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Abstract

Neural architecture search (NAS) has made rapid progress
in computer vision, whereby new state-of-the-art results have
been achieved in a series of tasks with automatically searched
neural network (NN) architectures. In contrast, NAS has
not made comparable advances in natural language under-
standing (NLU). Corresponding to encoder-aggregator meta
architecture of typical neural networks models for NLU
tasks (Gong et al. 2018), we re-define the search space, by
splitting it into two parts: encoder search space, and aggrega-
tor search space. Encoder search space contains basic oper-
ations such as convolutions, RNNs, multi-head attention and
its sparse variants, star-transformers. Dynamic routing is in-
cluded in the aggregator search space, along with max (avg)
pooling and self-attention pooling. Our search algorithm is
then fulfilled via DARTS, a differentiable neural architecture
search framework. We progressively reduce the search space
every few epochs, which further reduces the search time
and resource costs. Experiments on five benchmark data-sets
show that, the new neural networks we generate can achieve
performances comparable to the state-of-the-art models that
does not involve language model pre-training.

Introduction and Related Work
Neural architecture search (NAS) has recently attracted in-
tensive attention. On one hand, promising methodological
innovation for NAS have been developed, e.g. the seminal
gradient-based NAS approach DARTS (Liu, Simonyan, and
Yang 2018), followed by improvements such as SNAS (Xie
et al. 2018), P-DARTS (Chen et al. 2019), PC-DARTS (Xu
et al. 2019), etc. On the other hand, NAS has helped to dis-
cover better models to for a variety of vision tasks, e.g.,
image classification (Zoph and Le 2017; Zoph et al. 2017;
Cai, Zhu, and Han 2018), semantic segmentation (Liu et al.
2019), object detection (Ghiasi, Lin, and Le 2019), super-
resolution (Ahn, Kang, and Sohn 2018), etc.

For natural language processing tasks, NAS is relatively
less studied. Except for the general methodology-wise inno-
vations NASNet (Zoph and Le 2016), ENAS (Pham et al.
2018) and DARTS (Liu, Simonyan, and Yang 2018) which
pay slight extra effort on searching for new RNN cells on
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language modeling (LM) tasks, there is little studies tailored
to the NLU task. One such an example is the evolved trans-
former (So, Liang, and Le 2019), which uses the evolution-
based NAS algorithm to search for better transformer ar-
chitecture for machine translation. Although state-of-the-art
performance has been achieved on 4 machine translation
tasks, the computation cost is exceedingly high since they
have to evaluate a large number of models.

In fact, NAS has not been fully investigated for a wide va-
riety of fundamental natural language understanding (NLU)
tasks, such as classification (e.g. or sentiment analysis), nat-
ural language inference (NLI), sequence tagging tasks such
as named entity recognition (NER). Especially, there is no
existing work on the effectiveness of one-shot architecture
search (Bender et al. 2018) methods on NLU tasks, which
could also otherwise significantly reduce the search cost as
done in vision tasks.

A typical neural network architecture for NLU includes
an encoder which contextualizes the embedded text inputs
and extracts higher-level features, and an aggregator that ag-
gregates the encoded inputs to a fix-length vector to make a
prediction (Gong et al. 2018). In terms of encoders, many
previous NAS literature restrict the search space to non-
linear maps such as tanh and sigmoid, and the objective to
be the discovery of a new recurrent cell to form a new type
of recurrent neural network (RNN). However, other than
RNNs, there are many other available encoders, for example,
convolutional networks (CNN) (Kim 2014), and attention-
based model such as transformer (Vaswani et al. 2017), etc.
In addition, recent works e.g. star-transformer (Guo et al.
2019) have proposed more sparse versions of transformer to
reduce the computational complexity and improve the gen-
eralization when there is no pre-trained language model. In
addition, as far as we know, there is no existing work on
searching for an aggregator. A collection of aggregators are
available (Gong et al. 2018). However, one have to choose
manually in a trial-and-error fashion.

In this work, we design an encoder search space that con-
tains a rich collection of encoders. The involved operations
include: i) the zero map and identity map; ii) the two most
commonly used RNNs, LSTM (Hochreiter and Schmidhu-
ber 1997) and GRU (Cho et al. 2014); iii) highway net-



work (Srivastava, Greff, and Schmidhuber 2015); iv) a se-
ries of convolutional networks with different kernel sizes;
v) multi-head attention from (Vaswani et al. 2017); vi) star-
transformer (Guo et al. 2019) and its variants, which will be
explained later in the next section. The combination of en-
coder operations is searched in a encoder search cell, which
is a directed acyclic graph (DAG) of intermediate nodes col-
lected by the encoder operations from the encoder search
space.

To further reduce the human designs, we propose to
search for a suitable aggregator along with the search of en-
coder cell via an aggregator search cell which includes max
(average) pooling, self-attention pooling and dynamic rout-
ing (Gong et al. 2018). The aggregator search cell is a DAG
with only one step in which the only node is connected to
the inputs by a mixture of aggregators.

Our search strategy is mainly based on DARTS (Liu, Si-
monyan, and Yang 2018). To reduce computation cost, we
employ a progressive search space reduction strategy similar
to P-DARTS (Chen et al. 2019). Experiments are performed
on three different kinds of NLU tasks, i.e., text classification,
NLI and NER, with 5 benchmark datasets. For fair compari-
son, we only compare our results with former state-of-the-art
(SOTA) models without large-scale LM pre-training, or any
other outside resources like knowledge bases, or any human
designed features. Results have shown that with the help of
NAS on our search space, we achieve results that are com-
parable to the SOTA on these 5 tasks, indicating the effec-
tiveness of NAS in the field of NLU research.

Our work contributes the field by the following aspects:

• We re-define the search space for neural architecture
search in NLU tasks, by extending and modifying the en-
coder search space from the evolved transformer, and de-
fine the aggregator search space.

• To the best of our knowledge, we are the first to conduct
NAS experiments on NLU tasks such as classification,
NLI, NER tasks, with one-shot NAS.

• Our approach achieves the results that are comparable to
the state-of-the-art models designed by human experts, on
various NLU tasks (classification, NLI, NER), by using
neural architecture search over the search space defined
above. In addition, we demonstrate the effectiveness of
one-shot architecture search for NLU tasks.

• We propose a modularized version of star-transformer and
its variant, thus including a sparse version of transformer
into the search space, which is also novel in the literature.
The resulting advantage is that the search cost can be re-
duced notably and the network’s generalization capability
can also be improved.

Related Work Recently, a new research field named neu-
ral architecture search (NAS) has been drawing more and
more attention. The goal is to find automatic mechanisms for
generating new neural architectures to replace conventional
handcrafted ones. Recently, it is widely applied to com-
puter vision tasks, such as image classification (Zoph and
Le 2017; Zoph et al. 2017; Cai, Zhu, and Han 2018), seman-
tic segmentation (Liu et al. 2019), object detection (Ghiasi,

Lin, and Le 2019), super-resolution (Ahn, Kang, and Sohn
2018), etc. However, NAS is less well studied in the field of
natural language understanding (NLU). Recent works (Zoph
and Le 2016; Pham et al. 2018; Liu, Simonyan, and Yang
2018) search new recurrent cells for the language modeling
(LM) task on the PennTreebank dataset1. The recurrent cell
discovered by (Liu, Simonyan, and Yang 2018) achieves the
test perplexity of 56.1, which is competitive with the state-
of-the-art model enhanced by a mixture of softmaxes (Yang
et al. 2017). The evolved transformer (So, Liang, and Le
2019) applies NAS to discover better versions of the trans-
former architecture. Eploying an evolution-based search al-
gorithm, and the vanilla transformer as the initial popula-
tion, it generates a better transformer architecture that con-
sistently outperform the vanilla transformer on 4 benchmark
machine translation tasks. Our work contributes by going
beyond the RNN structure and re-defining the search space
to include a richer connection of operations.

Our work is implemented on DARTS (Liu, Simonyan, and
Yang 2018) and P-DARTS (Chen et al. 2019). DARTS re-
laxes the search space to be continuous, so that the architec-
ture can be optimized with respect to its validation set per-
formance by gradient descent. Due to its simplicity, DARTS
has inspired a series follow-up work to improve the search
stability and efficiency. Based on DARTS, P-DARTS (Chen
et al. 2019) divides the search process into multiple stages
and progressively increase the network depth at the end of
each stage. Our work contributes to the gradient-based NAS
(and more generally, one-shot NAS) research by investigat-
ing its effectiveness in discovering new NN architectures for
a series of NLU tasks.

Our search space design takes advantages of the recent ad-
vances in the NLU field. One of the most import advances in
sentence encoding is the application of various self-attention
mechanisms, among which the transformer (Vaswani et al.
2017) is the most prominent one, which has become ubiq-
uitous in NLU research. Specifically, the QANet (Yu et al.
2018) modifies the transformer architecture to obtain the
first place on the SQuaD leaderboard2. The transformer is
powerful due to its multi-head self-attention mechanism,
which can well capture the contextual information. How-
ever, the transformer maybe be difficult to train and gen-
eralize well on a small or medium sized data-set (Guo et
al. 2019). Thus, many other self-attention operations are
proposed, e.g., dynamic self-attention (Yoon, Lee, and Lee
2018) and DiSAN (Shen et al. 2018). Recently, (Guo et
al. 2019) propose the star-transformer, a sparser version
of the multi-head attention model, and achieves competi-
tive results on a series of benchmark datasets like SST-1,
SNLI, CoNLL2003. On the aggregation side, an important
advancement is the application of capsule networks and dy-
namic routing policy in text classification (Zhao et al. 2018;
Gong et al. 2018). Capsule networks can dynamically decide
what and how much information need to be transferred from
each word to the final encoding of the text sequence, thus
achieving better results even with simple encoders (Gong

1https://catalog.ldc.upenn.edu/LDC99T42
2https://rajpurkar.github.io/SQuAD-explorer/



et al. 2018). Our work is built upon these work and con-
tributes by: i) include some of the most prominent atten-
tion based encoders and aggregators into the search space,
and experiment on whether NAS can generate new archi-
tectures that have competitive results; ii) we are the first to
propose the aggregator search space; iii) we include a mod-
ularized version of the star-transformer and its variant into
the search space, thus we are the first to combine the dense
and sparse multi-head self-attention operations into the same
search space.

Search Space Design
We first analyze the meta architectures for a series of NLU
tasks, based on which we will define the search space

Meta architectures for NLU tasks
As pointed out by (Gong et al. 2018), an NLP model with
text inputs and discrete labels (possibly a sequence of la-
bels) can be assembled by the following components: an em-
bedding layer, an encoding layer, an aggregation layer and
a prediction layer. Embedding layers usually are static pre-
trained embeddings like word2vec (Mikolov et al. 2013), or
contextualized embedding like ELMO (Peters et al. 2018)
and BERT (Devlin et al. 2018). We mainly focus on the en-
coding layer and aggregation layer.

A text sequence with words S = w0, w1, ..., wL−1 is
mapped into a d-dimensional embedding vector space as
X = x0, x1, ..., xL−1. The encoding layer integrates the
information inside the embedding layer and extract higher-
level features. The encoded inputs are denoted as H =
h0, h1, ..., hL−1. When the task at hand requires predicting
a single label, the final prediction layer requires a fix-length
vector. Thus an aggregator is needed to aggregate the infor-
mation inside sequences of various length to a single fix-
length vector, namely h∗.

In this work, we investigate the neural architecture search
for three different tasks: classification (CLS), natural lan-
guage inference (NLI) and named entity recognition (NER).
The meta architectures of neural networks are depicted in
Figure 1. For classification, the encoder is followed by an
aggregator whose output will be passed to the prediction
layer. For the NLI task, the encoding and aggregating for
the premise and the hypothesis are the same as CLS task,
and the aggregated vectors, h∗1, h∗2, will interact via an in-
teraction layer before being passed into the prediction layer.
Following (Chen et al. 2016), we define the interaction layer
as concat[h∗1, h

∗
2, h
∗
1−h∗2, h∗1∗h∗2]. Note that in this work, we

will not consider any sort of cross attentions between the two
inputs before or after the interaction layer. In addition, due
to limited resources for search, we restrict that the encoder
and aggregator are shared by both inputs. For the NER task,
the aggregator is not required. Note that in this work, we
will not consider adding a CRF layer after the enocoder, as
done by some other NER models e.g. (Lample et al. 2016).
Recall our goal here is to discover and evaluate new model
architectures.

Based on the above discussion, we propose to divide the
search space into two subspace: encoder search space and
aggregator search space.

(a) CLS task (b) NER task

(c) NLI task

Figure 1: Meta architectures for three different NLU tasks.

Encoder search space
In (Liu, Simonyan, and Yang 2018) and (Pham et al. 2018),
the objective is to discover new variants of RNNs, so their
search space are a collection of linear or non-linear maps,
such as, tanh and sigmoid. In this work, we will define the
encoder space at a more coarse granularity, allowing us to
build a richer search space. As (Liu, Simonyan, and Yang
2018), the encoder search space contains the zero map and
the identity map.

We then include 1-d convolutional networks (conv1d),
and two of RNNs, namely, LSTM and GRU, and the
highway network. Highway network is introduced to help
train deeper neural network models (see e.g., yu2018qanet).
These basic models have been widely used in NLP tasks,
such as classification (Kim 2014), Question-answering (Yu
et al. 2018), NER (Lample et al. 2016), relation extraction
(Zeng et al. 2015), to name just a few. Note that we will
use the depth-wise separable convolutions (Chollet 2017) in-
stead of the vanilla convolutions, since the former are more
parameter efficient.

Recent years has witnessed the architecture of Transform-
ers (Vaswani et al. 2017) becoming ubiquitous in research
community. At its core, the multi-head self-attention mech-
anism has shown its superior ability to model long-distance
contexts. In this work, similar to (So, Liang, and Le 2019),
we include the multi-head attention layer, excluding the
residual connection that is usually added in a transformer
block, into the search space. The point-wise feed-forward
layer contains conv1d and residual connection, so we will
not include it as a basic operation.

Although transformer has shown its great expressiveness
capability, it is difficult to train and easy to over-fit on a small
or medium dataset (Guo et al. 2019). One reason is that the



Algorithm 1: Star-transformer module
Input: h0

0, h
0
1, ......, h

0
L−1

Output: h1
0, h

1
1, ......, h

1
L−1

1 Initialize: s0 ← average(h0
0, h

0
1, ..., h

0
L−1);

2 for i = 0 to L− 1 do
3 C1

i = [h0
i−1, h

0
i , h

0
i+1, s

0];
h1
i = MultiAttn(h0

i , C
1
i );

h1
i = LayerNorm(ReLU(h1

i ));

Algorithm 2: Reversed star-transformer module
Input: h0

0, h
0
1, ......, h

0
L−1

Output: h1
0, h

1
1, ......, h

1
L−1

1 Initialize: s0 ← average(h0
0, h

0
1, ..., h

0
L−1);

2 for i = 0 to L− 1 do
3 s1 = MultiAttn(s0, [s0;H0]);

s1 = LayerNorm(ReLU(s1));
C1
i = [h0

i−1, h
0
i , h

0
i+1, s

1];
h1
i = MultiAttn(h0

i , C
1
i );

h1
i = LayerNorm(ReLU(h1

i ));

multi-head attention let each token pay attention to every to-
ken in the sentence, resulting in over-parametrization. Thus
some more sparse variants are proposed e.g. sparse trans-
formers (Child et al. 2019). We include the star-transformer
proposed by (Guo et al. 2019).

The original design of star-transformers requires the relay
node being initialized with average pooling and then updated
iteratively in a few layers that follows. For better modular-
ization, we modify the Algorithm 1 of (Guo et al. 2019) to
Algorithm 3 below. Note that without iterative updating, the
relay node is initialized by simple averaging, during which
the information of the sentence may not be well preserved.
Thus, we propose to first enrich the semantic representation
of relay node via multi-head attention between the initial-
ized relay node and the inputs, before we update the satellite
nodes. This variant is called the reversed star-transformer,
and the algorithm is described in Algorithm 3.

Due to limited resources, for attention based operations,
we will only set the attention head number to be 2. Now we
formally define the encoder search space, which consists of
the following operations:
• Special zero operation, denoted as null;
• Skip connection, denoted as identity;
• Highway network, denoted as highway;
• 1-d separable convolutions, with kernel size k, where
k = 1, 3, 5, denoted as sep conv1d 1, sep conv1d 3 and
sep conv1d 5;

• Two RNNs, which are denoted as lstm and gru;
• Attention-based operations, with attention head num-

ber set to be 2, including: multi-head attention
(multi head attn 2), star-transformer (star trans 2) and
reversed star-transformer (reversed star trans 2).

Aggregator search space
There are several different aggregation operations. The most
common two are the max pooling and the average pool-
ing. Self-attention technique is also used for aggregation.
It assigns each word a weight to indicate the importance
of a word depending on the task on hand. A few words
that are crucial to the task will be emphasized while the
“boring” words are ignored. We also include dynamic rout-
ing (Gong et al. 2018) into our aggregator operation space.
Unless specified, we use a dynamic routing aggregator with
4 capsules and 3 iteration steps.

Now we formally define the aggregator search space,
which includes the following modules:
• Max pooling, denoted as max-pool;
• Average pooling, denoted as avg-pool;
• Self-attention pooling, denoted as self-attn-pool;
• Dynamic routing, denoted as dynamic-routing.

Architecture Search
Preliminary on differentiable architecture search
In this work we use Differentiable Architecture Search
(DARTS) (Liu, Simonyan, and Yang 2018) as our archi-
tecture search framework. The goal is to search for an en-
coder cell alongside with an aggregator cell. Employing
the terminology in (Liu, Simonyan, and Yang 2018), a cell
is defined as a directed acyclic graph (DAG) of N nodes,
x0, x1, · · · , xN−1, where each node is a network layer, i.e.,
performing a specific mathematical function. We denote the
search space as Φi,j , in which each element represents the
information flow connecting node i to node j, which consists
of a set of operations weighted by the architecture parame-
ters α(i,j), and is thus formulated as:

fi,j(xi) =
∑
φ∈Φi,j

exp (α
(i,j)
φ )∑

φ′∈Φi,j
exp (α

(i,j)

φ′ )
φ(xi), (1)

where i < j. An intermediate node can be represented as
fi,j(xi) =

∑
i<j fi,j(xi). Given multiplier m, a hyper-

parameter determining the number of nodes whose results
are included as the cell’s output, the output of the cell is
xc = concat[xN−m; · · · ;xN−1].

The NLU tasks we are dealing with are small or medium
sized, so we will not consider stacking multiple encoder
cells in this paper.

Progressive search space reduction
Our search space is large, thus we employ a progressive
search space reduction strategy during search, which is sim-
ilar to P-DARTS (Chen et al. 2019). The procedure is as
follows: i) start the search with the whole operation space;
ii) let k denote the epoch interval length for a reduction. af-
ter every k epochs, we drop the operation in Φi,j having the
lowest score; iii) after each reduction, the search re-starts;
iv) repeat step ii) and step iii) till the order of encoder search
space drops to 5, and the order of the aggregator search space
drops to 1; v) the search procedure continues with the re-
maining search space till convergence.



Figure 2: The neural architecture for sentiment classification
learned from SST-1.

Figure 3: The neural architecture for sentiment classification
learned on SST-2.

Deriving discrete architectures
After obtaining the continuous architecture encoding α, de-
riving the aggregator is simple, since we only need to select
the most likely aggregation operation. For the encoder cell,
we consider two approaches to derive the final discrete net-
work architecture:

• Following (Liu, Simonyan, and Yang 2018), retain up to k
strongest predecessors for each intermediate node, where
k = 1, 2. Note this approach ignores the appearance of
the null operation if it obtains the highest score.

• Directly replace every mixed operation as the most likely
operation by taking the arg-max. If the best operation con-
necting two intermediate nodes is a null operation, this
connection is dropped. In this way, we may find a sparser
new encoder cell.

Experiments
In our experiments, for each search or evaluation, we assign
2 CPU cores, 20G memory and 1 Tesla P100 GPU card.

Table 1: An overall of data-sets.
Dataset Task Train # Dev # Test # Label # Metrics

SST-1 Classification 162k 1.1k 2.2k 5 Accuracy
SST-2 Classification 77k 872 1.8k 2 Accuracy

MedNLI NLI 11.2k 1.4K 1.4k 3 Accuracy
SciTail NLI 23.5k 1.3K 2.1k 2 Accuracy

CoNLL2003 NER 14k 3.2K 3.4k 4 F1

Datasets
We conduct experiments on three different kinds of tasks
with 5 benchmark datasets, whose statistics are shown in
Table 1. Specifically, SST-1 and SST-2 (Socher et al. 2013)
are two text classification data-sets. Sci-tail and MedNLI are
NLI datasets, and CoNLL2003 (Sang and De Meulder 2003)
is a benchmark NER datasets3.

SST-1 Stanford Sentiment Treebank is a movie review
dataset which has been parsed and further splitted to
train/dev/test set (Socher et al. 2013).

SST-2 This dataset is a binary-class version of SST-1,
with neutral reviews removed.

SciTail This is a textual entailment dataset derived from
a science question answering (SciQ) dataset (Khot, Sabhar-
wal, and Clark 2018).

MedNLI It is a NLI dataset annotated by doctors,
grounded in the medical history of patients (Romanov and
Shivade 2018).

CoNLL2003 This dataset consists of 200k training words
which have been annotated as Person, Organization, Loca-
tion, Miscellaneous, or Other (non-named entity).

Our experimental protocols follow (Liu, Simonyan, and
Yang 2018). Experiments on each task consist of two stages,
architecture search and architecture evaluation. In the search
stage, we search for the cells on the train set, and determine
the best pair of encoder cell and aggregator cell based on
the performance on validation set. In the second stage, we
derive discrete architectures from the cells, train them from
scratch, and report their performance on the test set.

Architecture search protocols
Initially the search space consists of all the operations in
Section Search Space Design. For every 3 epochs we carry
out search space reduction once, till the search space is
halved. The number of intermediate nodesN for the encoder
cell ranges from 1 to 3. With N equal to 3, the search cell
takes up 9G GPU memory. Note that the number of nodes
for the aggregator cell can only be 1. Similar with ENAS
(Pham et al. 2018) and DARTS (Liu, Simonyan, and Yang
2018), we enable layer normalization in each node to prevent
gradient explosion during architecture search, and disable it
during architecture evaluation.

For architecture search, both the embedding and hidden
size are set to 300. Word embedding is initialized from pre-
trained Glove (Pennington, Socher, and Manning 2014). We
randomly initialize word vectors for words that do not ap-
pear in Glove. The batch size is 32 for the classification

3Because this part of experiment is focused on the NER task,
we only test with the NER tags of CoNLL2003’s English part.



Figure 4: Searched neural architecture for NLI on SciTail.
The corresponding aggregator obtained in the same search
is average pooling.

Figure 5: Searched neural architecture for NLI on MedNLI.
The corresponding aggregator obtained in the same search
is dynamic routing.

tasks and 16 for the others. The learning rate is 1e-4 for
both network parameters and architecture parameters, and
the weight decay is set to 1e-5, and the dropout rate is set to
0.5. Dropout is applied after embedding look-up, after en-
coding layer, and to the output layer. The learning rate is
warmed up for 1000 steps and then it decreases linearly. The
max number of epochs is set 60. We use Adam (Kingma
and Ba 2015) to optimize both the network parameters and
architecture parameters. The search takes around 1.5 GPU
day (Tesla P100) for SST-1, and 0.3 for the SciTail tasks.

Architecture evaluation protocols
We run each search configurations twice with different ran-
dom seeds and pick the best cell based on the validation per-
formance, and each search run results in at most 3 different
dicrete NN architectures. The hyper-parameters are the same
with those in the search stage.

Results and discussion
Results on SST Results on SST-1 and SST-2 datasets are
listed in Table 2. On the SST-1, DARTS generate a network
architecture (DARTS-SST-1-V0) that performs better than
most of the traditional NN models. Not that the encoder cell
of DARTS-SST-1-V0 contains only RNN and CNN opera-
tions, but the exact details of combination of different level
of features are impossible to design manually. The best ar-

Figure 6: Searched neural architecture for NER on
CoNLL2003.

Table 2: Test accuracy (%) on the SST-1 and SST-2 datasets.
Model SST-1 SST-2

CNN-non-static (Kim 2014) 48.0 87.2
Paragraph-Vec (Le and Mikolov 2014) 48.7 87.8
MT-LSTM (F2S) (Liu et al. 2015) 49.1 87.2
Tree-LSTM (Tai, Socher, and Manning 2015) 51.0 88.0
CNN-Tensor (Lei, Barzilay, and Jaakkola 2015) 51.2 -
BiLSTM + max pooling (Gong et al. 2018) 48.0 87.0
BiLSTM + average pooling (Gong et al. 2018) 46.2 85.2
BiLSTM + self-att (Gong et al. 2018) 48.2 86.4
BiLSTM + dynamic routing (Gong et al. 2018) 50.5 87.6
Emb + self-att (Shen et al. 2018) 48.9 -
DiSAN (Shen et al. 2018) 51.7 -
BiLSTM + self-att (Yoon, Lee, and Lee 2018) 50.4 88.2
CNN + self-att (Yoon, Lee, and Lee 2018) 50.6 88.3
Dynamic self-att (Yoon, Lee, and Lee 2018) 50.6 88.5
Transformer (Guo et al. 2019) 50.4 87.0 ∗
star-transformer (Guo et al. 2019) 52.9 87.5 ∗
DARTS-SST-1-V0 (ours) 51.9 88.3
DARTS-SST-2-V0 (ours) 50.8 88.5

∗ Results obtained by us via running the code at
https://github.com/fastnlp/fastNLP/.

chitecture (DARTS-SST-2-V0) we obtained on the SST-2
dataset involves a star-transformer operation and an iden-
tity map. Note that since (Guo et al. 2019) did not provide
results on SST-2, we use the code from fastNLP4 to run the
transformer and the original star-transformer on SST-2. The
results given by us are all the average of 10 different runs.
We can see that DARTS-SST-2-V0 can obtain results com-
parable to the SOTA on SST-2.

We also experiment on the transferability of the learned
architectures. From Table 2, we can see that DARTS-SST-2-
V0 performs worse than DARTS-SST-1-V0 on SST-1 with
a significant margin, but DARTS-SST-1-V0 also performs
competitively on SST-2.

Results on NLI tasks Among the architecture candidates
derived from the search on SciTail, we find that the one ob-
tained by accepting the null operation when it gets the high-
est score (DARTS-SciTail-V0) performs best. In addition,
this search run gives the average pooling as the aggrega-
tor instead of dynamic-routing. The results are presented in

4https://github.com/fastnlp/fastNLP/



Table 3: Test accuracy (%) on the SciTail dataset.
Model ACC

600D ESIM (Khot, Sabharwal, and Clark 2018) 70.6
Decomposable Attention (Khot, Sabharwal, and Clark 2018) 72.3
DGEM (Khot, Sabharwal, and Clark 2018) 72.3
AdvEntuRe (Kang et al. 2018) 79.0
HCRN (Tay, Luu, and Hui 2018) 80.0
DeIsTe (Yin, Schütze, and Roth 2018) 82.1
CAFE (Yin, Schütze, and Roth 2018) 83.3
MIMN (Liu et al. 2018) 84.0
ConSeqNet (Wang et al. 2019) 85.2
HBMP (Mihaylov et al. 2018) 86.0
star-transformer (Guo et al. 2019) 79.2∗
transformer (Vaswani et al. 2017) 78.6∗
DARTS-MedNLI-V0 (ours) 80.3
DARTS-SciTail-V0 (ours) 80.9

∗ Results obtained by us via running the code at
https://github.com/fastnlp/fastNLP/.

Table 4: Test accuracy (%) on the MedNLI dataset.
Model ACC

ESIM (Romanov and Shivade 2018) 73.1
InferSent (Romanov and Shivade 2018) 73.5
star-transformer (Guo et al. 2019) 75.8∗
transformer (Vaswani et al. 2017) 74.3∗
DARTS-SciTail-V0 (ours) 74.6
DARTS-MedNLI-V0 (ours) 74.8
∗ Results obtained by us via running the code at

https://github.com/fastnlp/fastNLP/.

Table 3. DARTS-SciTail-V0 achieves a competitive perfor-
mance on the test set, outperforming the baseline models
such as ESIM and decomposable attention by a large mar-
gin. It also outperforms the results of the star-transformer
and transformer even after extensively parameters tuning.
Our model is actually the best one that has no inter-sentence
attentions other than the final interaction before the predic-
tion layer, and uses no outside resources, no manually de-
signed features and no extra training mechanism like adver-
sarial training.

As we can see from Figure 5 that, on the MedNLI dataset,
the search gives out a architecture (DARTS-MedNLI-V0)
that quite resembles the original implementation of the
multi-head attention inside the transformer block, except the
residual connection is replaced by a sep conv with kernel
size 3. DARTS-MedNLI-V0 performs worse than the orig-
inal star-transformer, but it is better than the original trans-
former, and the baseline ESIM and InferSent.

We also look into the transferability between the two task.
We find that although the datasets are from different do-
mains, the architecture searched on one performs compara-
ble on the other.

Results on CoNLL2003 For the NER task CoNLL2003,
since our goal is to compare the previous models and the
models discovered by NAS, we do not include the CRF
layer which is proven to be a standard component of the best
NER models (Lample et al. 2016). We do not use any out-
side resources like gazetteers, or manually designed features
like suffix features and capitalization features, or charac-

Table 5: Test F1 (%) on the CoNLL2003 dataset.
Model F1

LSTM (Lample et al. 2016) 84.7∗
GRU (Cho et al. 2014) 71.1∗
Star-transformer (Guo et al. 2019) 69.4 ∗
Transformer (Vaswani et al. 2017) 68.9 ∗
DARTS-CoNLL2003-V0 (ours) 85.3

∗ Results obtained by us via running the code at
https://github.com/fastnlp/fastNLP/.

ter embedding. To eliminate implementation discrepancies,
we re-run all the results ourselves for this task. Figure 6
gives the searched architecture (DARTS-CoNLL2003-V0)
and Table 5 gives out the results. The LSTM sets a strong
baseline, and the star-transformer and GRU performs signif-
icantly worse. Our DARTS-CoNLL2003-V0 works slightly
better than LSTM.

Conclusion
This paper addresses NAS for a series of NLU tasks. Cor-
responding to the encoder-aggregator architecture of typ-
ical NN models for NLU (Gong et al. 2018), we re-
define the search space, by splitting it into encoder search
space and aggregator search space. Our search strategy is
based on DARTS (Liu, Simonyan, and Yang 2018) and P-
DARTS (Chen et al. 2019). Experiments shows that archi-
tectures discovered by NAS achieves results that are com-
parable to the previous SOTA models. In the further, we
would like to investigate one-shot architecture search on
more large-scale NLU tasks.
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