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ABSTRACT

Spoken language understanding (SLU) is a critical component in building dia-
logue systems. When building models for novel natural language domains, a ma-
jor challenge is the lack of data in the new domains, no matter whether the data is
annotated or not. Recognizing and annotating “intent” and “slot” of natural lan-
guages is a time-consuming process. Therefore, spoken language understanding
in low resource domains remains a crucial problem to address. In this paper, we
address this problem by proposing a transfer-learning method, whereby a SLU
model is transferred to a novel but data-poor domain via a deep neural network
framework. We also introduce meta-learning in our work to bridge the semantic
relations between seen and unseen data, allowing new intents to be recognized
and new slots to be filled with much lower new training effort. We show the per-
formance improvement with extensive experimental results for spoken language
understanding in low resource domains. We show that our method can also han-
dle novel intent recognition and slot-filling tasks. Our methodology provides a
feasible solution for alleviating data shortages in spoken language understanding.

1 INTRODUCTION

The recent surge of artificial intelligence motivates the technical and applicable exploration of novel
human-computer interactions. Spoken dialogue systems are widely studied and used in various mo-
bile devices. Well-known commercial applications driven by dialogue systems include intelligent
personal assistants and intelligent robots for customer services. As more and more products and sce-
narios integrate dialogue systems in intelligent services, the ability for model adaptation in dialogue
systems is critically needed. Many state-of-the art dialogue systems follow a learning pipeline that
includes components such as spoken language understanding (SLU), dialogue management (DM)
and spoken language generation or retrieval (SLG). Since both dialogue management and spoken
language generation systems rely on knowledge or information learned from spoken language un-
derstanding, research and industry community have paid much attention to the SLU area. In this
paper, we focus on the problem of data shortage for SLU in a new domain.

Spoken language understanding typically defines and represents user utterances in terms of semantic
frames comprised of domains, intents and slots (Tur & Mori, 2011). A spoken language understand-
ing task involves classifying the domain, detecting the intent of user utterance and identifying token
sequences corresponding to slot values in the semantic frame. A learning model is often designed to
handle the above sub-tasks separately and sometimes simultaneously. Deep learning models are the
cutting-edge techniques for achieving impressive performance in spoken language understanding
compared with conventional machine learning models.

However, deep neural-network models often require the collection and manual annotation of data,
which is a time and labor intensive process. These problems pose a major challenge to building
high-quality learning models in new domains. To address this problem, we propose to perform
domain adaption of SLU models by transferring the SLU knowledge and model parameters learned
in an auxiliary domain where a model is already built. A related problem is that only few examples
of some output intent and slot classes are available during the training phrase in a new domain,
because training sets for a new domain are small. To deal with this limitation, we propose a novel
few shot learning model in a meta learning paradigm, we call it the Transfer Semantic Similarity
Model (TSSM). The TSSM achieves few-shot learning by exploiting the semantic embeddings of
both seen and unseen intent and slots.
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In summary, the challenges of spoken language understanding include: (1) Expanding SLUs to novel
domains is necessary as the development of artificial intelligent products extends to more areas in
our society. But it is difficult to get sufficient data or spoken language sentence in novel domains.
(2) Without sufficient labeled data, deep learning methods are difficult to train and thus it is hard to
obtain satisfactory performance in a new domain. (3) Unseen intents and slots exist because small
annotated training set might not cover all intents and slots. Thus, the generalization ability of the
models is crucial for dealing with unseen classes.

Our contributions are summarized as follows:

• We design a novel and efficient SLU model, the TSSM. It incorporates transfer learning
and meta learning for SLU tasks in low resource domains.

• The proposed TSSM can improve model performance with only a small amount of training
data in new domains and it can handle unseen classes. The experiments illustrate that our
proposed methods outperform the state-of-the-art baselines in many experimental domains.

• Our work can treat intent and slot detection tasks as a structured multi-objective optimiza-
tion problem, which further improves the accuracy of learning tasks in new domains.

2 RELATED WORK

Spoken language understanding is usually defined as a supervised learning problem, involving con-
ventional machine learning models (Young, 2002; Hahn et al., 2011; Wang et al., 2005) and deep
learning models (Mesnil et al., 2015; Kurata et al., 2016; Sarikaya et al., 2011) on massive amount
of annotated training data. Although unsupervised learning and semi-supervised learning based ap-
proaches have been proposed as well (Chen et al., 2013; 2015b;a), deep learning approaches were
shown to outperform most others. Besides the requirement of a large amount of annotated data be-
ing available, the intents and slots are usually predefined. As a result, they are inflexible to expand
to new domains. Some researchers have paid attention to alleviate this limitation. An example is
the work by Korpusik et al. , which retrains models to cover new intents and associated slots while
redesigning a semantic schema (Korpusik et al., 2014).

There have also been some attempts to learn shared latent semantic representations or model param-
eters for multiple domains via transfer learning. A survey for transfer learning with applications is
Pan & Yang (2010). In general, the goal of transfer learning is to improve performance in novel do-
mains that only has small data. In these target domains, it is critical to reduce the model re-training
efforts by bridging the knowledge from source tasks to the new target tasks. In natural language
processing (NLP), researchers have studied cross-domain NLP problems but have mainly focused
in cross-lingual problem settings (Mou et al., 2016; Buys & Botha, 2016; Kim et al., 2017a;b).
In Hakkani-Tr et al. (2016), both multi-task and transfer learning approaches are proposed to learn
shared implicit feature representation across various domains for spoken language understanding.
Researchers in Amazon have shown in a recent study that DNN-based natural language engines can
re-use the existing models through transfer learning (Goyal et al., 2018).

When the training data is missing some task labels, one can exploit meta learning to apply few-shot
learning to help with the knowledge transfer Fei-Fei et al. (2006); Palatucci et al. (2009); Vinyals
et al. (2016); Ravi & Larochelle (2018). For example, Vinyals et al. (2016) learns a network that
maps a small amount of labeled support set and unlabeled examples to its labels, saving the effort
in fine-tuning to new class types. Besides image object-recognition tasks, in SLU some experiments
have been conducted. The objective of Ferreira et al. (2015) is to predict the semantic tag sequences
of a user query without using any target-domain user utterances and thus in-context semantic tags.
The research builds a statistical model to predict the SLU for unseen data in Yazdani & Henderson
(2015); Chen et al. (2016). An action-matching algorithm is proposed by Zhao & Eskénazi (2018)
to learn a cross-domain embedding space that models the semantics of dialog responses, which,
in turn, lets a neural dialog generation model generalize to new domains. Recent publication by
Google (Bapna et al., 2017) explores semi-supervised slot-filling based on deep learning that can
use the slot labels without the need for any labeled or unlabeled data in domain examples or the
need for any explicit schema alignment, to quickly bootstrap the model in a new domain.
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3 OUR PROPOSED APPROACH FOR MODEL TRANSFER

In this section, we introduce our transfer learning approach to address the cross-domain SLU prob-
lem. We consider a source domain Ds and a target domain Dt, where our goal is to learn a model
in the target domain. Typically, we have a large annotated dataset for Ds, while only a few labeled
data for Dt. The tasks in both Ds and Dt are of the same types, namely they are both slot filling and
intent detection tasks. However, Ds and Dt have different intent label spaces Ts and Tt, because
the target domain might have new intent values (slot faces the same situation).

The number of possible intents and slots grows rapidly as we get into new domains with new intents
and slots. One natural approach in solving the learning problem is to train one binary classifier
for each possible label, and decide whether or not to include the classification model in the output.
However, this would require training a large number of classifiers. It also would be impossible to
generalize to target domains that include intents and slots that do not show up in the training set,
since there will not be any parameter sharing among the classifiers. Instead of encoding slot names
and intent names as discrete features in the target domain, we encode them using a continuous
representation. To be specific, we learn a representation of slot names, slot values and intent names
from their constituent words using semantic networks. We then check to see if these representations
match the representations of utterances.

The architecture of our model is illustrated in Fig. 1. The model includes the following major com-
ponents. (1) a word hashing layer to convert one-hot word representations into embedding vectors,
(2) a bi-directional Long Short Term Memory networks(LSTMs) (Hochreiter & Schmidhuber, 1997)
layer to capture features from word embeddings, (3) a intent specific bi-LSTMs layer combined with
an semantic network to detect intent, (4) a slot specific bi-LSTMs layer powered with an attention
component and semantic network to conduct slot filling. We first pretrain the model in a source
domain with adequate annotated data. We then wish to allow the model to extend to new slot names,
slot values and intent names in the target domain with little annotated data.
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Figure 1: TSSM architecture for joint SLU. The orange lines are inputs for semantic similarity
network and the green lines represent the inputs for attention network.

Let w = (w0, w1, w2, . . . , wT+1) represent the input word sequence with w0 and wT+1 being the
beginning-of-sequence (〈bos〉) and end-of-sequence (〈eos〉) tokens, respectively. T is the number
of words. Let s = (s0, s1, . . . , sT ) be the slot label sequence, where s0 is a padded slot label that
maps to the beginning-of-sequence token 〈bos〉 and si ∈ S. Let τ ∈ T be the intent class. S and
T are the slot and intent label space, respectively. Let sn = (sn1, sn2, . . . , snm) represent the m
slot names. sni = (w1, . . . , wmi) is a vector of the words for the i-th slot name, where mi is its
number of words. Each slot si has a list of slot values svi = (svi,1, svi,2, . . . , svi,ni), where ni is
the number of slot values for the i-th slot. A slot value is allowed to be a phrase like ‘fried chicken’
for slot ’Food’. Let svi,j = (w1, . . . , wni,j

) be the words of the j-th slot value for i-th slot and ni,j
is the number of words for this slot value.
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3.1 BASE NETWORKS

We use a Pretrained DNN model as our baseline model (Goyal et al., 2018). The model has three
layers of bi-LSTMs. The first layer is the common bi-LSTMs layer, which learns task related rep-
resentations from input utterances. The learned representations are taken as input to the upper two
bi-LSTMs layers, which are optimized separately for the slot-filling task and intent-detection task.

Our model differs from the baseline model in three aspects. First, Goyal et al. (2018) treated intents
and slots as discrete symbols and train classifiers to make predictions on these symbols. Such an ap-
proach limits the knowledge transfer between two domains as the classifier layers (affine transform
leading to the softmax) need be re-initialized when we transfer the model via fine-tuning in new do-
mains, where the output labels are different. In our model, we encode intents and slots as continuous
representations via their constituent words. The classification problems are transformed to semantic
similarity problems and the whole model parameters could be transferred to new domains.

The second difference is the usage of gazetteers (lists of slot values for a slot). Goyal et al. (2018)
used gazetteer features as an additional input. Such features are binary indicators of the presence
of an n-gram in a gazetteer. In our model, we used an attention network (Section 3.3) to encode
external slot values into a semantic vector that represents the slot from the value perspective, which
suits our semantic framework naturally.

Finally, there are no connections between the upper two layers in the baseline by Goyal et al. (2018).
However, we believe that the output of intent specific bi-LSTMs layer could benefit the slot detection
task. As one of our contributions, in our network, we concatenate the output of common bi-LSTMs
layer and intent bi-LSTMs layer to feed to the slot bi-LSTMs layer.

For the intent specific bi-LSTMs layer, we concatenate the last hidden state of each direction to
acquire the global representation of the whole utterance hintent = [

−→
h intent

T+1 ,
←−
h intent

0 ]. Such an
operation converts utterances with variable lengths into a fixed-length vector, with which the infor-
mation throughout the entire utterance can be captured. We have also tried other methods like take
Mean-Pooling or Max-Pooling of bi-LSTM hidden states to acquire hintent but get similar results.

3.2 SEMANTIC NETWORKS

We wish to build a representation-learning mechanism for the SLU task that can generalize to unseen
words and labels. For slot names, slot values and intent names, we use the same semantic network
and transform them to fixed-length representation vectors. Take slot name sni = (w1, w2, . . . , wmi

)
as an example, the semantic network first extracts the word embeddingE(wi) for each word. E(wi)
is then fed to a feed forward layer to get the non-linear semantic features. The last is a Mean-Pooling
layer, which applies the mean operations over each dimension of semantic features across all words.
The output is treated as the semantic representation for sni,

rslot namei =
1

mi

mi∑
j=1

relu (E(wj)
ᵀWslot transfrom + bslot transfrom) (1)

where Wslot transfrom and bslot transfrom are the learned linear projection matrix and bias for slot
name semantic network respectively. In the same way, we could get the semantic representation
rslot value
i,j for slot value svi,j and rintent name

i for the intent name τi. More sophisticated vector-
space semantic representations of the slots/intents are an area for future work, but we believe the
simple Mean-Pooling would be a proper choice here since intent names, slot names and slot values
are typically very short and composed by entity names.

3.3 SLOT VALUE ATTENTION NETWORKS

With semantic networks, we formulate a semantic representation rslot value
i,j of each slot

value svi,j from the i-th candidate slot si. The whole slot value representation list is(
rslot value
i,1 , . . . , rslot value

i,ni

)
. At each decoding step t, the slot bi-LSTMs layer output state hslot

t
is connected to each slot’s slot values’ representations to calculate the similarity scores. Take slot
si as an example, we compute an attention weight αt,i,j for slot value svi,j via a bi-linear operator,
which reflects how relevant or important slot value svi,j is to the current slot hidden states hslot

t ,
αt,i,j ∝ exp((rslot valuei,j )ᵀWvh

slot
t ) (2)
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where Wv is a parameter matrix. The overall slot value representation for slot si would be

rslot valuest,i =

ni∑
j

αt,i,jr
slot value
i,j . (3)

3.4 TRAINING PROCEDURE

The source domain data containing utterances and associated intents/slots is used to train the model.
The idea behind this model is to learn the representation for both utterances and intents/slots such
that utterances with the same intents/slots are close to each other in the continuous semantic space.
We define a semantic score between an utterance and an intent/slot using the similarity between their
representation embeddings h and r by Sim(h, r) = hᵀWsr. Ws is the corresponding similarity
matrix for slot or intent task.

The posterior probability of a possible intent given an utterance is computed based on the semantic
score through a softmax function

P (τ = τi|hintent,w) =
exp

(
Sim(hintent, rintent namei )

)∑
τjinT exp

(
Sim(hintent, rintent namej )

) (4)

where τi is an intent candidate. Similarly, we can get the posterior probability of a possible slot
at each time. Since we have the representations of both slot name and slot value, we first add the
semantic scores from slot name and slot value and then feed to the softmax function to get the overall
slot posterior probability

Sim(si,h
slot
t ) = Sim(hslott , rslot namei ) + Sim(hslott , rslot valuesi ) (5)

P (st = si|hslott ,w) =
exp

(
Sim(si,h

slot
t )

)∑
sj∈S exp

(
Sim(sj ,hslott )

) (6)

where si is an slot candidate. For model training, we maximize the likelihood of the correctly as-
sociated intents/intents given all training utterances. The parameters W of the model are optimized
by an joint negative log likelihood objective:

L = −
l∑

k=1

logP
(
τ = τi|hintentwk

,wk

)
−

l∑
k=1

Tk∑
t=0

logP
(
st = si|hslott,wk

,wk

)
(7)

where l is the total number of training utterances, wk is the k-th input utterance. The overall ob-
jective function combines the intent classification task and slot filling task objectives. We observe
that this multitask architecture achieves better results than separately training intent and slot models.
The model is optimized using mini-batch stochastic gradient descent(SGD) (Huang et al., 2013).

3.5 TRANSFER TO A NEW DOMAIN

We train our TSSM using labeled data from source domain Ds. This stage is called pretraining,
where the networks learn to extract semantic relationships between utterance representations and
intent/slot representations. The model is able to adapt to new domains, since the seen and unseen in-
tents/slots representations are in the same semantic space, use the same shared composition semantic
network with the same unsupervised word embeddings as input.

After the pretraining, we fine-tune our model on the target domain Dt with less annotated data and
with unseen intents/slots. The model for the new domain Dt are the same as that for Ds and are ini-
tialized by the pretrained network parameters. We tried fine-tune different components of the model.
We fix some parts and fine-tune on the other parts. After experiments on several combinations of
components, we found that fine-tune the whole model gives us the best performance.

For zero-shot learning where no fine-tune data is available, in order to predict new intents/slots
on new utterances, the TSSM calculates semantic similarities. We transform each input utterance w
into a vector hintent using the base network, and then estimate its semantic similarity with all intents
including seen and unseen intents. The vector representations for new intents can be generated from
the trained semantic network by feeding the word embedding vectors of new intents as the input. For
the utterance w, the estimated semantic score of the i-th intent is defined as Sim(hintent, rintenti )
in Equation 3.4. Then predicted intent for each utterance is decided according to the estimated
semantic scores. Predicting slot sequences is similar to predicting intents except that the calculation
is conducted step by step at each position.
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4 EXPERIMENTS AND RESULTS

In this experiment, we use five popular public dialogue datasets from five domains and three datasets
obtained from practical applications. The CamHotel dialogue dataset (Hotel) (Wen et al., 2015)
records some dialogues about booking a hotel room in Cambridge. The CamRestaurant dialogue
dataset (Restaurant) (Wen et al., 2016c;a) contains dialogue records about booking a restaurant in
Cambridge. The Laptop and TV dialogue dataset (Wen et al., 2016b) are dialogues about buying
Laptops and TVs. The Airline Travel Information System dataset (Atis) (Price, 1990) contains
dialogues about airline travel, such as the flight time, the destination, etc. Weilidai, Huobijijin
and Weizhongyouzhe are three financial products from WeBank, an internet bank in China. While
Weilidai is very popular and its online customer service accumulated a lot of queries, Huobijijin
and Weizhongyouzhe are newly developed products and have only few queries. We would like to
pretrain on Weilidai queries and fine-tune on Huobijijin and Weizhongyouzhe queries to improve
the online customer service’s experience of the last two products.

In order to thoroughly evaluate the transfer learning ability on more diversified domains, we make
five different pairs of source and target domains, as shown in table 1. In case when we have multiple
source domains, all source domains will be combined into a large source domain. For each pair of
the source and target domain pair, we first pretrain the model on the source domain. Then we fine-
tune the model on the target domain training data, finally we evaluate the fine-tuned model on the
target domain test set. We use accuracy to evaluate the intent classification task and we use accuracy
and F1 score to evaluate the slot filling task. Apart from the Pretrained DNN (Goyal et al., 2018),
we also compare TSSM to Max Entropy model and Conditional Random Field model (CRF).

Table 1: Data Sizes of the source and target domains.
Source Domain Target Domain # Source Sentence # Target Sentence
Restaurant, Laptop, TV, Atis Hotel 48566 2168
Restaurant, Hotel, Laptop, TV Atis 45756 4978
Atis Hotel 4978 2168
Weilidai Huobijijin 5730 927
Weilidai Weizhongyouzhe 5730 1053

4.1 RESULTS UNDER DIFFERENT SIZES IN TARGET-DOMAIN DATA SETS

In order to evaluate the transfer learning performance of the proposed model, we compare the pro-
posed model with the baselines when we have different number of target domain training data. After
pretraining in the source domain, we fine-tune the model on different percentages of the target do-
main data, and we evaluate the performance of the models on the test set. We use 50% of the target
domain data as test set, and we vary the percentage of train set used from 5% to 46%.

The results are shown in Figure 2. As a higher percentage of target domain data is used in fine-
tuning, the performances of all models improve. Generally, transfer learning models perform better
than non-transfer models, which implies that transfer learning can help improve the performance in
new domain. The proposed TSSM model outperforms the baseline model significantly in almost all
cases. In some cases, the proposed TSSM is not better than DNN. This might because our model
has more parameters than the baseline DNN model and in some cases simper model performs better.

Compared with intent classification task, the slot filling task benefit more from transferring from the
source domain. This is because the intent has larger domain differences compared with the slots.
For example, the intent in the hotel domain contains verbs such as “inform” “inform no match”
while the intent in the Atis domain contains nouns such as “flight” “aircraft”. While the slots in all
domains mostly contain nouns. The improvement of transferring from Atis to Hotel dataset is worse
than the other source and target pairs. We think this is because the intent and slot difference between
“Atis” and ’Hotel’ domains are bigger than the domains difference of other tasks.

4.2 RESULTS UNDER DIFFERENT NUMBERS OF NEW LABELS IN THE TARGET DOMAIN

In order to evaluate the generalization ability of the TSSM model, we test the model on previously
unseen labels. More specifically, we remove zero, one and two labels and their corresponding train-
ing instances from the target domain training set. Then we evaluate TSSM on the target domain
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Figure 2: Performance comparison under different percentage of training data used in the target
domain fine-tuning. In each figure, X-axis is the percentage of data used in the target domain, y-
axis is the performance (higher is better). The three columns corresponds to intent accuracy (left
column), slot accuracy (middle column) and slot f1 score (right column). The five rows corresponds
to different source and target domain pairs. From the top to the bottom are “Restaurant, Laptop,
TV, Atis” to “Hotel” “Restaurant, Hotel, Laptop, TV” to “Atis” “Atis” to “Hotel” “Weilidai” to
“Weizhongyouzhe” and “Weilidai” to “Huobijijin”.

test set which has full lists of labels. The results are shown in Figure 3. Here we use 10% of all
target domain data as the training set, when the percentage of target domain training data increases
to 20% or 30%, the results are similar. As the number of unseen label increases in the target do-
main test set, the performance of all model drops significantly. Transfer learning methods again
out-performs none-transfer learning baselines, which demonstrate that transferring knowledge from
source domain is generally beneficial to the target domain.

As the number of unseen label increases, the performance drop of the TSSM model is significantly
slower than the other baselines models. Compared with a softmax classification layer, the semantic
similarity module works better since it can still compute semantic similarity for unseen labels. With
a pretrained word embeddings, the TSSM can theoretically compute semantic similarity for arbitrary
label as long as the label has a word embedding. The experiments demonstrate that the TSSM model
can effectively deal with cold start labels that is not seen in the target domain training data.

4.3 ZERO-SHOT TRANSFER LEARNING

In the extreme case, there could be no training instances in the target domain at all. In order to test
the proposed TSSM model on such extreme case, we report the performances of the TSSM model
when there is no target domain training instances. The result is shown in Table 2. The random guess
performance is 0.05 for intent classification accuracy, 0.02 for slot accuracy and 0.02 for slot f1.
The TSSM have an performance much better than random guess. In such case, both the Pretrained
DNN, the Max Entropy model and the CRF model could not work, since all of them require target
domain training instances to initialize their softmax layer.
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Figure 3: Performance vs the number of unseen intent/slot in the target domain test set, where 10%
of the total target domain data is used. In each figure, X-axis is the number of unseen intent/slots in
the target domain test set, y-axis is the performance (higher is better).

Table 2: The zeros-shot performance of TSSM
Source and Target Intent Accuracy Slot Accuracy Slot F1
nohotel2hotel 0.787 0.871 0.870
atis2hotel 0.478 0.756 0.759
noatis2atis 0.220 0.617 0.616

4.4 ABLATION EXPERIMENT

One of the improvements we have made is to use the intent bi-LSTMs output states as input fea-
tures to the slot bi-LSTMs, we call this mechanism “intent2slot”. To evaluate the effectiveness of
“intent2slot” mechanism, we compare the TSSM with its ablation variant without “intent2slot”, and
the result is shown in Table 3. The results demonstrate that the “intent2slot” mechanism helps to
improve intent classification performance. The parameters in intent bi-LSTMs layer might have
obtained additional supervision from the upper slot filling task. The improvements for transferring
from Restaurant, Laptop, TV, Atis to Hotel is not obvious and the reason needs further experiments.

Table 3: The TSSM with/without “intent2slot”
Source and Target Intent Accuracy Slot Accuracy Slot F1

TSSM-abl TSSM TSSM-abl TSSM TSSM-abl TSSM
nohotel2hotel 0.949 0.952 0.924 0.926 0.938 0.935
atis2hotel 0.945 0.952 0.937 0.938 0.945 0.945
noatis2atis 0.807 0.840 0.891 0.896 0.899 0.888

5 CONCLUSIONS

In this paper, we introduced a deep semantic similarity network to transfer from domains with suffi-
cient labeled data to low resource domains. The experiments illustrated that our proposed methods
outperform the state-of-the-art baselines in several experimental settings. In the future, we will con-
sider different regularization choices to make our model more robust in changing data situations.
We will also consider different data set types for dialog systems.
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Su, Stefan Ultes, and Steve Young. A network-based end-to-end trainable task-oriented dialogue
system. arXiv preprint: 1604.04562, April 2016c.

Majid Yazdani and James Henderson. A model of zero-shot learning of spoken language understand-
ing. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Process-
ing, pp. 244–249. Association for Computational Linguistics, 2015. doi: 10.18653/v1/D15-1027.
URL http://www.aclweb.org/anthology/D15-1027.

Steve Young. Talking to machines (statistically speaking). 2002.

Tiancheng Zhao and Maxine Eskénazi. Zero-shot dialog generation with cross-domain latent ac-
tions. CoRR, abs/1805.04803, 2018. URL http://arxiv.org/abs/1805.04803.

11

http://www.aclweb.org/anthology/D15-1027
http://arxiv.org/abs/1805.04803

	Introduction
	Related Work
	Our Proposed Approach for Model Transfer
	Base Networks
	Semantic Networks
	Slot Value attention Networks
	Training Procedure
	Transfer to A New Domain

	Experiments and Results
	Results under different sizes in target-domain data sets
	Results under different numbers of new labels in the target domain
	Zero-shot Transfer Learning
	Ablation Experiment

	Conclusions

