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Summary
Learning in non-stationary environments can be difficult. Although many algorithmic ap-

proaches have been developed, often methods struggle with different forms of non-stationarity
such as gradually changing versus suddenly changing contexts. Luckily, humans can learn
effectively under a variety of conditions and using human learning could be revealing. In the
present work, we investigated if a stateless variant of the IDBD algorithm (Mahmood et al.,
2012; Sutton, 1992), which has previously shown success in bandit-like tasks (Linke et al.,
2020), can model human exploration. We compared stateless IDBD to two algorithms that are
frequently used to model human exploration (a standard Q-learning algorithm and a Kalman
filter algorithm). We examined the ability of these three algorithms to fit human choices and
to replicate human learning within three different bandits: (1) non-stationary volatile which
changed suddenly, (2) non-stationary drifting which changed gradually, and (3) stationary. In
these three bandits, we found that stateless IDBD provided the best fit of the human data and
was best able to replicate different aspects of human learning. We also found that when fit to
the human data, differences in the hyperparameters of stateless IDBD across the three bandits
may explain how humans learn effectively across contexts. Our results demonstrate that state-
less IDBD can account for different types of non-stationarity and model human exploration
effectively. Our findings highlight that taking inspiration from algorithms used with artificial
agents may provide further insights into both human learning and inspire the development of
algorithms for use in artificial agents.

Contribution(s)
1. Our work is the first to investigate a light-weight, meta-learning algorithm from reinforce-

ment learning (IDBD) as a potential computational model of human exploration. Recovery
of IDBD parameters and simulation results from our human data provides suggestive evi-
dence that people modulate their learning rates in a similar manner to IDBD.
Context: Our work may be limited to the bandit setting, as human data in multi-stage
decision making tasks is typically modelled using hybrid model-free/model-based (e.g.,
successor representation) approaches (Momennejad et al., 2017).

2. Although prior work has shown IDBD-based agents can automatically and continually adapt
step-sizes to improve performance in simulation, we are the first to show IDBD can do the
same with human exploration data (i.e., a sequence of actions and rewards generated by
people performing bandit tasks).
Context: IDBD-inspired agents have been used in supervised learning tasks (Sutton, 1992;
Mahmood et al., 2012), bandit tasks (Linke et al., 2020), MDPs (Mcleod et al., 2021; Kear-
ney et al., 2018; Javed et al., 2024; Jacobsen et al., 2019), and even to help predict data from
real robots (Mahmood et al., 2012; Kearney et al., 2018; Jacobsen et al., 2019)

3. Our analysis indicates that IDBD matches human data better than popular computational
models from the literature (Daw et al., 2006; Hassall et al., 2019).
Context: Our results are limited to three tasks and a moderate number of human partic-
ipants. It is always possible that different tasks or a larger number of participants could
produce different conclusions. We did not exhaustively study all computational models
proposed in the literature, but instead focused on two popular ones: a Q-learning algorithm
(Hassall et al., 2019) and a Kalman filter algorithm (Daw et al., 2006)
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Abstract

Learning in non-stationary environments can be difficult. Although many algorithmic1
approaches have been developed, methods often struggle with different forms of non-2
stationarity such as gradually changing versus suddenly changing contexts. Luckily, hu-3
mans can learn effectively under a variety of conditions so using human learning could4
be revealing. In the present work, we investigated if a stateless variant of the IDBD5
algorithm (Mahmood et al., 2012; Sutton, 1992), which has previously shown success6
in bandit-like tasks (Linke et al., 2020), can model human exploration. We compared7
stateless IDBD to two algorithms that are frequently used to model human exploration8
(a standard Q-learning algorithm and a Kalman filter algorithm). We examined the9
ability of these three algorithms to fit human choices and to replicate human learning10
within three different bandits: (1) non-stationary volatile which changed suddenly, (2)11
non-stationary drifting which changed gradually, and (3) stationary. In these three ban-12
dits, we found that stateless IDBD provided the best fit of the human data and was best13
able to replicate different aspects of human learning. We also found that when fit to14
the human data, differences in the hyperparameters of stateless IDBD across the three15
bandits may explain how humans learn effectively across contexts. Our results demon-16
strate that stateless IDBD can account for different types of non-stationarity and model17
human exploration effectively. Our findings highlight that taking inspiration from algo-18
rithms used with artificial agents may provide further insights into both human learning19
and inspire the development of algorithms for use in artificial agents.20

1 Introduction21

Often algorithms struggle to deal with non-stationary contexts. While many approaches have been22
developed to deal with non-stationary contexts (Gupta et al., 2011; Garivier & Moulines, 2011;23
Mcleod et al., 2021; Linke et al., 2020; Padakandla et al., 2020; Padakandla, 2021; Jain et al., 2024;24
Khetarpal et al., 2022; Chandak, 2022), one problem is that they may be unable to handle differ-25
ent types of non-stationary contexts. For example, consider a context which is slowly changing –26
which may require consistent but slow rates of exploration – in comparison to an context which27
changes suddenly – which would require exploration and a sudden increase in learning rate when28
the context changes. However, humans are excellent at learning in non-stationary contexts like these29
(e.g., (Soltani & Izquierdo, 2019; Lee et al., 2023; Payzan-Lenestour & Bossaerts, 2011). Taking30
inspiration from human learning capabilities could be useful for both deciding which algorithmic31
directions are promising and focus future algorithm refinement. One ability which allows us to32
engage in meta-learning is solving the explore-exploit dilemma (Cohen et al., 2007). Specifically,33
one example of meta-learning in humans is the tuning of hyperparameters in algorithms of learning34
and exploration depending on context (Griffiths et al., 2019). While the development of models35
of human learning under uncertainty (that is, non-stationarity) has been successful (e.g., (Behrens36
et al., 2007; Daw et al., 2006), much of the focus has been on contexts which only show one form of37
non-stationarity (e.g., a suddenly changing world or a gradually changing world). If researchers are38
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to take inspiration from human learning, then validating algorithms which can handle different types39
of non-stationarity should be of importance. As such, the use of light-weight, meta-learning models40
– which may not require the tuning of numerous hyperparameters – provides one step forward.41

Luckily, work in artificial agents provides one such family of light-weight meta-learning algorithms.42
The Incremental Delta-Bar-Delta (IDBD) algorithm employs a simple update rule and was able to43
learn within a non-stationary context through adjusting individual step-size parameters for every44
input (Sutton, 1992). IDBD has been extended to have no sensitive hyperparameters – known as45
Autostep – where it was able to solve different non-stationary problems and did not require exten-46
sive tuning (Mahmood et al., 2012). Autostep works by increasing the step-size parameter of an47
input when learning is progressing (i.e., the prediction error of an input is in a consistent direction)48
while decreasing the step-size parameter when learning is not progressing (i.e., the prediction er-49
ror is not consistent) through a memory trace of prior prediction errors. Autostep/IDBD has been50
successfully applied to bandit-like tasks which required the individual tracking of multiple arms51
each with their own step-size parameter (Linke et al., 2020). The application of a light-weight meta-52
learning algorithms like Autostep/IDBD (hereinafter: stateless IDBD) to human learning data across53
contexts may be useful.54

We examined both human and artificial agent performance across different learning contexts. Specif-55
ically, we examined performance within: (1) a non-stationary bandit where the best arm (i.e., the56
arm that produced the highest reward) would change suddenly across time-steps, (2) a non-stationary57
bandit where the best arm would change gradually across time-steps, and (3) a stationary bandit58
where the best arm remained consistent. The different levels of non-stationarity provide an appro-59
priate paradigm for testing learning across contexts. We collected a large sample of human partic-60
ipants (n = 204) who each completed two of the bandit contexts. The primary algorithm we were61
interested in was the stateless IDBD algorithm. Stateless IDBD has not been formally validated for62
use with humans in a multi-arm bandit so we conducted two steps to validate the algorithm for use in63
humans: "parameter recovery" and "model recovery" (Wilson & Collins, 2019). We ran parameter64
recovery to determine whether the hyperparameters had distinct effects on task performance. We65
ran model recovery to determine whether the algorithm made distinct behavioural predictions in our66
tasks compared to two baseline algorithms. Specifically, to compare stateless IDBD to other algo-67
rithms, we examined two popular algorithms often used to model exploration in humans: a simple68
Q-learning algorithm which relies on a static step-size for all arms (Hassall et al., 2019; Ferguson69
et al., 2023), and a Kalman filter model where the step-size can change (Daw et al., 2006; Speeken-70
brink & Konstantinidis, 2015). To compare our three algorithms, we examined how well each of71
them fit human choices in the bandits and how well they could simulate human learning.72

In the present work, we provide five key findings. First, stateless IDBD showed strong parameter73
recovery and model recovery, suggesting that it is a good candidate to be applied to human learning.74
Second, we found that stateless IDBD provided the best fit of the majority of the human participants75
across all three bandit contexts. Third, we found stateless IDBD best replicated human learning76
compared to our two baseline algorithms. Fourth, we found that stateless IDBD provided the best77
evidence of transfer learning compared to our two baseline algorithms. Fifth, we found that stateless78
IDBD’s best-fitting hyperparameters based on the human choices differed depending on the bandit79
context, which may be tied to human meta-learning. In sum, we found that stateless IDBD algorithm80
was more successful at modelling human exploration than our two baselines. Our findings have81
implications both for research on human learning and for algorithm development in artificial agents.82

2 Problem Setting: Human Bandit Tasks83

In the present work, we had agents complete two of three multi-arm bandits (Figure 1). Each of84
the bandits required completing 300 total time-steps. For the two non-stationary bandits, agents85
completed three blocks of 100 time-steps. For the stationary bandit, agents completed six blocks86
of 50 time-steps. Agents completed all blocks of one bandit followed by all blocks of the second87
bandit.88
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Figure 1: The three multi-arm bandits used in the present work. The reward distributions show the
reward values of the four arms for an example block of each bandit that agents encountered.

We believe that when humans completed our learning task, they were completing a multi-arm bandit89
and not a Markov decision problem. First, there was no additional contextual (state) information to90
help them solve the task and the task was designed to focus their attention on the immediate block.91
When completing the task, they saw the four bandit arms represented as different coloured squares,92
were required to select a bandit within 2000 ms on each time-step, and all participants completed93
the tasks within 50 minutes. Second, the task was not a sequential decision-making task and choices94
did not involve future discounted reward. That is, all the rewards of the four arms were independent95
of each other and of the next time-step (or block/task).96

For the non-stationary drifting bandit, we used a task where the reward values of the four arms97
changed across time-steps randomly and independently (Daw et al., 2006). On each block, the98
rewards were randomized for each of the four arms, and followed a random walk that drifted towards99
50 points on each time step. Specifically, the rewards for each time-step were drawn from a Gaussian100
distribution with a mean (µj,k) and a standard deviation which was equal to three. To calculate the101
mean of the Gaussian distribution for each arm (k) and time-step (j), the point values of the arms102
were updated using a Gaussian random walk: µj+1,k = µj,k + (1 − λ)θ + ν, where λ is a decay103
parameter equal to 0.9836, θ is the decay center (equal to 50), and ν is a diffusion noise parameter.104
On each time-step, the diffusion noise parameter is sampled from a Gaussian distribution with a105
mean of zero and a standard deviation of 2.8.106

For the non-stationary volatile bandit, we developed a bandit where the reward values of the four107
arms would change suddenly. For each block, one arm’s mean was initialized to be between 30 and108
90 points, while the other arms had their means shifted by: -8, -16, and -24 points relative to the first109
arm. On each time-step, the values of each of the arms were sampled from a Gaussian distribution110
with the specified mean values and standard deviation equal to three. Following the completion of111
between 20 to 30 time-steps, the mean reward of each arm were shifted by between 10 and 15 points.112

For each block in the stationary bandit, the first arm’s mean was set to be between 30 and 90 points,113
while the other three arms had their means shifted -5, -10, and 5 points relative to the first arm. For114
the stationary bandit, the reward on each time-step was drawn from a Gaussian distribution using115
the means specified above and a standard deviation of three.116

Human Participants We collected data from 204 people. 107 people completed both the drifting117
and volatile bandit, while 97 people completed both the volatile and the stationary bandit. Partic-118
ipants were recruited from the local institution, compensated with course credit, and completed a119
consent form. All experiments were conducted with the approval of the local institution’s research120
ethics board.121
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3 Model Fitting & Algorithms122

To find the best fitting parameters of each algorithm from the human choices, we applied the123
Bayesian optimization algorithm from the PyBADS package (Version 1.0.5) in Python (Version124
3.9). Algorithm parameters were optimized individually for each participant within each of the125
three bandits (each participant ended up with three sets of parameters; one set per bandit). Using the126
Softmax choice probabilities of each of the algorithms, we applied a posteriori estimation based on127
the minimization of the negative log-likelihood across all trials (t) and blocks (b) per the input set of128
hyperparameters (Daw, 2011).129

The goal is to select hyperparameters for each algorithm that would most likely recreate the choices130
in the human data. Assume we pick hyperparameter set w which generates a sequence of corre-131
sponding softmax probabilities Pi,j,w for block i and trial j in that block. Then we compute the132
negative log-likelihood of the observed actions ai,j133

ℓ(w) = −
b∑

i=1

t∑
j=1

lnPi,j,w(ak). (1)

The actual loss given to the Bayesian optimizer is the AIC = 2p + 2ℓ(w) where p is the number134
of hyperparameters. We use the AIC, instead of the negative log-likelihood, to penalize model135
complexity.136

Stateless IDBD The stateless IDBD algorithm relies on Autostep (Mahmood et al., 2012) which137
has been successfully applied to non-stationary bandit-like tasks (Linke et al., 2020). Briefly, the138
stateless IDBD algorithm involves the calculation of an individual step-size parameter for each of139
the arms, which changes on each time-step per the sign of the prediction error (see Algorithm 1 in140
6).141

The meta-learning rate parameter (κ) determines how quickly the individual step-size parameters142
change. Because of the low number of time-steps, the meta-learning rate parameter did not have143
any appreciable effect on performance, and we chose to keep it constant (.15) across each of the144
bandits. While we found that this meta-learning rate parameter maximized performance across145
10000 simulations, there was little effect on performance overall.146

For stateless IDBD, we updated value estimates using model-free reinforcement learning (Sutton &147
Barto, 2018). Specifically, we had the value estimates updated for chosen arms on each time-step by148
multiplying the prediction error of the chosen arm by a step-size parameter (α). On each time-step,149
the value estimates for the selected arm (k) were updated by: qi,j+1,k = qi,j,k + αk × δi,j , where150
αk is the step-size for an arm and δi,j is the prediction error: δi,j = ri,j − qj,k, and ri,j is the reward151
obtained from the selected arm. For the stateless IDBD algorithm, we fit three hyperparameters per152
person and per bandit: the inverse temperature parameter of the softmax policy, the initial Q value153
for each block, and the initial step-size parameters for each block.154

Q-Learning Baseline For the Q-learning baseline, the algorithm relied on the Q-update as in155
Stateless IDBD. However, we instead fit a single step-size (α) for all arms. We initialized each156
of the arm values (q) optimistically on each block as 100. We note that while we attempted to fit157
the initial Q values for this algorithm, we were unable to successfully recover the initial Q value158
estimates – a point we will return to in the discussion. For the Q-learning baseline algorithm, we159
fit two hyperparameters per person per bandit: the inverse temperature parameter from the softmax160
policy, and the single step-size parameter for all arms.161

Kalman Filter Baseline For a second baseline, we examined a Kalman filter algorithm (Kalman,162
1960). The Kalman Filter algorithm used approximate Bayesian updating for changing the agent’s163
value estimates across time-steps. In comparison to Q-learning, the Kalman filter incorporates a164
variable step-size (the Kalman Gain) which changes across time. On each time-step the value es-165
timate (q; initialized to 100 on each block) and the variance estimate (v; initialized to 100 on each166
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block) of for each arm are updated by:167

qi,j+1,k = qi,j,k + KGi,j,k(ri,j − qi,j,k) (2)

vi,j+1,k = (1− KGi,j,k)vi,j,k + σ2
ξ . (3)

The Kalman Gain was updated by168

KGi,j,k =


vi,j,k+σ2

ξ

vi,j,k+σ2
ξ+σ2

ϵ
if k = selection

0 otherwise
, (4)

where σ2
ξ is the innovation variance parameter and σ2

ϵ is the error variance parameter. These two169
variance parameters determine how the Kalman Gain updates on each time-step. Only one of these170
two noise parameters can typically be recovered successfully from human choices, because it is171
the ratio of the two parameters that determines how arms are selected and how values are updated172
(Piray & Daw, 2024). Thus, the only free parameter was the error variance parameter while we173
set the innovation variance parameter to a constant value of five (similar to previous work - (Daw174
et al., 2006). For the Kalman Filter baseline algorithm, we fit two hyperparameters: the inverse175
temperature parameter from the softmax policy, and the error variance parameter.176

Softmax Policy To ensure our algorithms could be easily compared, we used a softmax policy.177
The softmax policy involves probabilistic random exploration, where agents usually select the high-178
est estimated value arm, while occasionally exploring the other arms in decreasing probability de-179
pending on their estimated value. The inverse temperature parameter (τ ) determines how often180
exploration occurs. The softmax policy relies on the formula: Pi,j(ak) =

exp(τ×qi,j,k)∑
exp(τ×qi,j)

.181

4 Experimental Results182

Below we provide the main results. First, stateless IDBD was validated for use in humans as the183
algorithm demonstrated good parameter and model recovery. Second, stateless IDBD was the best-184
fitting algorithm across all bandits. Third, stateless IDBD was best able to simulate human learning185
curves. Fourth, we demonstrate stateless IDBD was also best able to simulate transfer performance186
across contexts. Fifth, the best fitting hyperparameters of stateless IDBD differed across bandits.187

Model Validation of Stateless IDBD To validate stateless IDBD for use in humans, we ensured188
that the three hyperparameters could be recovered effectively. This was true for the volatile ban-189
dit (all r > .88), the drifting bandit (all r > .83) and the stationary bandit (all r > .83). We also190
found strong model recovery across all three of our bandits. Specifically, stateless IDBD showed191
good model recovery in the volatile bandit (90%), the drifting bandit (90%), and the stationary ban-192
dit (96%). Please see the supplemental materials for additional details and figures for parameter193
recovery (7) and model recovery (8).194

Best Fitting Algorithms Across Bandits To determine which algorithm provided the best fit of195
the human data, we computed each of the algorithm’s AIC values on a participant-by-participant196
basis for the three bandits. We found that the stateless IDBD bandit provided the best fit of 64%197
(130/204) of participants in the volatile bandit, 59% (63/107) of participants in the drifting bandit,198
and 88% (85/97) of participants in the stationary bandit.199

Learning Curve Simulation To adjudicate between algorithms, we investigated whether three200
algorithms could replicate the learning behaviour of humans (Figure 2)1. To determine how well201
the algorithms could replicate human performance, we selected the best fitting parameters for each202
participant within each bandit. We then used those best fitting parameters to simulate performance203

1The confidence intervals on Figure 2 are standard normal 95% confidence intervals. This is true for all confidence
intervals in our work.
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by having each algorithm make choices and obtain rewards in each of the three bandits. To determine204
how well each algorithms learned compared to the humans, we examined four measures: (1) optimal205
arm choice (i.e., how often the agent selected the highest value arm), (2) switching (how often the206
agent switched), (3) win-stay behaviour (how often the agent stayed following a win), and (4) lose-207
switch behaviour (how often the agent switched following a loss).

Figure 2: Human (blue dotted line) and algorithm (solid lines) learning curves. Shaded regions
indicate 95% confidence intervals.

208

Overall, the stateless IDBD was best able to simulated performance across our measures. Generally,209
the algorithms attained similar levels of performance in terms of optimal arm selection in both210
of the non-stationary bandits. However, in the stationary bandit, the Kalman filter algorithm was211
most similar to the human optimal arm curve. For switching, the stateless IDBD algorithm attained212
performance most closely aligned with human switching. For win-stay and lose-shift behaviour, the213
stateless IDBD algorithm simulated curves most like the humans although it tended to stay following214
wins at a higher rate and shift following losses at a lower rate. In contrast, the two baselines tended215
to stay following wins at a lower rate and switch following loses at a higher rate.216

Transfer Performance In addition, we compared how well the algorithms could transfer perfor-217
mance across bandits. To do this, we took the best fitting hyperparameters of the human learning218
data from one bandit and used those parameters to simulate participants in the second bandit that a219
participant completed. That is, we examined how well the algorithms fit to one bandit were able to220
replicate human learning when made to complete a second bandit. To assess transfer performance,221
we compared the algorithms to the human performance using the mean square deviation (Ahn et al.,222
2008). Briefly, the mean square deviation was calculated by: MSD = 1

c

∑c
1(Phuman − Psim)2.223

Here, c is the three bandits, Phuman is the human participants’ performance averaged across all224
blocks and time-steps for a bandit, and Psim is the average simulated performance from the algo-225
rithm from that same bandit. The lower the mean squared deviation, the better the algorithm’s ability226
to simulate transfer performance. We compared the ability of algorithms to transfer performance us-227
ing one-way analysis of variances (ANOVAs), and followed up with independent samples t-tests228
(Benjamini-Hochberg corrected; (Benjamini & Hochberg, 1995)).229
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In terms of the ability of the algorithms to transfer performance (Figure 3) we found that stateless230
IDBD performed best for three of our four measures. We found an effect of algorithm on optimal arm231
choice (F (1, 1170)= 9.14, p= 0.0001, η2p = 0.015). Stateless IDBD performed worse at replicating232
the human optimal arm choices compared to both Q-learning (t(780) = 2.24, p = 0.03, d = 0.16) and233
the Kalman filter (t(780) = 4.04, p < 0.0001, d = 0.29). In addition, the Kalman filter outperformed234
Q-learning (t(780) = 3.71, p < 0.03, d = 0.15). In terms of replicating human switching behaviour,235
we again found an effect of algorithm type (F (1, 1170) = 19.43, p = 5e-9, η2p = 0.032). The follow-236
up t-tests revealed that stateless IDBD was better at replicating human switching compared to both237
Q-learning (t(780) = 3.52, p = 0.0007, d = 0.25), and the Kalman filter (t(780) = 6.67, p = 1e-10,238
d = 0.48). Interestingly, Q-learning replicated human switching behaviour better than the Kalman239
filter (t(780) = 2.65, p = .008, d = 0.19).240

Figure 3: Mean square deviation across our four measures of performance - lower scores indicate the
algorithm was better able to simulate human performance. Error bars are 95% confidence intervals.

For replicating win-stay behaviour, we found an effect of algorithm type (F (1, 1170)= 14.07, p =241
9e-7, η2p = 0.023). This effect was primarily driven by the fact that stateless IDBD was better able to242
replicate win-stay behaviour than both Q-learning (t(780) = 4.07,p= 7e-5, d = 0.29) and the Kalman243
Filter (t(780) = 5.68, p = 6e-8, d = 0.41). There was no difference between Q-learning and the244
Kalman Filter (t(780) = 1.16, p = 0.24, d = 0.08). For lose-shift behaviour, again the algorithms245
differed (F (1, 1170) = 12.64, p = 3e-6, η2p = 0.021). Stateless IDBD outperformed both Q-learning246
(t(780) = 2.51, p = 0.02, d = 0.25) and the Kalman filter (t(780) = 5.26, p = 5e-7, d = 0.38). The Q-247
learning algorithm outperformed the Kalman filter algorithm in terms of lose-shift behaviour (t(780)248
= 2.42, p = 0.02, d = 0.17).249

Hyperparameter Comparison For our final analysis, we compared the best-fit hyperparameters250
of the stateless IDBD algorithm across bandits (Figure 4). For the comparison between the volatile251
bandit to the stationary bandit, we found that all three hyper parameters differed. Specifically,252
participants in the non-stationary volatile bandit had lower inverse temperature parameters (t(94)253
= 4.44, p = 2e-5, d = 0.64), higher initial Q values (t(94) = 8.88, p = 4e-14, d = 1.15) and higher254
initial step-size parameters (t(94) = 7.20, p = 1e-10, d = 1.03). When instead comparing the two255
non-stationary bandits, we found that humans had a higher inverse temperature parameter (t(103) =256
2.24, p = 0.02, d = 0.27) and higher initial step-size values (t(103) = 2.72, p = 0.008, d = 0.36) in the257
volatile bandit compared to the drifting bandit. There was no difference in terms of initial Q values258
(t(103) = 0.24, p = 0.80, d = 0.03).259

5 Discussion260

We first discuss the implications of the present work for using Stateless IDBD to study human learn-261
ing and exploration. Following this, we discuss the implications of the present work for research in262
artificial agents.263

Implications for Human Learning The present work has several implications for understanding264
human learning. First, we found that stateless IDBD is a well-behaved algorithm (per parameter265
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Figure 4: Best fit hyperparameters from the human data across the three bandits. Error bars are 95%
confidence intervals.

and model recovery) and can successfully model human learning. Thus, we no longer need to use266
a single static step-size (the Q-learning algorithm), and can extend the benefit of the varying step-267
size (the Kalman filter) to multiple inputs. While it is unclear whether humans would maintain268
separate step-size parameters for different options, combining brain imaging techniques like EEG269
(which can detect neural signals tied to step-size changes; (Jepma et al., 2016) with the stateless270
IDBD algorithm could provide an answer. Second, because we combined stateless IDBD with271
Q learning, our work should be easily extended to study different aspects of exploration such as272
directed exploration (Auer, 2002), or the positivity bias (Palminteri, 2022) providing directions for273
future work. Third, typically initial Q values are not recovered from human data, although there are274
some exceptions when using Hierarchical Bayesian approaches (Dubois et al., 2021). Being able to275
recover the initial Q values means we can model how much humans value a context, providing a link276
to foraging algorithms which model how good a forager thinks a context is (Avgar & Berger-Tal,277
2022). Fourth, the hyperparameters of stateless IDBD varied across contexts which may suggest that278
these parameters are related to cognitive processes involved in meta-learning (Wang, 2021). That is,279
humans modulate their rate of probabilistic exploration, modify their assessments of context quality,280
and increase or decrease their initial rate of learning, to learn across contexts.281

Implications for Artificial Agents Our results also suggest meta-learning algorithms similar to282
IDBD could be useful for developing continual reinforcement learning algorithms. Continual re-283
inforcement learning algorithm development is still in its infancy. There is still little consensus284
on problem formulations (Abel et al., 2023), empirical benchmarks to evaluate progress (Khetarpal285
et al., 2022), or how hyperparameters should be dealt with (Mesbahi et al., 2024). However, our286
results suggest two foci for future algorithm development. First, hyperparameter free algorithms287
(or at least algorithms less sensitive to hyper choices) model human data well. Recent work has288
shown that hyperparameter tuning in continual reinforcement learning is fundamentally different289
compared with conventional reinforcement learning and that tuning in continual tasks can obfuscate290
good directions for algorithmic progress (e.g., (Mesbahi et al., 2024). Second, the vast majority of291
deep reinforcement learning algorithms (including continual ones) make use of the Adam optimizer292
(Kingma & Ba, 2015). The belief is that Adam eliminates step-size tuning and provides a vector293
of step-sizes—one for each weight in the network. However, recent studies have shown counter-294
examples where Adam degenerates into a single global step-size parameter (Degris et al., 2024) and295
performs poorly (Elsayed & Mahmood, 2024). Our results provide yet another piece of evidence296
suggesting that effective continual learning systems (in this case people) modulate a collection of297
step-sizes based on meta learning and that approaches similar to, or inspired by, IDBD should be298
developed and examined in continual reinforcement learning settings.299

Broader Impact Statement300

As our work studies human exploration, it could be used by malicious actors to manipulate people301
to explore (or not) as a benefit to the actor. We caution readers to not use this work for that purpose.302
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Supplementary Materials401

The following content was not necessarily subject to peer review.402
403

6 Stateless IDBD Pseudocode404

Below, we provide pseudocode for a stateless version of Autostep (Mahmood et al., 2012) adapted405
from previous work (Linke et al., 2020). Autostep was designed for non-stationary environments and406
has a separate step-size parameter for each input. For stateless IDBD, the step-size parameter can407
thus change depending on the obtained rewards. As such, when learning is progressing the step-size408
parameter of an arm should increase, but when learning is not progressing the step-size parameter of409
an arm should decrease. This occurs through the computation of a memory trace (h) of the prediction410
errors (δ) across the task. If the predictions errors of an arm are all of the same sign then the step-411
size parameter of that arm should increase but if the prediction errors are changing signs repeatedly412
then the step-size parameter should decrease. The update of the step-size parameters depends on a413
meta-learning rate parameter (κ). However, because we had agents only complete a small number414
of time-steps (100 time-steps for each block of each bandit), we found that the meta-learning rate415
had little effect on performance when simulating agents within the bandits we used here.416

Algorithm 1: Stateless IDBD Algorithm
κ is the meta-learning rate parameter
n and h are scalar memory variables initialized to 1 and 0
δj is the prediction error at time-step j and αk the step-size parameter of predictor k
Procedure Autostep
1. nk = max(|δjhk|, nk + 1

100αk(|δjhk| − nk)

2. αk = min(αkexp(κ δjhk

nk
, 1)

3. hk = hk(1− αk) + αkδj

7 Parameter Recovery417

To ensure that the stateless IDBD algorithm was stable and that its parameters had distinct effects on418
behaviour, we conducted parameter recovery (Figure 5). Parameter recovery involves the generation419
of a set number of simulated datasets (in our case, 50 datasets per bandit). To generate each dataset,420
we first randomly selected a set of true (i.e., simulated) parameter values for the stateless IDBD421
model and then had the model generate a dataset (i.e., make action choices and obtain rewards)422
using those parameters within a bandit. Following this, we ran our parameter fitting procedure on423
each of the simulated datasets. We then correlated the simulated parameters (which we input and424
know) with the fitted parameters recovered from minimizing the negative log likelihood. This was425
repeated for each bandit individually.426

8 Model Recovery427

We conducted model recovery (Figure 6) to determine whether our three chosen algorithms made428
quantitatively distinct behavioural patterns in our bandits. Akin to our parameter recovery, we first429
generated a set of 50 datasets from each algorithm using different random parameter values (n =430
50 for each of the three algorithms; 150 total simulations). We next passed each of these simulated431
datasets through our fitting procedure (i.e., minimizing the negative log-likelihood) for each of the432
three algorithms individually. Following this, we transformed our negative log likelihood values into433
Akaike Information Criterion values (AIC, (Akaike, 1973) to determine which algorithm provided434
the best fit of each dataset.435
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Figure 5: Parameter recovery of the three hyperparameters for the stateless IDBD model across each
of the bandits

Figure 6: Model recovery confusion matrices across each of the bandits. The numbers indicate the
percentage of the simulated data best fit by each of the models.
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We then generated a 3 x 3 confusion matrix for the three algorithms. To do this, we recorded each436
time an algorithm provided the best fit of a simulated dataset. For the confusion matrix, the 3 rows437
are the algorithms used to simulate the dataset and the 3 columns are the algorithms used to fit438
those datasets. To be clear, each row saw the same 50 datasets (generated by a specific algorithm)439
which were passed through the three algorithms fitting procedures, and we recorded which algorithm440
provided the best fit within the cells of the 3 x 3 matrix. After this, we transformed those best fit441
numbers into percentages by dividing each cell by the number of datasets from that row (50). Within442
the confusion matrix we expect to observe that the diagonal of the matrix would be where the largest443
values are present as that is where the algorithm used to simulate the dataset matches up with the444
model used to fit the dataset.445
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