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Abstract

Temporal logics are useful for describing dynamic system be-
havior, and have been successfully used as a language for
goal definitions during task planning. Prior works on inferring
temporal logic specifications have focused on “summarizing”
the input dataset – i.e., finding specifications that are satisfied
by all plan traces belonging to the given set. In this paper, we
examine the problem of inferring specifications that describe
temporal differences between two sets of plan traces. We for-
malize the concept of providing such contrastive explana-
tions, then present a Bayesian probabilistic model for infer-
ring contrastive explanations as linear temporal logic specifi-
cations. We demonstrate the efficacy, scalability, and robust-
ness of our model for inferring correct specifications across
various benchmark planning domains and for a simulated air
combat mission.

1 Introduction
In a meeting where multiple plan options are under delibera-
tion by a team, it would be helpful for that team’s resolution
process if someone could intuitively explain how the plans
under consideration differ from one another. Also, given a
need to identify differences in execution behavior between
distinct groups of users (e.g., a group of users who success-
fully completed a task using a particular system versus those
who did not), explanations that identify distinguishing pat-
terns between group behaviors can yield valuable analytics
and insights toward iterative system refinement.

In this paper, we seek to generate explanations for how
two sets of divergent plans differ. We focus on generat-
ing such contrastive explanations by discovering specifi-
cations satisfied by one set of plans, but not the other.
Prior works on plan explanations include those related to
plan recognition for inferring latent goals through obser-
vations (Ramırez and Geffner 2010; Zhuo 2017), works
on system diagnosis and excuse generation in order to ex-
plain plan failures (Sohrabi, Baier, and McIlraith 2010;
Göbelbecker et al. 2010), and those focused on synthesiz-
ing “explicable” plans – i.e., plans that are self-explanatory
with respect to a human’s mental model (Zhang et al. 2017;
Kulkarni et al. 2019). The aforementioned works, however,
only involve the explanation or generation of a single plan;
we instead focus on explaining differences between multiple
plans, which can be helpful in various applications, such as

the analysis of competing systems and compliance models,
and detecting anomalous behaviour of users.

A specification language should be used in order to
achieve clear and effective plan explanations. Prior works
have considered surface-level metrics such as plan cost and
action (or causal link) similarity measures to describe plan
differences (Nguyen et al. 2012; Borgo, Cashmore, and
Magazzeni 2018). In this work, we leverage linear temporal
logic (LTL) (Pnueli 1977) which is an expressive language
for capturing temporal relations of state variables. We use
a plan’s individual satisfaction (or dissatisfaction) of LTL
specifications to describe their differences.

LTL specifications have been widely used in both indus-
trial systems and planning algorithms to compactly describe
temporal properties (Yang et al. 2006). They are human in-
terpretable when expressed as compositions of predefined
templates; inversely, they can be constructed from natural
language descriptions (Dzifcak et al. 2009) and serve as nat-
ural patterns when encoding high-level human strategies for
planning constraints (Kim, Banks, and Shah 2017).

Although a suite of LTL miners have been developed for
software engineering and verification purposes (Yang et al.
2006; Lemieux, Park, and Beschastnikh 2015; Shah et al.
2018), they primarily focus on mining properties that sum-
marize the overall behavior on a single set of plan traces.
Recently, Neider and Gavran (2018) presented SAT-based
algorithms to construct a LTL specification that asserts con-
trast between two sets of traces. The algorithms, however,
are designed to output only a single explanation, and are sus-
ceptible to failure when the input contains imperfect traces.
Similar to Neider and Gavran, our problem focuses on min-
ing contrastive explanations between two sets of traces, but
we adopt a probabilistic approach — we present a Bayesian
inference model that can generate multiple explanations
while demonstrating robustness to noisy input. The model
also permits scalability when searching in large hypothe-
sis spaces and allows for flexibility in incorporating various
forms of prior knowledge and system designer preferences.
We demonstrate the efficacy of our model for extracting cor-
rect explanations on plan traces across various benchmark
planning domains and for a simulated air combat mission.



2 Related Work
Plan explanations are becoming increasingly important as
automated planners and humans collaborate. This first in-
volves humans making sense of the planner’s output (e.g.,
PDDL plans), where prior work has focused on develop-
ing user-friendly interfaces that provide graphical visual-
izations to describe the causal links and temporal relations
of plan steps (Bidot et al. 2010; Seegebarth et al. 2012;
Magnaguagno et al. 2017). The outputs of these systems,
however, require an expert for interpretation and do not pro-
vide a direct explanation as to why the planner made certain
decisions to realize the outputted plan.

Automatic generation of explanations has been studied
in goal recognition settings, where the objective is to in-
fer the latent goal state that best explains the incomplete se-
quence of observations (Ramırez and Geffner 2010; Sohrabi,
Riabov, and Udrea 2016). Works on explicable planning
emphasize the generation of plans that are deemed self-
explanatory, defined in terms of optimizing plan costs for
a human’s mental model of the world (Zhang et al. 2017;
Kulkarni et al. 2019). Mixed-initiative planners iteratively
revise their plan generation based on user input (e.g. ac-
tion modifications), indirectly promoting an understanding
of differences across newly generated plans through con-
tinual user interaction (Sengupta et al. 2017; Borgo, Cash-
more, and Magazzeni 2018). All aforementioned works deal
with explainability with respect to a single planning prob-
lem specification, whereas our model deals with explaining
differences in specifications governing two distinct sets of
plans given as input.

Works on model reconciliation focus on producing expla-
nations for planning models (i.e. predicates, preconditions
and effects), instead of the realized plans (Chakraborti et al.
2017). Explanations are specified in the form of model up-
dates, iteratively bringing an incomplete model to a more
complete world model. The term, “contrastive explanation,”
is used in these works to identify the relevant differences be-
tween the input pair of models. Our work is similar in spirit
but focuses on producing a specification of differences in
the constraints satisfied among realized plans. Our approach
takes sets of observed plans as input rather than planning
models.

While model updates are an important modality for pro-
viding plan explanations, there are certain limitations. We
note that an optimal plan generated with respect to a com-
plete environment/world model is not always explicable or
self-explanatory. The space of optimal plans may be large,
and the underlying preference or constraint that drives the
generation of a particular plan may be difficult to pre-specify
and incorporate within the planning model representation.
We focus on explanations stemming directly from the re-
alized plans themselves. Environment/world models (e.g.
PDDL domain files) can be helpful in providing additional
context, but are not necessary for our approach.

Our work leverages LTL as an explanation language.
Temporal patterns can offer greater expressivity and ex-
planatory power in describing why a set of plans occurred
and how they differ, and may reveal hidden plan dynamics
that cannot be captured by the use of surface-level metrics

like plan cost or action similarities. Our work on using LTL
for contrastive explanations directly contributes to explor-
ing how we can answer the following roadmap questions for
XAIP (Fox, Long, and Magazzeni 2017): “why did you do
that? why didn’t you do something else (that I would have
done)?”

Prior research into mining LTL specifications has fo-
cused on generating a “summary” explanation of the ob-
served traces. Kasenberg and Scheutz (2017) explored min-
ing globally persistent specifications from demonstrated
action traces for a finite state Markov decision process.
Lemieux, Park, and Beschastnikh (2015) introduced Texada,
a system for mining all possible instances of a given LTL
template from an output log where each unique string is rep-
resented as a new proposition. Shah et al. (2018) proposed
a template-based probabilistic model to infer task specifica-
tions given a set of demonstrations. However, all of these
approaches focus on inferring a specification that all the
demonstrated traces satisfy.

For contrastive explanations, Neider and Gavran (2018)
presented SAT-based algorithms to infer a LTL specifica-
tion that delineates between the positive and negative sets
of traces. Unlike existing LTL miners, the algorithms con-
struct an arbitrary, minimal LTL specification without re-
quiring predefined templates. However, they are designed to
output only a single specification, and can fail when the sets
contain imperfect traces (i.e., if there exists no specification
consistent with every single input trace.). We present a prob-
abilistic model for the same problem and generate multiple
contrastive explanations while offering robustness to noisy
input.

Some works have proposed algorithms to infer contrastive
explanations for continuous valued time-series data based
on restricted signal temporal logic (STL) grammar (Yoo and
Belta 2017; Kong, Jones, and Belta 2017). However, the
continuous space semantics of STL and a restricted subset
of temporal operators make the grammar unsuitable for use
with planning domain problems. To the best of our knowl-
edge, our proposed model is the first probabilistic model to
infer contrastive LTL specifications for sets of traces in do-
mains defined by PDDL.

3 Preliminaries
Linear Temporal Logic
Linear Temporal Logic (LTL) provides an expressive gram-
mar for describing temporal behavior (Pnueli 1977). An LTL
specification ϕ is constructed from a set of propositions V ,
the standard Boolean operators, and a set of temporal oper-
ators. Its truth value is determined with respect to a trace, π,
which is an infinite or finite sequence of truth assignments
for all propositions in V . The notation π, t |= ϕ indicates
that ϕ holds at time t. The trace π satisfies ϕ (denoted by
π |= ϕ) iff π, 0 |= ϕ. The minimal syntax for LTL can be
described as follows:

ϕ ::= p | ¬ϕ1 | ϕ1 ∨ ϕ2 | Xϕ1 | ϕ1Uϕ2, (1)

where p is a proposition, and ϕ1 and ϕ2 are valid LTL spec-
ifications.



Template nT Formula Meaning

ϕglobal 1 Gpi pi is true throughout the entire trace.
ϕeventuality 1 Fpi pi eventually occurs (may later become false).
ϕstability 1 FGpi pi eventually occurs and stays true forever.
ϕresponse 2 G(pi → XFpj) If pi occurs, pj eventually follows.
ϕuntil 2 piUpj pi has to be true until pj eventually becomes true.
ϕatmostonce 1 G(pi → (piU(G¬pi))) Only one contiguous interval exists where pi is true.
ϕsometime−before 2 (pj ∧ ¬pi)R(¬pi) If pi occurs, pj occurred in the past.

Table 1: An example set of LTL templates. nT corresponds to the number of free propositions for each template.

X reads as “next” where Xϕ evaluates as true at t if ϕ
holds in the next time step t + 1. U reads as “until” where
ϕ1Uϕ2 evaluates as true at time step t if ϕ1 is true at that
time and going forward, until a time step is reached where
ϕ2 becomes true. In addition to the minimal syntax, we
also use higher-order temporal operators, F (eventually), G
(global), and R (release). Fϕ holds true at t if ϕ holds for
some time step≥ t. Gϕ holds true at t if ϕ holds for all time
steps ≥ t. ϕ1Rϕ2 holds true at time step t if either there ex-
ists a time step t1 ≥ t such that ϕ2 holds true until t1 where
both ϕ1 and ϕ2 hold true simultaneously, or no such t1 exists
and ϕ2 holds true for all time steps ≥ t.

Interpretable sets of LTL templates have been defined and
successfully integrated for a variety of software verification
systems (Yang et al. 2006; Maggi, Mooij, and van der Aalst
2011). Some of the widely used templates are shown in Ta-
ble 1.

Contrastive Explanation

According to Elzein (2018), a contrastive explanation de-
scribes “why event A occurred as opposed to some alter-
native event B.” In our problem, events A and B represent
two sets of plan traces (can be seen as traces generated from
different systems or different group behavior). The form of
why may be expressed in various ways (Lombrozo 2006);
our choice is to define it according to the plans’ satisfaction
of a constraint. Then, formally:

Definition 3.1. A contrastive explanation is a constraint ϕ
that it is satisfied by one set of plan traces (positive set, πA),
but not by the other (negative set, πB).

The constraint ϕ can be seen as a classifier trying to sep-
arate the provided positive and negative traces. Its perfor-
mance measure corresponds to standard classification accu-
racy, computed by counting the number of traces in πA that
satisfy ϕ and, conversely, the number of traces in πB where
ϕ is unsatisfied. Formally, accuracy of ϕ is:

|{π : π |= ϕ, π ∈ πA}|+ |{π : π 2 ϕ, π ∈ πB}|
|πA|+ |πB|

(2)

Accuracy is 1 for a perfect contrastive explanation, and
approaches zero if both sets contains no valid trace with re-
spect to ϕ (i.e., all traces in πA dissatisfy ϕ and all traces in
πB satisfy ϕ).

4 Problem Statement and Approach
The input to the problem is a pair of sets of traces (πA,πB).
Each πi ∈ π is a trace on the set of propositions V (we re-
fer to V as the vocabulary). The output is a set of specifi-
cations, {ϕ}, where each ϕ achieves perfect or near-perfect
contrastive explanation. This is an unsupervised classifica-
tion problem.

We use LTL specifications for the choice of ϕ. Planning is
sequential, and so temporal patterns can offer greater expres-
sivity and explanatory power for identifying plan differences
rather than static facts. We utilize a set of interpretable LTL
templates, such as those shown in Table 1.

A LTL template T is instantiated with a selection of nT
propositions denoted by p ∈ V nT . The candidate formula ϕ
is then composed as a conjunction of multiple instantiations
of a template T based on a set of selections {p} ⊆ V nT .
For example, an instantiation of T =“stability” with p =
[apple] is written as FG(apple). If the selected subset of
propositions is {p} = {[apple], [banana], [carrot]}, then
ϕ = FG(apple) ∧ FG(banana) ∧ FG(carrot), asserting
the stability condition for all three propositions. Conjunc-
tions provide powerful semantics with the ability to capture
a notion of quantification. Formally, our LTL specification is
written as follows:

ϕT =
∧
p∈{p}

T (p), (3)

Note that the number of free propositions, nT , varies per
LTL template. The number of possible specifications for a
given LTL template T is 2|V |

nT . Instead of extracting spec-
ifications narrowed down to a single template query, our hy-
pothesis space Φ is set to include a number of predefined
templates, T1, T2, ...Tk. With k representing the number of
possible templates, the full hypothesis space of Φ grows
with O(k · 2|V |nT ). Employing brute force enumeration to
find {ϕ} that achieves the contrastive explanation criterion
rapidly becomes intractable with increasing vocabulary size.

Bayesian Inference
We model specification learning as a Bayesian inference
problem, building on the fundamental Bayes theorem:

P (ϕ | X) =
P (ϕ)P (X | ϕ)∑

ϕ∈Φ P (ϕ)P (X | ϕ)
(4)

Our goal is to infer ϕ∗ = argmaxΦ P (ϕ|X). P (ϕ) rep-
resents the prior distribution over the hypothesis space, and



Figure 1: A graphical model of the generative distribution. ϕ
represents the latent LTL specification that we seek to infer
given the evidence X (in our case, the traces).

P (X | ϕ) is the likelihood of observing the evidence X =
(πA,πB) givenϕ. We adopt a probabilistic generative mod-
eling approach that has been used extensively in topic mod-
eling (Blei, Ng, and Jordan 2003). Below, we describe each
component of our generative model, depicted in Figure 1.

Prior Function ϕ is generated by choosing a LTL tem-
plate, T , the number of conjunctions,N , and then the propo-
sition instantiations, p for each conjunct. The generative
process for each of those components is as follows:

T ∼ Categorical(wT ) (5)
N ∼ Geometric(λ) (6)
p ∼ Categorical(wp) (7)

T is generated with respect to a categorical distribution
with weights wT ∈ Rk over the k possible LTL templates.
wT is a hyperparameter that the designer can set to assert
preferences for mining certain types of templates over oth-
ers (e.g., preferring templates with “global” operators than
“until” operators).

The number of conjunctions, N = |{p}|, is generated us-
ing a geometric distribution with a decay rate of λ. Thus,
the the probability of ϕ is reduced by λ for each addition
of a conjunct, incentivizing low-complexity specifications
defined in terms of having a fewer number of conjunctions
(which also implies fewer total propositions). This promotes
conciseness and prevents over-fitting to the input traces (i.e.,
to avoid restating the input as a long, convoluted LTL for-
mula).

Similar to the method used for template selection, we
use a separate categorical distribution for selecting propo-
sitions p for each conjunct in ϕ. Propositions are gener-
ated with respect to the probability weights, wp ∈ R|V |,
defined for all p in V. The designer can likewise control
wp to favor specifications instantiated with certain types of
propositions over others. wp may be interpreted as the level
of saliency of propositions for an application. (For exam-
ple, propositions that are landmarks for planning problems
(Hoffmann, Porteous, and Sebastia 2004), or a part of the
causal links set (Veloso and Blythe 1994), may be deemed
more important to express in plan explanations than other
auxiliary state variables.) Several forms of variable impor-
tance, corresponding to the saliency of that importance in

an explanation, may be applied to set wp. This opens the
door to hypothesizing which propositions are most salient
for a given domain, and generating explanations restricted
to those propositions exclusively.

The full prior function, P (ϕ), is evaluated as follows:

P (ϕ) = P (T )P (N)P ({p}) (8)
The derivation follows from the definition that T , N , {p}
completely describe ϕ (i.e. P (ϕ | T,N, {p}) = 1), and the
assumption that the three probability distributions are inde-
pendent of each other. P (T ) and P (N) are calculated us-
ing categorical and geometric distributions outlined in Equa-
tions 5 and 6, respectively. P ({p}) denotes the probability
of the full set of proposition instantiations (over all con-
juncts); it is calculated by the average categorical weight,
wp, over all propositions. Formally:

P ({p}) =
∑
p∈{p}

∑
p∈p wp

N |p|
(9)

For example, with {p} = {[a, b], [a, c], [b, c]}, and wa =

5/10, wb = 4/10, wc = 1/10, P ({p}) = 20/10
6 = 1/3.

Likelihood Function The likelihood function P (X | ϕ)
is the probability of observing the input sets of traces in the
satisfying set πA and the non-satisfying set πB given the
contrastive specification. The traces in πA and πB are gen-
erated by different solutions to the planning problem that
satisfy the problem specification. As the problem specifica-
tion is the only input needed to generate a set of plans, we
assume that the individual traces are conditionally indepen-
dent of each other, given the planning problem specification.
With the conditional independence assumption, the likeli-
hood can then be factored as follows:

P (X | ϕ) =
|πA|∏
i=1

P (πi|ϕ)
|πB |∏
j=1

P (πj |ϕ) (10)

LTL satisfaction checks are conducted over all traces be-
longing to sets πA and πB; P (πi|ϕ) is set equal to 1− α if
πi |= ϕ, and α otherwise. Conversely, P (πj |ϕ) is set equal
to 1−β if πj 2 ϕ, and β otherwise. α and β permit non-zero
probability to traces not adhering to the constrastive expla-
nation criterion, thereby providing robustness to noisy traces
and outliers. α and β may be set to different values to reflect
the relative importance of the positive and negative sets (e.g.,
may be used to counteract imbalanced sets).

In order to perform LTL satisfaction checks on a trace,
we follow the method developed by Lemieux et al. (2015),
in which ϕ is represented as a tree and each temporal opera-
tor is recursively evaluated according to its semantics. Since
sub-trees of two different ϕ may be identical, we memoize
and re-use evaluation results to significantly speed up LTL
satisfaction checks.

Proposal Function Exact inference methods to find max-
imum a posterior (MAP) estimates, {ϕ∗}, are intractable.
Thus we implement a Markov Chain Monte Carlo method,
specifically the Metropolis-Hasting (MH) algorithm (Chib
and Greenberg 1995), to iteratively draw samples whose



collection approximates the true posterior distribution. MH
sampling requires a user-defined proposal function F (ϕ′|ϕ)
that samples a new candidate ϕ′ given the current ϕ. Our F
behaves similar to an ε-greedy search, utilizing a drift kernel
(i.e. a random walk) with a probability of 1-ε or sampling
from the prior distribution (i.e. a restart) with a probability
of ε. The drift kernel operates by performing one of the fol-
lowing moves on the current candidate LTL ϕ:
• Remain within the current template T , add a new con-

junct, and instantiate that conjunct with a randomly sam-
pled p that is currently not in ϕ. The probability associ-
ated with this move, Qadd, is equal to 1/(|VnT | −N).

• Remain within the current template T and randomly re-
move one of the existing conjuncts. The probability asso-
ciated with this move, Qremove, is equal to 1/N .
The selection between these two moves is conducted uni-

formly, though there is no issue with allowing the designer
to weight one more likely than the other. Note that the drift
kernel perturbs ϕ, but stays within the current template. ϕ
transitions to a new template (probabilistically) when choos-
ing to sample from the prior.

The probability distribution associated with F , denoted
by Q(ϕ′|ϕ), is then outlined as follows:

(1− ε) · 0.5 ·Qadd(ϕ
′|ϕ) , drift (add move)

(1− ε) · 0.5 ·Qremove(ϕ
′|ϕ) , drift (remove move)

ε · P (ϕ′) , sample prior function

Our proposal function F fulfills the ergodicity condition
of the Markov process (the transition from any ϕ to ϕ′ is
aperiodic and occurs within a finite number of steps), thus
asymptotically guarantees the sampling process from the
true posterior distribution.

A new sample ϕ′ is accepted at every MH iteration with
the following probability:

min

(
1,
P (ϕ′)P (X|ϕ′)Q(ϕ|ϕ′)
P (ϕ)P (X|ϕ)Q(ϕ′|ϕ)

)
, (11)

The set of accepted samples approximates the true posterior,
and the MAP estimates (the output {ϕ∗}) are determined
from the relative frequencies of accepted samples.

5 Evaluations
Derivation of Evaluation Dataset
We evaluated the effectiveness of our model for inferring
contrastive explanations from sets of traces generated from
a number of International Planning Competition (IPC) plan-
ning domains (Long and Fox 2003). The plan traces in πA
were generated by first injecting the ground truth ϕground

into the original PDDL domain and problem files, enforcing
valid plans on the modified domain/problem files to satisfy
ϕground. The LTL injection to create modified planning files
was performed using the LTLFOND2FOND tool (Camacho
et al. 2017). Second, a state-of-the-art top-k planner1 (Katz

1An alternative would have been to use a diverse planner
(Nguyen et al. 2012), but the existing ones do not support the re-
quired expressivity of conditional effects in the modified planning
files.

et al. 2018) was used to produce a set of distinct, valid plans
and their accompanying state execution traces.

Similarly, the above steps were repeated to generate ex-
ecution traces for πB , wherein the negation of the ground
truth specification, ¬ϕground, was injected to the planning
files, and then a set of traces was collected. Such a setup
guarantees the existence of contrastive explanation solutions
on (πA,πB), which includes (but is not limited to) ϕground.
We collected twenty traces for each set.

We evaluated our model using six different IPC bench-
mark domains, containing problems related to mission plan-
ning, vehicle routing, and resource allocation. For each of
these domains, we tested three different problem instances
of increasing vocabulary size, and on twenty randomly gen-
erated ϕground specifications for each problem instance.

Experiment Details
For each test case, ϕground was randomly generated using
one of the seven LTL templates listed in Table 1; thus the
hypothesis space Φ was set to include all possible specifica-
tions over the predefined templates. The categorical distri-
bution weights, wT and wp, were set to be uniform. Other
hyperparameters were set as follows: α = β = 0.01, to
put equal importance of positive and negative sets, λ = 0.7
to penalize ϕ for every additional conjunct, and ε = 0.2 to
apply ε-greedy search in the the proposal function. We ran
the MH sampler with numMH = 2, 000 iterations with the
first 300 used as a burn-in period. These hyperparameters
were set apriori, similar to how a wide range of probablis-
tic graphical models are designed. However, our experimen-
tal results were found to be robust to the various settings of
these parameters.

Model Comparisons
We evaluated our model against the SAT-based miner devel-
oped by Neider and Gavran (2018), the state-of-the-art for
extracting contrastive LTL specifications. We also evaluated
our model against brute force enumeration, a common ap-
proach employed by existing LTL miners used for summa-
rization (Yang et al. 2006; Lemieux, Park, and Beschastnikh
2015). Because enumerating through full space of Φ would
result in a time out, we tested delimited enumeration with
only a random subset of brute force samples. This baseline
selects a random subset of size numbrute from Φ. Then, a
function proportional to the posterior distribution (numera-
tor in Equation 4) is evaluated for each of the samples to
determine {ϕ∗}. numbrute was set equal to numMH to en-
able a fair baseline in terms of having the same amount of
allotted computation.

6 Results and Discussion
Table 2 shows the inference results on the tested domains
and on problem instances of varying complexity (reflected
by an increase in |V |). For evaluation, we measured M =
|{ϕ∗}|, the number of unique contrastive explanations ex-
tracted by the different approaches, along with the expla-
nations’ accuracy. Each domain-problem combination row
shows the average statistics over twenty ϕground test cases.



Domain |V | Our Model Enumeration Neider & Gavran
M Acc M Acc M TimeOut

blocks-
world

16 3.1 0.97 0.9 0.96 1 10 / 20
25 8.1 1.00 0.8 0.95 1 10 / 20
55 30.2 0.99 0.7 0.83 0 20 / 20

storage
11 4.4 0.94 1.7 0.97 1 16 / 20
20 11.5 0.97 1.0 0.94 1 14 / 20
42 31.5 0.98 0.9 0.93 1 11 / 20

satellite
17 22.3 1.00 3.7 0.97 1 6 / 20
37 28.0 0.98 0.9 0.85 1 8 / 20
50 84.6 0.97 1.0 0.94 1 8 / 20

zeno-
travel

18 3.7 0.99 2.1 0.99 1 8 / 20
22 21.0 1.00 1.7 0.99 1 8 / 20
40 78.6 0.99 1.5 0.99 1 3 / 20

TPP
14 7.5 1.00 1.1 0.95 0 20 / 20
18 9.7 1.00 0.8 0.95 0 20 / 20
36 114.5 0.99 2.3 0.96 1 14 / 20

rovers
20 24.5 1.00 2.3 0.99 1 5 / 20
22 28.3 1.00 2.3 0.99 1 10 / 20
28 18.6 0.98 1.0 0.97 1 11 / 20

Table 2: Inference results on extracting contrastive explana-
tions across different approaches. Each row reports the aver-
ages across twenty ϕground test cases. M denotes the num-
ber of unique contrastive explanations, and Acc reports their
average accuracy.

High M and high accuracy across all domain-problem
combinations demonstrate how our probabilistic model was
able to generate multiple, near-perfect contrastive expla-
nations. The solution set {ϕ∗} almost always included
ϕground. Our model outperformed the baseline and the state-
of-the-art miner by producing more contrastive explanations
within an allotted amount of computation / runtime.

The runtime for our model and the delimited enumera-
tion baseline with 2,000 samples ranged between 1.2–4.7
seconds (increase in |V | only had marginal effect on the
runtime). The SAT-based miner by Neider and Gavran of-
ten failed to generate a solution within a five minute cutoff
(see the number of its timeout cases in the last column of
Table 2). The prior work can only output a single ϕ∗, which
frequently took on a form of Fpi. It did not scale well to
problems that required more complex ϕ as solutions. This is
because increasing the “depth” of ϕ (the number of tempo-
ral / Boolean operators and propositions) exponentially in-
creased the size of the compiled SAT problem. In our ex-
periments, the prior work timed out for problems requiring
solutions with depth ≥ 3 (note that Fpi has depth of 2).

Figure 2 compares the search efficiency between our
model and the delimited enumeration baseline. By em-
ploying more informed search with the MH sampler, our
Bayesian inference model discovered contrastive explana-
tions with high accuracy with much fewer iterations and
lower variance than compared to the baseline. The trend was
consistent across all test domains.

 

Figure 2: The max accuracy of {ϕ∗} with respect to the number
of sampling iterations. The comparison is shown for both the MH
sampler and the delimited enumeration baseline. Each domain sub-
plot shows the averages all three problem instances and all twenty
ϕground test cases. 95% confidence intervals are displayed.

Robustness to Noisy Input In order to test robustness, we
perturbed the input X by randomly swapping traces between
πA and πB . For example, a noise rate of 0.2 would swap
20% of the traces, where the accuracy of ϕground on the
perturbed data, X̃ = (π̃A, π̃B), would evaluate to 0.8 (note
that it may be possible to discover other ϕ that achieve better
accuracy on X̃). The MAP estimates inferred from X̃, {ϕ̃∗},
were evaluated on the original input X to assess any loss of
ability to provide contrast.

Figure 3 shows the average accuracy of {ϕ̃∗}, evaluated
on both X̃ and X, across varying noise rate. Even at a mod-
erate noise rate of 0.25, the inferred ϕ̃∗s were able to main-
tain an average accuracy greater than 0.9 on X. Such a
threshold is promising for real-world applications. The ro-
bustness did start to sharply decline as noise rate increased
past 0.4. For all test cases, the Neider and Gavran miner
failed to generate a solution for anything with a noise rate
≥ 0.1.

Solution Space of Contrastive Explanations Large val-
ues of M signify how there are often various ways to ex-
press how plan traces differ using the LTL semantics. Some
LTL specifications are logically dependent. For example,
the global template subsumes both the stability and the
eventuality template. LTL specifications may also be re-
lated through substitutions of propositions. For example, on



 

Figure 3: The accuracy of ϕ̃∗ with respect to increasing noise
rate. ϕ̃∗ is inferred from the perturbed, noisy data and then is eval-
uated (generalized) on the original input X . Each domain sub-
plot shows the averages across all three problem instances and all
twenty ϕground test cases. 95% confidence intervals are displayed.

problems where holding a block is a prerequisite to plac-
ing it onto a table, ϕ1 = F(holding A) ∧ F(holding B)
will be satisfied in concert with the satisfaction of ϕ2 =
F(ontable A)∧F(ontable B). For contrastive explanation,
however, one needs to be mindful of both positive and nega-
tive sides of satisfaction which affect the accuracy. Relations
like template subsumptions or precondition / effect pairs
should not be simply favored during search without under-
standing that the converse may not hold and may result in
worse accuracy.

For a contrastive ϕ, it is possible to create a new con-
trastive ϕ′ that includes stationary propositions or tau-
tologies specific to the planning problem. For example, if
ϕ1 = F(holding A) ∧ F(holding B) is a contrastive ex-
planation, so is ϕ3 = F(holding A) ∧ F(holding B) ∧
F(earth is round). Our posterior distribution assigns a
lower probability to ϕ3 than ϕ1 based on the decay rate on
the number of conjunctions. Also, tautologies by themselves
cannot be contrastive explanations, because they can never
be dissatisfied. The output of our model appropriately ex-
cluded such vacuous explanations.

Table 2 shows how M generally increased as |V | in-
creased. This opens up interesting research avenues for de-
termining a minimal set of {ϕ}. Assessing logical depen-
dence or metric space between two arbitrary LTL specifica-
tions, however, is non-trivial.

Evaluation on Real-world Inspired Domain We applied
our inference model on a large force exercise (LFE) do-
main, which simulate air-combat games used to train pilots.
Through the use of Joint Semi-Automated Forces environ-
ment (Anastasiou 2006), realistic aircraft behavior and their
state execution traces were collected for the mission objec-
tive of “gain and maintain air superiority.” A total of 24 in-
stances (i.e. traces) of LFEs were separated into positive and
negative sets by a subject matter expert. The detail of the
input was as follows: |πA|=16, |πB|=8, |V |=15, and the
average length of traces involved 11 time steps.

Within a second (2,000 samples), our model generated
ten unique contrastive explanations, all with accuracy of
0.96. ϕ∗1 = G(attrition < 0.25) ∧ G(striker not shot)
represents how friendly attrition rate should be always less
than 25% and that the striker aircraft should never be shot
upon. ϕ∗2 = (attrition < 0.25) U (weapon release) as-
serts how friendly attrition rate has to be less than 25% be-
fore releasing the weapon. The model also inferred rules
of the environment, for example, asserting that proposi-
tions (attrition < 0.75) and (attrition < 0.50) precede
(attrition < 0.25) (which makes sense because attrition
can only increase throughout the mission). After discus-
sion with the expert, we discovered that the model could
not generate the perfect contrastive ϕground, because it re-
quired having multiple conjuncts that incorporate different
LTL templates (which is not part of our defined solution
space). Nevertheless, the generated explanations were con-
sistent with the expert’s interpretation of achieving the mis-
sion objective of air superiority.

7 Conclusion
We have presented a probabilistic Bayesian model to infer
contrastive LTL specifications describing how two sets of
plan traces differ. Our model generates multiple contrastive
explanations more efficiently than the state-of-the-art and
demonstrates robustness to noisy input. It also provides a
principled approach to incorporate various forms of prior
knowledge or preferences during search. It can serve as a
strong foundation that can be naturally extended to multi-
ple input sets by repeating the algorithm for all pairwise or
one-vs.-rest comparisons.

Interesting avenues for future work include gauging the
saliency of propositions, as well as deriving a minimal set
of contrastive explanations. Furthermore, we seek to test
the model in human-in-the-loop settings, with the goal of
understanding the relationship between different planning
heuristics for the saliency of propositions (e.g. landmarks
and causal links) to their actual explicability when the ex-
planation is communicated to a human.
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Meneguzzi, F. 2017. Web planner: A tool to develop clas-
sical planning domains and visualize heuristic state-space
search. In ICAPS Workshop on UISP.
Neider, D., and Gavran, I. 2018. Learning linear tempo-
ral properties. In Conf. Theory and Applications of Formal
Methods in Hardware and System Verification.
Nguyen, T. A.; Do, M.; Gerevini, A. E.; Serina, I.; Srivas-
tava, B.; and Kambhampati, S. 2012. Generating diverse
plans to handle unknown and partially known user prefer-
ences. Artificial Intelligence 190:1–31.
Pnueli, A. 1977. The temporal logic of programs. In Annual
Symposium on Foundations of Computer Science, 46–57.
Ramırez, M., and Geffner, H. 2010. Probabilistic plan recog-
nition using off-the-shelf classical planners. In AAAI, 1121–
1126.
Seegebarth, B.; Müller, F.; Schattenberg, B.; and Biundo, S.
2012. Making hybrid plans more clear to human users-a for-
mal approach for generating sound explanations. In ICAPS.
Sengupta, S.; Chakraborti, T.; Sreedharan, S.; Vadlamudi,
S. G.; and Kambhampati, S. 2017. RADAR - a proactive
decision support system for human-in-the-loop planning. In
AAAI Fall Symposium on Human-Agent Groups.
Shah, A.; Kamath, P.; Li, S.; and Shah, J. 2018. Bayesian in-
ference of temporal task specifications from demonstrations.
In NIPS.
Sohrabi, S.; Baier, J. A.; and McIlraith, S. A. 2010. Diag-
nosis as planning revisited. In Int’l Conf. KR.
Sohrabi, S.; Riabov, A. V.; and Udrea, O. 2016. Plan recog-
nition as planning revisited. In IJCAI, 3258–3264.
Veloso, M. M., and Blythe, J. 1994. Linkability: Examining
causal link commitments in partial-order planning. In AIPS,
170–175.
Yang, J.; Evans, D.; Bhardwaj, D.; Bhat, T.; and Das, M.
2006. Perracotta: mining temporal API rules from imperfect
traces. In Int’l Conf. Software Engineering, 282–291.
Yoo, C., and Belta, C. 2017. Rich time series classification
using temporal logic. In Robotics: Science and Systems.
Zhang, Y.; Sreedharan, S.; Kulkarni, A.; Chakraborti, T.;
Zhuo, H. H.; and Kambhampati, S. 2017. Plan explica-
bility and predictability for robot task planning. In ICRA,
1313–1320.
Zhuo, H. H. 2017. Human-aware plan recognition. In AAAI,
3686–3693.


