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Abstract
One of the most significant challenges of using machine learning to create practical clinical appli-
cations in medical imaging is the limited availability of training data and accurate annotations. This
problem is acute in novel multi-modal image registration applications where complete datasets may
not be collected in standard clinical practice, data may be collected at different times and deforma-
tion makes perfect annotations impossible. Training machine learning systems on fully synthetic
data is becoming increasingly common in the research community. However, transferring to real
world applications without compromising performance is highly challenging. Transfer learning
methods adapt the training data, learned features, or the trained models to provide higher perfor-
mance on the target domain. These methods are designed with the available samples, but if the
samples used are not representative of the target domain, the method will overfit to the samples
and will not generalize. This problem is exacerbated in medical imaging, where data of the target
domain is extremely scarse. This paper proposes to use Domain Randomization (DR) to bridge the
reality gap between the training and target domains, requiring no samples of the target domain. DR
adds unrealistic perturbations to the training data, such that the target domain becomes just another
variation. The effects of DR are demonstrated on a challenging task: 3D/2D cardiac model-to-
X-ray registration, trained fully on synthetic data generated from 1711 clinical CT volumes. A
thorough qualitative and quantitative evaluation of transfer to clinical data is performed. Results
show that without DR training parameters have little influence on performance on the training do-
main of digitally reconstructed radiographs, but can cause substantial variation on the target domain
(X-rays). DR results in a significantly more consistent transfer to the target domain.
Keywords: Domain Randomization, Imitation Learning, Cardiac Registration.

1. Introduction

In recent years, deep learning algorithms have been successfully applied to a wide variety of med-
ical imaging tasks (Litjens et al., 2017). However, for many medical imaging problems, labeled
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training data is extremely scarce. Especially in novel clinical procedures, new, procedure-specific,
retrospectively not available data might be required. Initially, data is available only in highly lim-
ited quantities and it can accumulate very slowly to usable amounts. Multimodal datasets, e.g., for
image registration, can be even more challenging to acquire and previously collected data is highly
unlikely to be multimodal. Additionally, Ground Truth (GT) annotations can be highly challeng-
ing to acquire. The annotation needs to be performed by experts in the respective domain, i.e., by
clinicians. This can be time consuming and expensive for even smaller amounts of data, but might
not be feasible for larger datasets. In certain applications, it might be impossible to acquire GT
annotations, e.g., due to deformations in multimodal data acquired at different time points.

A system for registering 3D preoperative data to 2D X-rays (Toth et al., 2018) demonstrated
the feasibility and benefits of training purely on synthetic data. The system generated synthetic
images from a CT dataset, thus knowing the GT transformations. These synthetic X-ray images
are commonly referred to as Digitally Reconstructed Radiographs (DRRs) (Russakoff et al., 2005).
The registration system trained on DRR data has shown good accuracy on the same domain and
acceptable performance on clinical X-ray data. However, transfer performance is highly affected
by training parameters: different local minima might be reached, resulting in highly similar per-
formance on the synthetic training domain, but highly variable results on the target domain. DRR
generation algorithms do not model every aspect of the X-ray formation. This causes images to
appear differently than clinically acquired X-rays. Algorithms used for image guidance have to be
extremely robust against perturbations. In the case of the X-ray data, these could be intensity vari-
ations, due to different dose settings, variation of the collimation, or devices in the field of view.
These variations can appear differently, or may not be present, in the artificially generated DRRs.
The transfer, thus the robustness of the registration can suffer. The perfomance reduction after
transferring to the target domain is called the reality gap.

Several approaches have addressed this issue including (Heimann et al., 2014), where a classi-
fier is adapted to the target domain, without requiring labelled data on the target domain. However,
it could fail, if the training and target distributions are far. Domain adaptation can also be per-
formed through task-driven Generative Adversarial Networks (GANs) (Zhang et al., 2018). GANs,
however, can be difficult to train, can be unstable, can show mode collapse. Advanced simulation
methods can be used to generate higher quality DRRs that appear more similar to the target domain’s
images, such as (Unberath et al., 2018). Such an approach is still not a perfect X-ray simulator, im-
portant features might not be simulated. The collective weakness of these approaches is that they
try to adapt/fit to samples of the target domain. If the samples are not representative of the target
domain, the adaptation will overfit to the samples. If such a system has to process data from a new
site, device, or of unexpected imaging parameters, performance can decrease significantly.

This paper addresses the problem of overfitting to the target domain, by using Domain Random-
ization (DR) (Tobin et al., 2017). In DR the training data is augmented with unrealistic transforma-
tions. The transformations introduce such a large variation to the data that the target domain will
appear as just another variation to the learning system. This approach was shown to help transfer to
the target domain in non medical applications, e.g., autonomous driving (Tremblay et al., 2018) or
robotic control (Peng et al., 2018).

In this paper, the usability of DR in the medical imaging context is demonstrated for the first
time. Its benefits are being shown on the challenging cardiac image registration task described in
(Toth et al., 2018). It is shown that, if trained only on artificially generated data (DRRs), DR can
greatly increase robustness against geometric perturbations. Furthermore, it is demonstrated that,
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witouth DR, variation of training parameters can result in inconsistent results on the target domain.
Performance with DR, however, appears to be agnostic to variation in training parameters, thus
produces more consistent results.

2. Methods

The registration framework with domain randomization is illustrated in Figure 1. The model-to-X-
ray registration system from (Toth et al., 2018) is intended to be used for 3D/2D cardiac registration.
It is trained purely with CT volumes, without any real X-rays from the target domain. The CTs are
used for: 1) DR DRRs and 2) to segment, perturb, and project masks of the Left Ventricle (LV) into
2D. Since both images are generated, the GT transformation is known between them. This is used
to compute rewards for each possible action of the three degrees of freedom given by the imaging
plane: translations x, y and rotation about the z axis. The rewards and the two 2D images (DR
DRR and mask image) are used to train an artificial agent represented by a Convolutional Neural
Network (CNN), see Figure 1(a). For inference, the artificial agent is being shown the two images
and is able to predict the rewards for each possible action. The action with the highest reward is
chosen and is applied to the 3D model, as depicted in Figure 1(b).

2.1. Transfer Learning

The training of the artificial agent is performed on fully synthetic data. It has shown acceptable
performance in terms of accuracy on the synthetic domain and robustness on the target domain.
However, for interventional applications, highest levels of robustness are crucial. How well the
imitation learning agent transfers to real data is influenced by three main factors: 1) the appearence
of the training data (similarity to target data), 2) the weight initialization of the neural network, and
3) the training data order.

The similarity between the training domain and the target domain is the main factor in perfor-
mance after transfer. If the training DRRs are sufficiently similar to the target X-ray images, the
network will transfer with similar performance. This can be achieved to a certain degree by opti-
mizing DRR generation parameters, but it is highly challenging and the learned network might not
generalize well to unseen images.

The second factor is the initialization of the weights in the neural network representing the
agent. The initial weights define the starting position in the optimization space of training. From

(a) Training workflow (b) Evaluation workflow

Figure 1: Overview of registration framework workflows.
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(a) The concept of domain randomization in feature space. Every point represents a sample (a set
of features) in the respective domain (green: X-ray, orange: DRR, purple: shared features, blue:
DR DRR).

(b) X-rays (c) DRRs (d) DR intensity (e) DR int. + coll.

Figure 2: The concept of domain randomization in feature space and sample images.

different starting positions, different local minima can be reached that can result in highly similar
results on the training, but inconsistent results on the target domain.

The effects of the variation of the training data order can have similar influence. If the same
weights are used for initialization, but the network sees the training data in a different order, the
optimization can take different steps and can end up in different local minima, resulting in different
results on the target domain.

2.2. Domain Randomization

Domain randomization (Tobin et al., 2017) is an approach to transfer a deep neural network trained
on only simulated images to the real world. Instead of high quality simulation images, domain
randomization relies on the variability of the low quality simulation images. The main idea is to
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randomize the simulator and generate a large variation of simulated images, such that the real images
become just another variation.

For the present problem, instead of using a realistic X-ray simulator, it is proposed to use a
simple ray tracing-based DRR renderer. The concept can be illustrated in feature space by a Venn
diagram, see Figure 2(a). The sets of X-ray features and DRR features have a substantial inter-
section, because the method transfers (with limited performance) to the X-ray domain, if trained
only on DRRs. If there were no shared features, no intersection of the sets, the approach would
not transfer at all. To ensure a more successful transfer, the DRR generation is randomized that the
resulting features cover a large portion of the whole feature space (blue in Figure 2(a)). If the DR
images cover most of the feature space, the approach will generalize to the X-rays too, even if no
X-ray similar images are generated.

The DRR generation is performed with randomized 1) Hounsfield Unit (HU) values of the 3D
CT data and 2) collimation added to the 2D projections. Before computing the ray tracing, an
intensity mapping to the HU values of the CT data was applied either globally or locally. For global
randomization, a non-linear function (cumulative distribution function of a beta distribution) was
applied to transform the voxel values, where the parameters α and β are randomly sampled from
a uniform distribution of [0.5;5.0]. For the local randomization, the intensity range of the CT data
was subdivided into 5 to 15 non-overlapping ranges. The start and end of the intervals was defined
by evenly spacing the whole range, then a random perturbation was added to the start/end values
sampled from a Gaussian distribution (mean = 80 and standard deviation = 40). For each intensity
range, one of three randomization options was chosen: 1) the non-linear mapping described above;
2) invert the intensity range; 3) shift the intensity values by adding a random value of a uniform
distribution on the interval [−100;100]. This results in images shown in Figure 2(d).

The acquired X-ray images of the target domain are often collimated. Thus, in addition to
the intensity randomization, bands of random intensity were added to the generated images, see
Figure 2(e). The intensity was varied in the range of possible intensity values and the size of the
borders was maximally 25 % of the image size in the respective direction.

3. Experiments and Results

The effects of domain randomization are demonstrated on the image registration task with an imita-
tion learning agent, described in Section 2. The agent was trained only on synthetic data generated
from 1711 clinical CT volumes of 799 patients. The evaluation was performed in two steps, on two
datasets: 1) synthetic data from the same domain as the training data originates from; 2) clinical
patient data, from the target domain.

The effect of DR is presented for a certain set of seed values for 1) random weight initialization
and 2) random data shuffling. Then the seeds are varied to demonstrate the inconsistency of the
transfer from the synthetic training domain to the real target domain and to show the consistency of
the domain randomization results. An ablation study was also performed to investigate the influence
of each DR.

3.1. Evaluation Data

The synthetic test dataset consists of 100 CT volumes of 100 patients. There is no overlap between
training and test patients. The 3D mesh model of each patient was perturbed 10 times sampled from
a uniform distribution, resulting in 1000 artificial test cases. Due to the known perturbation, the GT
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registration is available. Accuracy is measured by the points of a 3D landmark at the center of the
LV model.

The clinical data consists of 21 patient datasets. Each patient dataset has one MR volume of
that the mesh model was extracted and an X-ray image to register to. The mesh model is perturbed
169 times in a rectangular grid manner about an approximate, manual registration. There is no GT
registration available for this dataset. The registration is evaluated quantitatively for robustness,
i.e., that it provides the same result from different perturbations. The robustness error measure was
defined as described in (Toth et al., 2018):

e f = ‖x f − x̃ f ‖2, (1)

where x̃ f is the median final position of the center of the cross landmark of all perturbations and x f

is the final position for a single perturbation. Rotational robustness ε f was computed in the same
manner. Accuracy is only verified qualitatively, by comparing the heart shadow in the X-rays and
the edges of the projected LV mask.

Table 1: Accuracy in mm on synthetic DRR data of the standard (SN) and domain randomized
networks (DRN) for varying weight initialization Wi and data order Di.

(a) Weight initialization varied
SN/DRN

Start W1,D1 W2,D1 W3,D1 W4,D1 W5,D1

Mean 22.41 2.80/2.65 2.66/2.66 2.70/2.65 2.63/2.64 2.77/2.68

StD. 10.60 2.17/2.05 2.27/2.12 2.18/2.10 2.23/2.07 2.24/2.19

Median 21.27 2.15/2.16 1.99/2.14 2.15/2.14 1.96/2.08 2.23/2.14

90 % 37.12 5.54/5.00 5.50/5.34 5.31/5.33 5.26/5.07 5.52/5.24

(b) Data order varied
SN/DRN

Start W1,D1 W1,D2 W1,D3 W1,D4 W1,D5

Mean 22.41 2.80/2.65 2.78/2.58 2.64/2.59 2.80/2.78 2.70/2.62

StD. 10.60 2.17/2.05 2.19/1.98 2.17/2.05 2.21/2.23 2.19/2.07

Median 21.27 2.15/2.16 2.26/2.03 2.02/2.06 2.25/2.19 2.08/2.10

90 % 37.12 5.54/5.00 5.31/5.11 5.21/5.23 5.39/5.50 5.14/5.05

3.2. Baseline

The Standard Network (SN) was trained with a selection of seeds for data shuffling (D1) and weight
initialization (W1). The training curves are marginally closer to each other for DR, see Appendix A.
The synthetic results are slightly better, see Table 1, but the clinical data results are slightly worse
than in (Toth et al., 2018), see Figure 3(a). This is due to training on significantly more data, causing
the network to overfit more to the synthetic domain. The network with domain randomization
(DRN) has the same architecture and was trained with the same parameters. On synthetic data,
as expected, the results improve only slightly, because no transfer is required. The clinical data
experiment has shown, however, that the distributions are compressed and the number of outliers is
greatly reduced, see Figures 3(a) and 3(c). Most individual cases have improved greatly in the final
alignment, for samples see Figures 3(b) and 3(d). The network has learned to handle intensity and
collimation variations, although, it has never seen realistic transformations.

3.3. Parameter Variation

Two experiments were performed: 1) the seed for random network weight initialization was var-
ied, with a fixed data order (Wi,D1) and 2) the data shuffling seed was varied, with fixed weight
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Figure 3: Effects of domain randomization on the target domain (clinical patient data). Baseline
quantitative and qualitative results with fixed seeds (W1 and D1) of the (a-b) standard
network (SN) and the (c-d) domain randomized network (DRN).

initialization (W1,Di). Both experiments had similar outcomes: Results on the synthetic data show
that, as expected, all training parameters with both networks (SN and DRN) result in highly similar
performance, because no domain transfer is required, see Table 1. In the case of the clinical X-ray
data, the SN produces acceptable, but highly variable results. The DRN produces more consistent
results, the distributions are compressed and the number of outliers is greatly reduced, see Figure 4
for a selection of setups and Figures 9 and 10 for all results.

If looking at individual cases, such as patients 3 and 8, good robustness and no major variation
was present with the SN. The features of these images must be shared between the training and
target domains, thus they can be registered without an explicit transfer. Cases such as 12 or 15 vary
greatly with varying training parameters. The trained SN networks are in different minima of the
optimization space, and the features required for performing well on these cases are learned only in
some of the setups. A quantitative summary of the translational and rotational robustness results is
displayed in Appendix B.

3.4. Ablation Study

To investigate the effects of each DR, they were applied individually in a specific setup (W1, D4), see
Figure 5 and Table 3. The translational robustness distributions have improved most significantly
through the DR of the intensity. The DR of the collimation mainly suppresses extreme outliers.
Combined DR is the most effective.
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(b) SN; W3,D1
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(c) SN; W1,D4
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(e) DRN; W2,D1
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(f ) DRN; W3,D1

1 2 3 4 5 6 7 8 9 101112131415161718192021

Patient Number
0

20
40
60
80

100
120
140

D
ev

ia
ti

on
e f

(m
m

)

(g) DRN; W1,D4
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(h) DRN; W1,D5

Figure 4: Translational robustness results e f of weight initialization (Wi) and training data order
(Di) variation on clinical patient data. (a–d) Standard network (SN). (e–h) Domain ran-
domized network (DRN).
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(b) Collimation DR
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(c) Intensity DR
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(d) Coll. + int. DR

Figure 5: Effects of individual DRs on translational robustness e f on clinical data for a single setup
(W1, D4).

4. Conclusion

This paper addresses the performance reduction on clinical data of a cardiac image registration sys-
tem, if trained only on artificially generated data. Through DR, DRRs are being generated by: 1)
varying the intensity transfer function and 2) adding artificial image borders (representing collima-
tion). It was shown, that the trained registration system has higher robustness against geometric
perturbations in the test data. Furthermore, it was demonstrated that training with different parame-
ters, i.e., weight initialization or data order, can result in varying results on the target (real) domain,
if trained purely on synthetic data. If trained with DR, however, the results are more consistent,
there is substantially less variation.
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Appendix A. Training Curves
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Figure 6: Training and validation curves of the standard (SN) and the domain randomized networks
(DRN), with weight initialization and data order seeds, W1 and D1 respectively.
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Figure 7: Training and validation curves of the standard (SN) and the domain randomized networks
(DRN), with weight initialization varied Wi and a fixed data order seed D1.
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Figure 8: Training and validation curves of the standard (SN) and the domain randomized networks
(DRN), with data order varied Di and a fixed weight initialization seed W1.

Appendix B. Quantitative Results on Clinical Data

Table 2: Robustness on clinical X-ray data of the standard (SN) and domain randomized networks
(DRN) for varying weight initialization Wi and data order Di for translation e f and rotation
ε f .

SN/DRN
W1,D1 W2,D1 W3,D1 W4,D1 W5,D1 W1,D2 W1,D3 W1,D4 W1,D5

Median ef (mm) 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

Mean ef (mm) 5.77/1.38 14.07/1.01 7.30/1.15 10.78/1.34 5.05/1.71 9.42/1.43 6.65/1.41 18.45/0.75 7.60/2.26

75 % ef (mm) 2.00/1.00 3.00/1.00 1.41/1.00 2.24/1.00 1.41/1.41 1.42/1.00 1.41/1.01 16.55/1.00 2.00/1.41

90 % ef (mm) 6.32/1.41 97.64/1.41 8.06/1.42 27.00/1.41 5.83/2.24 19.72/1.41 3.16/2.00 85.79/1.41 7.00/2.00

Outliers ef 237/80 263/60 172/28 263/59 154/53 274/54 98/69 342/30 338/114

Median εf (°) 0.46/0.39 0.55/0.50 0.67/0.53 0.60/0.46 0.50/0.49 0.51/0.49 0.52/0.46 0.71/0.46 0.54/0.49

Mean εf (°) 0.99/0.56 3.48/0.82 2.11/0.93 2.35/1.15 1.09/0.71 1.68/0.79 2.01/1.68 2.26/1.06 2.67/1.23

90 % εf (°) 1.69/1.19 7.88/1.55 3.48/1.70 3.57/2.08 1.97/1.47 3.38/1.61 3.37/2.29 5.69/1.48 3.39/1.70

479



TRAINING DEEP NETWORKS ON DOMAIN RANDOMIZED SYNTHETIC X-RAY DATA

St
an

da
rd

1 2 3 4 5 6 7 8 9 101112131415161718192021

Patient Number
0

20
40
60
80

100
120
140

D
ev

ia
ti

on
e f

(m
m

)

(a) SN; W2,D1

1 2 3 4 5 6 7 8 9 101112131415161718192021

Patient Number
0

20
40
60
80

100
120
140

D
ev

ia
ti

on
e f

(m
m

)

(b) SN; W3,D1

1 2 3 4 5 6 7 8 9 101112131415161718192021

Patient Number
0

20
40
60
80

100
120
140

D
ev

ia
ti

on
e f

(m
m

)

(c) SN; W4,D1

1 2 3 4 5 6 7 8 9 101112131415161718192021

Patient Number
0

20
40
60
80

100
120
140

D
ev

ia
ti

on
e f

(m
m

)

(d) SN; W5,D1

D
om

.R
an

d.

1 2 3 4 5 6 7 8 9 101112131415161718192021

Patient Number
0

20
40
60
80

100
120
140

D
ev

ia
ti

on
e f

(m
m

)

(e) DRN; W2,D1

1 2 3 4 5 6 7 8 9 101112131415161718192021

Patient Number
0

20
40
60
80

100
120
140

D
ev

ia
ti

on
e f

(m
m

)

(f ) DRN; W3,D1

1 2 3 4 5 6 7 8 9 101112131415161718192021

Patient Number
0

20
40
60
80

100
120
140

D
ev

ia
ti

on
e f

(m
m

)

(g) DRN; W4,D1

1 2 3 4 5 6 7 8 9 101112131415161718192021

Patient Number
0

20
40
60
80

100
120
140

D
ev

ia
ti

on
e f

(m
m

)

(h) DRN; W5,D1

Figure 9: Translational robustness results e f on clinical patient data for weight initialization varia-
tion (Wi) with a fixed training data order seed (D1). (a–d) Standard network (SN). (e–h)
Domain randomized network (DRN).
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Figure 10: Translational robustness results e f on clinical patient data for training data order vari-
ation (Di) with a fixed weight initialization seed (W1). (a–d) Standard network (SN).
(e–h) Domain randomized network (DRN).
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Table 3: Effects of individual domain randomizations on translational e f and rotational ε f robust-
ness for a single setup (W1, D4) on clinical data.

Translation ef Angle εf (°)

Median
(mm)

Mean
(mm)

75 %
(mm)

90 %
(mm) Outliers < 5 mm

(%)
< 3 mm

(%) Median Mean 90 %

No DR 1.00 18.45 16.55 85.79 342 69.57 66.78 0.71 2.26 5.69

Collimation DR 1.00 4.03 2.23 7.81 169 84.76 81.09 0.48 0.95 1.78

Intensity DR 1.00 2.42 1.00 1.42 77 97.49 95.10 0.52 0.75 1.54

Coll. + Int. DR 1.00 0.75 1.00 1.41 30 99.94 98.96 0.46 1.06 1.48
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Figure 11: Rotational robustness results ε f on clinical patient data for weight initialization variation
(Wi) with a fixed training data order seed (D1). (a–d) Standard network (SN). (e–h)
Domain randomized network (DRN).
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Figure 12: Rotational robustness results ε f on clinical patient data for training data order variation
(Di) with a fixed weight initialization seed (W1). (a–d) Standard network (SN). (e–h)
Domain randomized network (DRN).
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