2).

[54] F. H. Thomas Elsken, Jan Hendrik Metzen, Simple and efficient archi-
tecture search for convolutional neural networks, in: Proceedings of the
International Conference on Learning Representations (ICLR), 2018.

[55] T. Wei, C. Wang, C. W. Chen, Modularized morphing of neural net-
works, in: International Conference on Learning Representations, Work-
shop, 2017.

[56] H. Mendoza, A. Klein, M. Feurer, J. T. Springenberg, F. Hutter, To-
wards automatically-tuned neural networks, in: F. Hutter, L. Kotthoff,
J. Vanschoren (Eds.), Proceedings of the Workshop on Automatic Ma-
chine Learning, Vol. 64, PMLR, New York, New York, USA, 2016, pp.
58–65.

[57] J. Perez-Rua, M. Baccouche, S. Pateux, Efficient progressive neural ar-
chitecture search, in: British Machine Vision Conference 2018, BMVC
2018, Northumbria University, Newcastle, UK, September 3-6, 2018,
BMVA Press, 2018, p. 150.

[58] J. Liang, E. Meyerson, R. Miikkulainen, Evolutionary architecture
search for deep multitask networks, in: Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’18, ACM, New York,
NY, USA, 2018, pp. 466–473.

[59] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, Q. Le, Un-
derstanding and simplifying one-shot architecture search, in: J. Dy,

28



A. Krause (Eds.), Proceedings of the 35th International Conference on
Machine Learning, Vol. 80 of Proceedings of Machine Learning Research,
PMLR, Stockholmsmässan, Stockholm Sweden, 2018, pp. 550–559.

29


