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ABSTRACT

Many applications of linguistic embedding models rely on their value as pre-
trained inputs for end-to-end tasks such as dialog modeling, machine transla-
tion, or question answering. This position paper presents an alternate paradigm:
Rather than using learned embeddings as input features, we instead treat them as a
common-sense knowledge repository that can be queried via simple mathematical
operations within the embedding space. We show how linear offsets can be used
to (a) identify an object given its description, (b) discover relations of an object
given its label, and (c) map free-form text to a set of action primitives. Our experi-
ments provide a valuable proof of concept that language-informed common sense
reasoning, or ‘reasoning in the linguistic domain’, lies within the grasp of the re-
search community. In order to attain this goal, however, we must reconsider the
way neural embedding models are typically trained an evaluated. To that end, we
also identify three empirically-motivated evaluation metrics for use in the training
of future embedding models.

1 INTRODUCTION

This position paper casts pre-trained embedding models like BERT (Devlin et al.l 2018)), GPT-2
(Radford et al.) and InferSent (Conneau et al., [2017)) in a new role. Rather than using the learned
hidden states as pre-trained features for downstream tasks, we instead view them as a form of emer-
gent, flexible knowledge representation harvested from a rich body of text corpora. We show how
the knowledge implicitly encoded in the embedding space can be extracted and utilized to solve
real-world problems with little or no additional training, and we argue that the effectiveness of this
method can be vastly increased in future embedding models.

There is, of course, inherent unpredictability of this approach. In contrast to hand-curated symbolic
knowledge, harvested representational knowledge is imprecise, at times unreliable, and difficult
to anticipate — but it is also fascinating, spontaneous, and fluidly creative in ways that traditional
knowledge systems seldom replicate. Unlike a knowledge graph, these vector-based representations
can explore questions like, “What is the combination of fear and sound?” or “What is like a river
without water ]’

Queries, in this context, are linear algebra operations on the embedded representations of input text,
with answers found by seeking the embedded word or sentence with the greatest cosign similarity
to the calculated result. This requires a startlingly high level of semantic structure within the geom-
etry of the learned representations, and gentle probing of current state-of-the-art embedding spaces
reveals that they are not yet up to the task. The potential exists, but only in nascent form. The
purpose of this paper is to unequivocally demonstrate that potential, quantify it where possible, and
propose new evaluation metrics for the development of embedding models with optimal semantic
geometries.

'If you query a FastText (Bojanowski et al., 2017) model, the answers are “scream” and “road”.
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2 RELATED WORK

Language-based knowledge representation falls roughly into two categories. The first includes
knowledge graphs (Vrandecic & Krotzsch, 2014; |Liu & Singh, 2004; |Saxena et al., [2014), lexi-
cal databases (Miller} [1995)), and structured ontologies (Matuszek et al., [2006). Each of these has
distinct characteristics, but they share the principle of representing ideas as distinct entities linked
by conceptual relations. Lexical knowledge may be hand-crafted (Liu & Singh, [2004; Miller, |1995;
Matuszek et al.l 2006) or extracted from the internet (Vrandecic & Krotzschl 2014; Saxena et al.,
2014), although almost all such extracted knowledge bases involve some form of human curation.

The second category is model-based, and involves allowing the system to learn a numerical rep-
resentation for each word or phrase encountered. A neural network or statistical model is com-
monly used for this purpose, with the resulting representations interchangeably referred to as vector
spaces (Mikolov et al., 2013a; Turney & Pantel, 2010), embedding spaces (Liu et al., [2015; [Fulda
et al.| [2017a; [Bolukbasi et al.,2016)), or distributed representations of words (Le & Mikolov,|2014aj
Mikolov et al.,|2013b; [Le & Mikolov,|2014b). While these models are heavily valued for their use as
input features for downstream tasks, the information encoded within the embedding space is seldom
directly extracted, particularly when the model encodes entire sentences or multi-word phrases.

One purpose of this paper is to raise a warning voice: In the mad scramble to train more clever
and more effective embedding models, we should take note of our assumptions about what a ‘good’
embedding model looks like. One common evaluation method for neural language models is to
measure their effectiveness as pre-trained input features for downstream tasks. Bert (Devlin et al.,
2018)), InferSent (Conneau et al.,[2017)) and Google’s Universal Sentence Encoder (Cer et al.,[2018a)
were all evaluated using this method. However, while this evaluation method can reveal how well a
system is learning language data in a general sense, it cannot tell us whether the resultant embedding
space exhibits strong semantic structure. After all, a model trained to predict semantic similarity is
not the same as a model whose sentence representations embody semantic similarity.

We therefore caution readers that currently popular evaluation metrics for linguistic embeddings may
be overlooking some of the models’ greatest potential strengths, and explicitly encourage efforts
like those of Conneau et al. (Conneau et al., 2018)) and zhu et al. (Zhu et al., [2018) to examine the
semantic properties of learned representations directly. Otherwise, we may inadvertently bias our
research agendas away from the very properties that make these embedding spaces so delightfully
intriguing.

3 BACKGROUND: SEMANTIC PROPERTIES OF LEARNED REPRESENTATIONS

Word-level embedding spaces exhibit intriguing semantic geometries. For example, it is pos-
sible to perform vector operations within the embedding space to answer queries such as
Spain:Madrid::France:?, where the unknown value ? should be replaced by Paris (Mikolov et al.,
2013bgc). Similarly, targeted projections of the embedding space onto hand-selected basis vectors
reveal that words that describe common household objects are positioned in close proximity to ob-
jects that tend to appear within the same room. For example, common appliances like ‘stove’,
‘refrigerator’, and ‘blender’ lie close to one another and share a common angle of incidence toward
the representation for ‘kitchen’ (see Figure|I)).

These observations suggest that a form of everyday common-sense knowledge is implicitly encoded
within the structure of the embedding space. It ‘knows’, in some sense, that Paris is a city in France,
just as it ‘knows’ that an oven can be found in a kitchen. Further demonstrations of this princi-
ple include the successful use of tagged word2vec embeddings to reason about the affordances of
physical objects (Fulda et al., 2017a)) and to determine the best mode of travel for reaching vacation
destinations (Fulda et al., 2017b)).

Unfortunately, the structural properties of word-level embedding spaces fail to manifest effectively
in their sentence-level extensions. For example, most state-of-the-art embedding models map nega-
tion pairs such as “I am a cat” and “T am not a cat” to nearly identical vectors (see Figure [2). The
models were not optimized for lingusitic reasoning tasks, and their structural irregularities prevent
them from being easily used in the same way that word embeddings are applied. Perhaps for this
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Figure 1: 100-dimensional word2vec embeddings projected into a 2-dimensional space demonstrate
impressive semantic structure. Common household items are clustered in specific relationships to
the rooms in which they tend to be located. The angle of correspondence is at least as significant as
proximity. Of particular interest is the word ‘mirror’, which is aligned both with the items found in
a bedroom and with the items found in a bathroom.

Skip-Thought USElite BERT GPT-2 InferSent Transformer-XL
Iam a cat
I am not a cat 0.069 0.069 0.070  0.0007 0.241 0.1110
Iam a cat
I am a domesticated cat 0.139 0.098 0.188  0.0015 0.147 0.0925

Figure 2: Cosine distances between sentences embedded using various neural models. Each sen-
tence pair comprises two rows, with distances shown after the second component sentence. Most
embedding models place the syntactically similar but semantically distinct sentences ‘I am a cat’
and ‘I am not a cat’ startlingly close to one another. Only the recently-developed embedding models
InferSent and Transformer-XL (bolded) embed these sentences to positions that are farther apart
than the semantically similar sentences ‘I am a cat’ and ‘I am a domesticated cat’.

reason, many applications of pre-trained embeddings focus on their potential for transfer learning
rather than on attempts to extract information directly from the embedded representation.

A major contribution of this paper is the idea that common-sense knowledge can be extracted di-
rectly from multi-word linguistic embeddings, and that this knowledge can be utilized for real-world
applications. This is partially due to the improved structural properties of recently-developed em-
bedding spaces, partially due to an extraction mechanism that focuses on the relative positions of
sentences rather than on their absolute locations, and partially due to the careful selection of reason-
ing tasks that are compatible with the learned geometries of modern embedding spaces.

4 INDEXING: IDENTIFYING AN OBJECT FROM ITS DESCRIPTION

When dealing with knowledge systems, a first and critical step involves identifying an entry point:
In other words, which node should the system examine in order to access knowledge relevant to its
current situation? In this section, we show that linguistic embeddings can be used to identify the ob-
ject referred to by a free-form description, often with surprising accuracy. A key observation here is
that different models not only perform differently, but they each answer a different subset of queries
correctly. This suggests (but certainly does not prove) that a particularly well-formulated embedding
space might facilitate much higher accuracies, if such an embedding space can be properly trained.
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Skip-Thought USE lite BERT GPT-2 InferSent Transf-XL
a two-door car with a trunk and a solid roof coupe minivan convertible minivan coupe convertible
a car with a retractable roof coupe convertible convertible minivan coupe convertible
a family car with sliding doors and a large cargo area coupe minivan suy hollywood suy convertible
has more ground clearance for offroad travel coupe suv suv hollywood suv suv
that city that’s always getting destroyed by monsters tortoise chicago suy hollywood hollywood suv
the place where all the movies are made hamburg hollywood suv hollywood hollywood suv
a port city in Germany tokyo hamburg hamburg duck hamburg suv
the windy city coupe chicago chicago holywood chicago suv
a turtle that walks on land tortoise tortoise suy duck tortoise suv
a water bird with a squat beak that quacks tortoise duck duck kitten duck suv
a cross between a horse and a donkey tortoise minivan mule duck mule mule
an immature cat tortoise Kkitten suv minivan Kkitten Kkitten
Total 2 9 6 1 9 4

Figure 4: Indexing labels chosen by six neural embedding models when applying the methodology
described in Section[4.T} Correct answers are shown in bold-face type. Interestingly, the best per-
forming models tend to select a label in the right general category even when they do not select the
optimal answer.

4.1 METHODOLOGY

Given a free-form text description x, a set of possible node labels L = {l, ..., 1, }, and two sets of
example texts A ={ A4, ..., A, } and B = {Bjy, ..., B, }, where each A; is a free-form description of
some object, and each B; is the object so described, a linguistic embedding model can be queried
for common-sense knowledge in the following manner:

1. Use the model to convert x into a vector representation v

2. Create a canonical vector V = 1 3" (B; — 4;)

3. Apply the canonical vector to obtain an indexing pointp=v + V'

4. Search the set of possible node labels to find [* = argmin; ¢, disteos(l,p)

Here, dist., is the cosine distance between two vectors.

4.2 INDEXING CASE STUDY

Figure [] shows the indexes selected by six neural

embedding. models when given the texts in Figure [“ghject description
as canonical examples and twelve node labels to [ parrot a brighly colored tropical bird
choose from. that can learn to speak

. . . puppy a baby dog
We begin by noting that we are using these embed- | (.4, a car with four doors and a tra-
ding models in ways for which they were not de- ditional trunk
signed. GPT-2 and Transformer-XL, in particular, | truck a vehicle with an open cargo
were trained not as general purpose sentence repre- bed in the rear
sentations but for the very specific purpose of lan- | paris the city where the eifel tower is
guage modeling and text generation. It is perhaps | london capital city of great britain

not surprising, then, that they are not well suited to

the task of node indexing via vector offset methods. Figure 3: Object labels.Ai and descriptions
Nevertheless we include them in this study because Bi that define the canonical vector V" used in
it is enlightening to observe that different training the experiments for Figure

corpora and model architectures create a startling

amount of variance in the semantic geometry of the

resultant embedding space.

While a case study of this size is far from conclusive, the results tell an interesting story. Of the
embedding models examined, Google’s Universal Sentence Encoder (lite) and Facebook’s InferSent
model clearly have the most effective geometries for this task. Both models were able to index 75%
of the free-form text descriptions correctly, and even when they selected an incorrect label, they
usually selected it from the right general category of answers. We find this impressive and evocative
of future possibilities. The question quickly arises: If models that were trained without this specific
application in mind can accomplish an indexing task with reasonable accuracy, what might a model
accomplish if it were trained with the specific objective of facilitating knowledge retrieval via vector
offset methods? Further thoughts in this direction are outlined in Section|[7}
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Skip-Thought USE lite BERT GPT-2 InferSent Transf-XL
Donald Trump actor politician politician pay politician actor
Taylor Swift actor politician jack actor actor
cocker spaniel politician habitat actor olympic dog animals
parakeet indigenous birds actress outcome extinct
The Daily Planet newspaper newspaper  newspaper  newspaper  newspaper  newspaper
The New York Tribune newspaper newspaper newspaper newspaper newspaper newspaper
Topeka city country city \xd7 city charter
Vienna city city city egyptian city city
New Zealand politician country auckland newspaper zealand country
Ivory Coast actor city city european city city
Total 6 5 5 2 7 6

Figure 6: Relation extraction. Given a starting node label, vector offsets were used to identify
relations that fall loosely under the is-a’ umbrella, such as *occupation’, ’instance-of” and subclass-
of’. Relations that could be verified in WikiData are bolded. Italicized orange text indicates relations
that are not reflected in WikiData, but that perhaps should be.

5 EXTRAPOLATION: DISCOVERING RELATIONS

In this section we demonstrate that, given only a few

exemplars of a relation, linguistic embedding mod- [ Tapel relation
els are able to generalize that relation to new start- Tom Cruise actor
ing nodes. Figure[5]shows the canonical relation ex- | Bill Gates entrepreneur
amples used for this task: Three public figures, one | Hillary Clinton politician
newspaper, one city, one type of animal, and one | The Daily Herald newspaper
country name, each of which is paired with an ob- | Paris city
ject that fulfills the relation A; is-a B;. We use this | kitten ) mammal
data to extrapolate new relations for ten previously L Lhe United States of America __ country

unseen starting nodes in the following manner. .
& & Figure 5: Example texts A; and B; used to

Given an input node label z, a set of possible output define the vector V' between a description
nodes L = {l4,...,0,}, and a set of example pairs and the corresponding object

(A;, B;), where each A; is a node label and each

B; is the label of an object that fulfills the desired

relation, extrapolations to new input nodes can be calculated in the following manner:

1. Create a set of canonical vectors V; = B; — A;

2. For each previously unseen node label z, convert z into a vector representation v

3. Find the indexing point p = v + Vj,eqrests Where Vyeqrest 1S the canonical vector whose
initial point A; has the closest cosign distance to v

4. Search the set of possible output nodes to find I* = argmin,,,,; disteos(i,p)

Note that, when indexing as per Section [4.2] we calculated a single canonical vector V' based on
all of the exemplar (A;, B;) pairs. When finding relations, however, we seek to match the given
exemplar relations as closely as possible. Thus we use a suite of vectors V;, selecting the one whose
source word A; is most similar to the input node vector v. This relational vector V; is then used to
query the knowledge base.

Case study results are shown in Figure[6] The ten input node labels we used were chosen before any
of the results had been calculated, and were not changed afterward. The output label set L consisted
of the 5000 most common words in the FastText (Bojanowski et al.,|2017) token set.

For the purposes of this study, we defined a valid result as a [* label that fulfils a WikiData (Vrandecic
& Krotzschl 2014) relation of the type ‘instance-of’, ‘subclass of’, or ‘occupation’ (all of which
can be considered a variant of the ‘is-a’ relation exemplified in Figure [5) with respect to the input
node. The answer ‘newspaper’ was accepted as being equivalent to the WikiData node ‘fictional
newspaper’, which was not present in our label set L.

Five of the six embedding models produced a valid [* on at least 5 or our 10 case study words. The
InferSent and Transformer-XL models seemed particularly adept at representing knowledge in this
way. Particularly interesting are the labels shown in orange italicized text. These are terms that do
not appear in the WikiData results for each source node, but which are arguably correct anyway.
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InferSenty InferSento InferSents InferSenty
Donald Trump politician politicians
Taylor Swift actor actors singer
cocker spaniel dog dogs wildlife
parakeet species birds
The Daily Planet newspaper newspapers magazine  web
The New York Tribune newspaper newspapers — magazine web
Topeka city county township
Vienna city borough
New Zealand zealand city township  county
Ivory Coast city coastal coast municipality

Figure 7: Relation extraction using the InferSent embedding model, showing the first four query re-
sults. Bolded text indicates relations that exist in WikiData. Orange italicized text indicates relations
that are not present in WikiData, but that are arguably correct. Green italicized text indicates plural
versions of valid relations found in WikiData.

This demonstrates the powerful potential of linguistic embedding spaces to extract relations which
are lacking from more traditional knowledge representations.

To further the case study, we took a closer look at the top four label results given by the InferSent
embedding model for each of our source nodes (see Figure [7). Source nodes are listed on the left;
labels are listed left to right in order of increasing distance from the indexing point p. Examination of
the extracted labels reveals innovative and potentially useful information that would not necessarily
be encoded in a traditional hand-curated knowledge system: For example, that the President of the
United States is also a citizen, or that a cocker spaniel is an animal as well as a dog. Taylor Swift is
correctly identified as both an actor and a singer, while the results for Vienna include the insightful
result that it is a municipality as well as a city.

6 LANGUAGE IN THE WILD: MAPPING HIGH-LEVEL COMMANDS TO
ACTION PRIMITIVES

One way to test the amount of common-sense knowledge intrinsically present in a language repre-
sentation is to see whether it can facilitate natural language reasoning: For example, given a set of
action primitives A = {a1, ... a, }, a set of action labels L, and a mapping M (L) — A, the question
arises: Can the geometric structure of the embedding space be used to map incoming commands
from a human user to the correct action primitives?

To explore this question, we created a set of 58 user directives and 9 action primitive labels for a
hypothetical scenario in which a human controller is giving voice commands to an unmanned aerial
vehicle (UAV). Based on the user directive u, the UAV must determine which behavior to execute.
This is done in the following manner:

1. For each human utterance u received:
(a) Convert the v into a vector representation v
(b) Find the best-matching action label [* = argmin, ¢, disteos(l,v)
(c) Execute the motor primitive M (1)

Results are shown in Figure[0] We begin by observing that none of the embedding spaces is par-
ticularly good at this task, however, all of them are able to outperform a random baseline. This
indicates that a significant amount of common-sense knowledge is implicitly encoded within the
sentence representations. The key question is: How do we create embedding spaces in which this
common-sense knowledge is more effectively structured?

We begin by noting that the InferSent model, which was trained using a recurrent neural architecture
that was optimized for only a single training task, has markedly better performance than models
which trained on many tasks simultaneously. The second-highest performance was attained by the
Skip-Thought architecture, which was also trained exclusively on a single task (Kiros et al., [2015).
This suggests that the current trend of training powerful architectures on as many tasks as possible,
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human directive action label o

‘advance three feet’ go forward e

‘forward, please’ go forward W dtrssaafitude
‘increase altitude’ go higher 3 e

‘try to touch the ceiling’  go higher et

‘hold still’ stop ——
‘maintain position’ stop

Figure 8: Left: Example directives and action labels used in the UAV control task. Right: Illus-

tration of the UAV control task. Sentence represenations are used to map user directives to action
labels, which in turn can be mapped to direct motor controls.

Skip-Thought  34.48%

USE lite 29.31%
BERT 22.41%
GPT-2 15.52%
InferSent 48.28%
Transf-XL 31.03%
random 11.11%

Figure 9: Classification accuracy on a UAV control task in which human utterances are mapped to
the most similar action label based on cosign distances within the embedding space.

while undeniably effective at improving performance at transfer learning (Devlin et al., 2018} |Cer
et al.l 2018b), may not be the best way to produce sentence representations with strong internal
semantic structures.

7 EVALUATION METRICS FOR REPRESENTATIONAL KNOWLEDGE BASES

When evaluating linguistic embedding models, researchers often evaluate model performance based
on cross-task generalization. In this paradigm, the learned representations are used as input features
for a small, often single-layer, network that leverages pre-trained structure. Thus the quality of the
embedding model is implicitly defined in terms its facilitation of transfer learning, a property which
appears strongly correlated with the use of multiple simultaneous training tasks.

There is of course, nothing inherently wrong with this approach. But if we wish to train embedding
models for specific and targeted use as a common-sense knowledge repository, then transfer learn-
ing becomes less relevant. Instead, we choose to focus on the semantic geometries of the learned
embedding space.

In this section, we propose three properties that seem correlated with high performance on the case
studies in this paper. We observe that these desired properties can either be induced implicitly, by
selecting learning tasks which can only be mastered when the desired embedding properties are
present, or explicitly, by directly incorporating a measurement of the desired property within the
loss function of the neural network.

1. Analogical coherence. The analogical properties observed in word2vec, GLoVE, FastText,
and other single-word embedding spaces should be preserved in the trained sentence-level
vector space such that offset relationships like Spain:Madrid::France:Paris are preserved.
At the phrase or sentence level, this should extend to relationships like ‘if you drop a
ball’: ‘it will bounce’::‘if you drop a glass’: ‘it will break’.

2. Semantic alignment. Single-word embeddings should be located closer to sentences that
contain those words than to conceptually equivalent sentences that do not contain them.
Sentences that express similar ideas should be located near one another despite variations in
syntax or structural complexity, and arbitrarily-ordered “bags of words” should be located
close to sentences in which those words appear.
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negation detection clause relatedness Google analogy

Skip-thought 61.48% 20.53% 50.86%
USE lite 77.78% 2.48% 52.12%
BERT 89.48% 6.02% 46.56%
GPT-2 61.19% 38.23% 6.47%
InferSent 97.48% 48.50% 81.81%
Transf-XL 26.37% 17.88% 47.08%

Figure 10: Classification accuracy on three tasks related to semantic geometry. The highest value in
each column is bolded.

3. Polarity displacement. A sentence and its negation should be located far from each other
along at least one basis dimension of the space, and the negated sentence should be located
close to non-negations that nevertheless convey the same concept. (For example, ‘“The room
is not empty’ should be located farther from the statement “The room is empty’ than it is
from sentences such as ‘The room is occupied’ or “The room is full’.)

The evaluation framework introduced by zhu et al. (Zhu et all |2018) includes metrics that are
relevant to two of these properties. Semantic alignment is measured by a clause relatedness metric
that requires the distance between a sentence and one of its embedded clauses to be less than the
distance between the original sentence and its not-negation, while polarity displacement is measured
by the negation detection task. The third property, analogical coherence, can be effectively measured
using the Google Analogy Test Set introduced by Mikolov et al. (Mikolov et al., 2013a).

Figure [I0] shows the performance of four state-of-the-art embedding models on these tasks. The
InferSent model outperforms the other models at all three tasks, just as it showed the highest perfor-
mance on our (admittedly small) indexing, relation-extraction, and UAV control case studies. Even
more interestingly, the only other model to score greater than 20% at all three tasks (Skip-Thought)
was also the second-highest scoring algorithm on the UAV control task and tied for second on the
relation extraction task (although it failed miserably on the indexing case study).

Although more extensive studies remain to be done, it seems to be the case that high performance
on the evaluation tasks in [10|is correlated with strong performance in at least some applications of
the embedding model as a common-sense knowledge base.

8 CONCLUSION

As the search for more efficient and effective embedding spaces progresses, it is imperative that
researchers think critically, not just about the performance of the embedding space on established
benchmarks, but on the potential of linguistic embedding spaces for charting new territory.

In this paper, we have examined some of the capacities (and weaknesses) of current sentence-level
embedding spaces, and we have proposed a set of criteria that may help to guide the development
of future embedding spaces. In particular, we have re-examined basic industry assumptions about
how these embedding spaces are created, how they can be manipulated, and for which applications
they are best suited. If we wish to extend analogical reasoning beyond elementary word vector
calculations, we need a new kind of embedding space, one that functions not merely as useful input
features for downstream tasks, but rather as a valuable common-sense repository in its own right: A
knowledge base that can be queried mathematically to solve real-world problems with little or no
direct training. In order to realize this potential, however, new embedding models must be developed
which have been optimized for such applications.

We have proposed three broad training criteria - Analogical coherence, Semantic alignment, and
Polarity displacement - which show signs of correlation with performance on knowledge extraction
tasks, and have identified evaluation datasets within the existing literature that measure the extent to
which learned sentence representations satisfy these criteria. We hope that, in addition to continued
efforts to optimize linguistic embedding models based on transfer learning, researchers in the field
will begin to explore the training and application of embedding models as common-sense knowlede
repositories.
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