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Abstract
Presently the most successful approaches to semi-supervised learning are based
on consistency regularization, whereby a model is trained to be robust to small
perturbations of its inputs and parameters. To understand consistency regularization,
we conceptually explore how loss geometry interacts with training procedures. The
consistency loss dramatically improves generalization performance over supervised-
only training; however, we show that SGD struggles to converge on the consistency
loss and continues to make large steps that lead to changes in predictions on
the test data. Motivated by these observations, we propose to train consistency-
based methods with Stochastic Weight Averaging (SWA), a recent approach which
averages weights along the trajectory of SGD with a modified learning rate schedule.
We also propose fast-SWA, which further accelerates convergence by averaging
multiple points within each cycle of a cyclical learning rate schedule. With weight
averaging, we achieve the best known semi-supervised results on CIFAR-10 and
CIFAR-100, over many different quantities of labeled training data. For example,
we achieve 5.0% error on CIFAR-10 with only 4000 labels, compared to the
previous best result in the literature of 6.3%.

1 INTRODUCTION

Recent advances in deep unsupervised learning, such as generative adversarial networks (GANs)
(Goodfellow et al., 2014), have led to an explosion of interest in semi-supervised learning. Semi-
supervised methods make use of both unlabeled and labeled training data to improve performance
over purely supervised methods. Semi-supervised learning is particularly valuable in applications
such as medical imaging, where labeled data may be scarce and expensive (Oliver et al., 2018).

Currently the best semi-supervised results are obtained by consistency-enforcing approaches (Bach-
man et al., 2014; Laine and Aila, 2017; Tarvainen and Valpola, 2017; Miyato et al., 2017; Park
et al., 2017). These methods use unlabeled data to stabilize their predictions under input or weight
perturbations. Consistency-enforcing methods can be used at scale with state-of-the-art architectures.
For example, the recent Mean Teacher (Tarvainen and Valpola, 2017) model has been used with the
Shake-Shake (Gastaldi, 2017) architecture and has achieved the best semi-supervised performance on
the consequential CIFAR benchmarks.

This paper is about conceptually understanding and improving consistency-based semi-supervised
learning methods. Our approach can be used as a guide for exploring how loss geometry interacts with
training procedures in general. We provide several novel observations about the training objective
and optimization trajectories of the popular ⇧ (Laine and Aila, 2017) and Mean Teacher (Tarvainen
and Valpola, 2017) consistency-based models. Inspired by these findings, we propose to improve
SGD solutions via stochastic weight averaging (SWA) (Izmailov et al., 2018), a recent method that
averages weights of the networks corresponding to different training epochs to obtain a single model
with improved generalization. On a thorough empirical study we show that this procedure achieves
the best known semi-supervised results on consequential benchmarks. In particular:

• We show in Section 3.1 that a simplified ⇧ model implicitly regularizes the norm of the Jacobian
of the network outputs with respect to both its inputs and its weights, which in turn encourages
flatter solutions. Both the reduced Jacobian norm and flatness of solutions have been related
to generalization in the literature (Sokolić et al., 2017; Novak et al., 2018; Chaudhari et al.,
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2016; Schmidhuber and Hochreiter, 1997; Keskar et al., 2017; Izmailov et al., 2018). Interpolating
between the weights corresponding to different epochs of training we demonstrate that the solutions
of ⇧ and Mean Teacher models are indeed flatter along these directions (Figure 1b).

• In Section 3.2, we compare the training trajectories of the ⇧, Mean Teacher, and supervised models
and find that the distances between the weights corresponding to different epochs are much larger
for the consistency based models. The error curves of consistency models are also wider (Figure
1b), which can be explained by the flatness of the solutions discussed in section 3.1. Further we
observe that the predictions of the SGD iterates can differ significantly between different iterations
of SGD.

• We observe that for consistency-based methods, SGD does not converge to a single point but
continues to explore many solutions with high distances apart. Inspired by this observation, we
propose to average the weights corresponding to SGD iterates, or ensemble the predictions of the
models corresponding to these weights. Averaging weights of SGD iterates compensates for larger
steps, stabilizes SGD trajectories and obtains a solution that is centered in a flat region of the loss
(as a function of weights). Further, we show that the SGD iterates correspond to models with
diverse predictions – using weight averaging or ensembling allows us to make use of the improved
diversity and obtain a better solution compared to the SGD iterates. In Section 3.3 we demonstrate
that both ensembling predictions and averaging weights of the networks corresponding to different
training epochs significantly improve generalization performance and find that the improvement is
much larger for the ⇧ and Mean Teacher models compared to supervised training. We find that
averaging weights provides similar or improved accuracy compared to ensembling, while offering
the computational benefits and convenience of working with a single model. Thus, we focus on
weight averaging for the remainder of the paper.

• Motivated by our observations in Section 3 we propose to apply Stochastic Weight Averaging
(SWA) (Izmailov et al., 2018) to the ⇧ and Mean Teacher models. Based on our results in Section
3.3 we propose several modifications to SWA in Section 4. In particular, we propose fast-SWA,
which (1) uses a learning rate schedule with longer cycles to increase the distance between the
weights that are averaged and the diversity of the corresponding predictions; and (2) averages
weights of multiple networks within each cycle (while SWA only averages weights corresponding
to the lowest values of the learning rate within each cycle). In Section 5, we show that fast-SWA
converges to a good solution much faster than SWA.

• Applying weight averaging to the ⇧ and Mean Teacher models we improve the best reported
results on CIFAR-10 for 1k, 2k, 4k and 10k labeled examples, as well as on CIFAR-100 with 10k
labeled examples. For example, we obtain 5.0% error on CIFAR-10 with only 4k labels, improving
the best result reported in the literature (Tarvainen and Valpola, 2017) by 1.3%. We also apply
weight averaging to a state-of-the-art domain adaptation technique (French et al., 2018) closely
related to the Mean Teacher model and improve the best reported results on domain adaptation
from CIFAR-10 to STL from 19.9% to 16.8% error.

• We release our code at https://github.com/benathi/fastswa-semi-sup

2 BACKGROUND

2.1 CONSISTENCY BASED MODELS

We briefly review semi-supervised learning with consistency-based models. This class of models
encourages predictions to stay similar under small perturbations of inputs or network parameters. For
instance, two different translations of the same image should result in similar predicted probabilities.
The consistency of a model (student) can be measured against its own predictions (e.g. ⇧ model) or
predictions of a different teacher network (e.g. Mean Teacher model). In both cases we will say a
student network measures consistency against a teacher network.

Consistency Loss In the semi-supervised setting, we have access to labeled data DL =
{(xL

i , yL
i )}NL

i=1, and unlabeled data DU = {xU
i }NU

i=1.

Given two perturbed inputs x0, x00 of x and the perturbed weights w0
f and w0

g, the consistency loss
penalizes the difference between the student’s predicted probablities f(x0; w0

f ) and the teacher’s
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g(x00; w0
g). This loss is typically the Mean Squared Error or KL divergence:

`MSE
cons (wf , x) = kf(x0; w0

f ) � g(x00, w0
g)k2 or `KL

cons(wf , x) = KL(f(x0; w0
f )||g(x00, w0

g)) . (1)

The total loss used to train the model can be written as

L(wf ) =
X

(x,y)2DL

`CE(wf , x, y)

| {z }
LCE

+�
X

x2DL[DU

`cons(wf , x)

| {z }
Lcons

, (2)

where for classification LCE is the cross entropy between the model predictions and supervised
training labels. The parameter � > 0 controls the relative importance of the consistency term in the
overall loss.

⇧ Model The ⇧ model, introduced in Laine and Aila (2017) and Sajjadi et al. (2016), uses the
student model f as its own teacher. The data (input) perturbations include random translations,
crops, flips and additive Gaussian noise. Binary dropout (Srivastava et al., 2014) is used for weight
perturbation.

Mean Teacher Model The Mean Teacher model (MT) proposed in Tarvainen and Valpola (2017)
uses the same data and weight perturbations as the ⇧ model; however, the teacher weights wg are
the exponential moving average (EMA) of the student weights wf : wk

g = ↵ · wk�1
g + (1 � ↵) · wk

f .
The decay rate ↵ is usually set between 0.9 and 0.999. The Mean Teacher model has the best known
results on the CIFAR-10 semi-supervised learning benchmark (Tarvainen and Valpola, 2017).

Other Consistency-Based Models Temporal Ensembling (TE) (Laine and Aila, 2017) uses an
exponential moving average of the student outputs as the teacher outputs in the consistency term for
training. Another approach, Virtual Adversarial Training (VAT) (Miyato et al., 2017), enforces the
consistency between predictions on the original data inputs and the data perturbed in an adversarial
direction x0 = x + ✏radv, where radv = arg maxr:krk=1 KL[f(x, w)kf(x + ⇠r, w)].

3 UNDERSTANDING CONSISTENCY-ENFORCING MODELS

In Section 3.1, we study a simplified version of the ⇧ model theoretically and show that it penalizes
the norm of the Jacobian of the outputs with respect to inputs, as well as the eigenvalues of the
Hessian, both of which have been related to generalization (Sokolić et al., 2017; Novak et al.,
2018; Dinh et al., 2017a; Chaudhari et al., 2016). In Section 3.2 we empirically study the training
trajectories of the ⇧ and MT models and compare them to the training trajectories in supervised
learning. We show that even late in training consistency-based methods make large training steps,
leading to significant changes in predictions on test. In Section 3.3 we show that averaging weights
or ensembling predictions of the models proposed by SGD at different training epochs can lead to
substantial gains in accuracy and that these gains are much larger for ⇧ and MT than for supervised
training.

3.1 SIMPLIFIED ⇧ MODEL PENALIZES LOCAL SHARPNESS

Penalization of the input-output Jacobian norm. Consider a simple version of the ⇧ model,
where we only apply small additive perturbations to the student inputs: x0 = x + ✏z, z ⇠ N (0, I)
with ✏ ⌧ 1, and the teacher input is unchanged: x00 = x.1 Then the consistency loss `cons
(Eq. 1) becomes `cons(w, x, ✏) = kf(w, x + ✏z) � f(w, x)k2. Consider the estimator Q̂ =
lim✏!0

1
✏2

1
m

Pm
i=1 `cons(w, xi, ✏). We show in Section A.5 that

E[Q̂] = Ex[kJxk2
F ] and Var[Q̂] =

1

m

✓
Var[kJxk2

F ] + 2E[kJT
x Jxk2

F ]

◆
,

where Jx is the Jacobian of the network’s outputs with respect to its inputs evaluated at x, k · kF
represents Frobenius norm, and the expectation Ex is taken over the distribution of labeled and

1This assumption can be relaxed to x00 = x+ ✏z2 z2 ⇠ N (0, I) without changing the results of the analysis,
since ✏(z1 � z2) = 2✏z̄ with z̄ ⇠ N (0, I).
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unlabeled data. That is, Q̂ is an unbiased estimator of Ex[kJxk2
F ] with variance controlled by the

minibatch size m. Therefore, the consistency loss implicitly penalizes Ex[kJxk2
F ].

The quantity ||Jx||F has been related to generalization both theoretically (Sokolić et al., 2017)
and empirically (Novak et al., 2018). For linear models f(x) = Wx, penalizing ||Jx||F exactly
corresponds to weight decay, also known as L2 regularization, since for linear models Jx = W , and
kWk2

F = kvec(W )k2
2. Penalizing Ex[kJxk2

F ] is also closely related to the graph based (manifold)
regularization in Zhu et al. (2003) which uses the graph Laplacian to approximate Ex[krMfk2] for
nonlinear models, making use of the manifold structure of unlabeled data.

Isotropic perturbations investigated in this simplified ⇧ model will not in general lie along the data
manifold, and it would be more pertinent to enforce consistency to perturbations sampled from
the space of natural images. In fact, we can interpret consistency with respect to standard data
augmentations (which are used in practice) as penalizing the manifold Jacobian norm in the same
manner as above. See Section A.5 for more details.

Penalization of the Hessian’s eigenvalues. Now, instead of the input perturbation, consider the
weight perturbation w0 = w + ✏z. Similarly, the consistency loss is an unbiased estimator for
Ex[kJwk2

F ], where Jw is the Jacobian of the network outputs with respect to the weights w. In
Section A.6 we show that for the MSE loss, the expected trace of the Hessian of the loss Ex[tr(H)]
can be decomposed into two terms, one of which is Ex[kJwk2

F ]. As minimizing the consistency loss
of a simplified ⇧ model penalizes Ex[kJwk2

F ], it also penalizes Ex[tr(H)]. As pointed out in Dinh
et al. (2017a) and Chaudhari et al. (2016), the eigenvalues of H encode the local information about
sharpness of the loss for a given solution w. Consequently, the quantity tr(H) which is the sum of
the Hessian eigenvalues is related to the notion of sharp and flat optima, which has recently gained
attention as a proxy for generalization performance (see e.g. Schmidhuber and Hochreiter, 1997;
Keskar et al., 2017; Izmailov et al., 2018). Thus, based on our analysis, the consistency loss in the
simplified ⇧ model encourages flatter solutions.

3.2 ANALYSIS OF SOLUTIONS ALONG SGD TRAJECTORIES

In the previous section we have seen that in a simplified ⇧ model, the consistency loss encourages
lower input-output Jacobian norm and Hessian’s eigenvalues, which are related to better generalization.
In this section we analyze the properties of minimizing the consistency loss in a practical setting.
Specifically, we explore the trajectories followed by SGD for the consistency-based models and
compare them to the trajectories in supervised training.
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Figure 1: (a): The evolution of the gradient norm for the consistency regularization term (Cons) and
the cross-entropy term (CE) in the ⇧, MT, and standard supervised (CE only) models during training.
(b): Train and test errors along rays connecting two SGD solutions for each respective model. (c) and
(d): Comparison of errors along rays connecting two SGD solutions, random rays, and adversarial
rays for the ⇧ and supervised models. See Section A.1 for the analogous Mean Teacher model’s plot.

We train our models on CIFAR-10 using 4k labeled data for 180 epochs. The ⇧ and Mean Teacher
models use 46k data points as unlabeled data (see Sections A.8 and A.9 for details). First, in Figure
1a we visualize the evolution of norms of the gradients of the cross-entropy term krLCEk and
consistency term krLconsk along the trajectories of the ⇧, MT, and standard supervised models
(using CE loss only). We observe that krLConsk remains high until the end of training and dominates
the gradient krLCEk of the cross-entropy term for the ⇧ and MT models. Further, for both the ⇧
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and MT models, krLConsk is much larger than in supervised training implying that the ⇧ and MT
models are making substantially larger steps until the end of training. These larger steps suggest
that rather than converging to a single minimizer, SGD continues to actively explore a large set of
solutions when applied to consistency-based methods.

For further understand this observation, we analyze the behavior of train and test errors in the region
of weight space around the solutions of the ⇧ and Mean Teacher models. First, we consider the one-
dimensional rays �(t) = t ·w180 +(1� t)w170, t � 0, connecting the weight vectors w170 and w180

corresponding to epochs 170 and 180 of training. We visualize the train and test errors (measured
on the labeled data) as functions of the distance from the weights w170 in Figure 1b. We observe
that the distance between the weight vectors w170 and w180 is much larger for the semi-supervised
methods compared to supervised training, which is consistent with our observation that the gradient
norms are larger which implies larger steps during optimization in the ⇧ and MT models. Further, we
observe that the train and test error surfaces are much wider along the directions connecting w170 and
w180 for the consistency-based methods compared to supervised training. One possible explanation
for the increased width is the effect of the consistency loss on the Jacobian of the network and the
eigenvalues of the Hessian of the loss discussed in Section 3.1. We also observe that the test errors of
interpolated weights can be lower than errors of the two SGD solutions between which we interpolate.
This error reduction is larger in the consistency models (Figure 1b).

We also analyze the error surfaces along random and adversarial rays starting at the SGD solution
w180 for each model. For the random rays we sample 5 random vectors d from the unit sphere and
calculate the average train and test errors of the network with weights wt1 + sd for s 2 [0, 30]. With
adversarial rays we evaluate the error along the directions of the fastest ascent of test or train loss
dadv = rLCE

||rLCE || . We observe that while the solutions of the ⇧ and MT models are much wider than
supervised training solutions along the SGD-SGD directions (Figure 1b), their widths along random
and adversarial rays are comparable (Figure 1c, 1d)

We analyze the error along SGD-SGD rays for two reasons. Firstly, in fast-SWA we are averaging
solutions traversed by SGD, so the rays connecting SGD iterates serve as a proxy for the space we
average over. Secondly, we are interested in evaluating the width of the solutions that we explore
during training which we expect will be improved by the consistency training, as discussed in Section
3.1 and A.6. We expect width along random rays to be less meaningful because there are many
directions in the parameter space that do not change the network outputs (Dinh et al., 2017b; Gur-
Ari et al., 2018; Sagun et al., 2017). However, by evaluating SGD-SGD rays, we can expect that
these directions corresponds to meaningful changes to our model because individual SGD updates
correspond to directions that change the predictions on the training set. Furthermore, we observe that
different SGD iterates produce significantly different predictions on the test data.

Neural networks in general are known to be resilient to noise, explaining why both MT, ⇧ and
supervised models are flat along random directions (Arora et al., 2018). At the same time neural
networks are susceptible to targeted perturbations (such as adversarial attacks). We hypothesize that
we do not observe improved flatness for semi-supervised methods along adversarial rays because
we do not choose our input or weight perturbations adversarially, but rather they are sampled from a
predefined set of transformations.

Additionally, we analyze whether the larger optimization steps for the ⇧ and MT models translate into
higher diversity in predictions. We define diversity of a pair of models w1, w2 as Diversity(w1, w2) =
1
N

PN
i=1 [y(w1)

i 6= y(w2)
i ], the fraction of test samples where the predicted labels between the two

models differ. We found that for the ⇧ and MT models, the Diversity(w170, w180) is 7.1% and 6.1%
of the test data points respectively, which is much higher than 3.9% in supervised learning. The
increased diversity in the predictions of the networks traversed by SGD supports our conjecture that
for the ⇧ and MT models SGD struggles to converge to a single solution and continues to actively
explore the set of plausible solutions until the end of training.

3.3 ENSEMBLING AND WEIGHT AVERAGING

In Section 3.2, we observed that the ⇧ and MT models continue taking large steps in the weight space
at the end of training. Not only are the distances between weights larger, we observe these models
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to have higher diversity. In this setting, using the last SGD iterate to perform prediction is not ideal
since many solutions explored by SGD are equally accurate but produce different predictions.

Ensembling. In Section 3.2 we showed that the diversity in predictions is significantly larger for the
⇧ and Mean Teacher models compared to purely supervised learning. The diversity of these iterates
suggests that we can achieve greater benefits from ensembling. We use the same CNN architecture
and hyper-parameters as in Section 3.2 but extend the training time by doing 5 learning rate cycles
of 30 epochs after the normal training ends at epoch 180 (see A.8 and A.9 for details). We sample
random pairs of weights w1, w2 from epochs 180, 183, . . . , 330 and measure the error reduction
from ensembling these pairs of models, Cens ⌘ 1

2Err(w1) + 1
2Err(w2) � Err (Ensemble(w1, w2)). In

Figure 2c we visualize Cens, against the diversity of the corresponding pair of models. We observe
a strong correlation between the diversity in predictions of the constituent models and ensemble
performance, and therefore Cens is substantially larger for ⇧ and Mean Teacher models. As shown in
Izmailov et al. (2018), ensembling can be well approximated by weight averaging if the weights are
close by.

Weight Averaging. First, we experiment on averaging random pairs of weights at the end of
training and analyze the performance with respect to the weight distances. Using the the same pairs
from above, we evaluate the performance of the model formed by averaging the pairs of weights,
Cavg(w1, w2) ⌘ 1

2Err(w1)+
1
2Err(w2)�Err

�
1
2w1 + 1

2w2

�
. Note that Cavg is a proxy for convexity:

if Cavg(w1, w2) � 0 for any pair of points w1, w2, then by Jensen’s inequality the error function is
convex (see the left panel of Figure 2). While the error surfaces for neural networks are known to
be highly non-convex, they may be approximately convex in the region traversed by SGD late into
training (Goodfellow et al., 2015). In fact, in Figure 2b, we find that the error surface of the SGD
trajectory is approximately convex due to Cavg(w1, w2) being mostly positive. Here we also observe
that the distances between pairs of weights are much larger for the ⇧ and MT models than for the
supervised training; and as a result, weight averaging achieves a larger gain for these models.

In Section 3.2 we observed that for the ⇧ and Mean Teacher models SGD traverses a large flat region
of the weight space late in training. Being very high-dimensional, this set has most of its volume
concentrated near its boundary. Thus, we find SGD iterates at the periphery of this flat region (see
Figure 2d). We can also explain this behavior via the argument of (Mandt et al., 2017). Under certain
assumptions SGD iterates can be thought of as samples from a Gaussian distribution centered at the
minimum of the loss, and samples from high-dimensional Gaussians are known to be concentrated
on the surface of an ellipse and never be close to the mean. Averaging the SGD iterates (shown
in red in Figure 2d) we can move towards the center (shown in blue) of the flat region, stabilizing
the SGD trajectory and improving the width of the resulting solution, and consequently improving
generalization.

w1 w2

(a) Convex vs. non-convex (b) Cavg vs. ||w1 � w2|| (c) Cens vs. diversity

C

(d) Gain from flatness

Figure 2: (a): Illustration of a convex and non-convex function and Jensen’s inequality. (b): Scatter
plot of the decrease in error Cavg for weight averaging versus distance. (c): Scatter plot of the decrease
in error Cens for prediction ensembling versus diversity. (d): Train error surface (orange) and Test
error surface (blue). The SGD solutions (red dots) around a locally flat minimum are far apart due
to the flatness of the train surface (see Figure 1b) which leads to large error reduction of the SWA
solution (blue dot).

We observe that the improvement Cavg from weight averaging (1.2 ± 0.2% over MT and ⇧ pairs) is
on par or larger than the benefit Cens of prediction ensembling (0.9 ± 0.2%) The smaller gain from
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Figure 3: Left: Cyclical cosine learning rate schedule and SWA and fast-SWA averaging strategies.
Middle: Illustration of the solutions explored by the cyclical cosine annealing schedule on an error
surface. Right: Illustration of SWA and fast-SWA averaging strategies. fast-SWA averages more
points but the errors of the averaged points, as indicated by the heat color, are higher.

ensembling might be due to the dependency of the ensembled solutions, since they are from the same
SGD run as opposed to independent restarts as in typical ensembling settings. For the rest of the
paper, we focus attention on weight averaging because of its lower costs at test time and slightly
higher performance compared to ensembling.

4 SWA AND FAST-SWA

In Section 3 we analyzed the training trajectories of the ⇧, MT, and supervised models. We observed
that the ⇧ and MT models continue to actively explore the set of plausible solutions, producing
diverse predictions on the test set even in the late stages of training. Further, in section 3.3 we have
seen that averaging weights leads to significant gains in performance for the ⇧ and MT models. In
particular these gains are much larger than in supervised setting.

Stochastic Weight Averaging (SWA) (Izmailov et al., 2018) is a recent approach that is based on
averaging weights traversed by SGD with a modified learning rate schedule. In Section 3 we
analyzed averaging pairs of weights corresponding to different epochs of training and showed that it
improves the test accuracy. Averaging multiple weights reinforces this effect, and SWA was shown
to significantly improve generalization performance in supervised learning. Based on our results in
section 3.3, we can expect even larger improvements in generalization when applying SWA to the ⇧
and MT models.

SWA typically starts from a pre-trained model, and then averages points in weight space traversed by
SGD with a constant or cyclical learning rate. We illustrate the cyclical cosine learning rate schedule
in Figure 3 (left) and the SGD solutions explored in Figure 3 (middle). For the first `  `0 epochs the
network is pre-trained using the cosine annealing schedule where the learning rate at epoch i is set
equal to ⌘(i) = 0.5 · ⌘0(1 + cos (⇡ · i/`0)). After ` epochs, we use a cyclical schedule, repeating
the learning rates from epochs [` � c, `], where c is the cycle length. SWA collects the networks
corresponding to the minimum values of the learning rate (shown in green in Figure 3, left) and
averages their weights. The model with the averaged weights wSWA is then used to make predictions.
We propose to apply SWA to the student network both for the ⇧ and Mean Teacher models. Note that
the SWA weights do not interfere with training.

Originally, Izmailov et al. (2018) proposed using cyclical learning rates with small cycle length for
SWA. However, as we have seen in Section 3.3 (Figure 2, left) the benefits of averaging are the most
prominent when the distance between the averaged points is large. Motivated by this observation,
we instead use longer learning rate cycles c. Moreover, SWA updates the average weights only once
per cycle, which means that many additional training epochs are needed in order to collect enough
weights for averaging. To overcome this limitation, we propose fast-SWA, a modification of SWA
that averages networks corresponding to every k < c epochs starting from epoch ` � c. We can also
average multiple weights within a single epoch setting k < 1.

Notice that most of the models included in the fast-SWA average (shown in red in Figure 3, left) have
higher errors than those included in the SWA average (shown in green in Figure 3, right) since they
are obtained when the learning rate is high. It is our contention that including more models in the
fast-SWA weight average can more than compensate for the larger errors of the individual models.
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Indeed, our experiments in Section 5 show that fast-SWA converges substantially faster than SWA
and has lower performance variance. We analyze this result theoretically in Section A.7).

5 EXPERIMENTS

We evaluate the ⇧ and MT models (Section 4) on CIFAR-10 and CIFAR-100 with varying numbers
of labeled examples. We show that fast-SWA and SWA improve the performance of the ⇧ and MT
models, as we expect from our observations in Section 3. In fact, in many cases fast-SWA improves
on the best results reported in the semi-supervised literature. We also demonstrate that the preposed
fast-SWA obtains high performance much faster than SWA. We also evaluate SWA applied to a
consistency-based domain adaptation model (French et al., 2018), closely related to the MT model,
for adapting CIFAR-10 to STL. We improve the best reported test error rate for this task from 19.9%
to 16.8%.

We discuss the experimental setup in Section 5.1. We provide the results for CIFAR-10 and CIFAR-
100 datasets in Section 5.2 and 5.3. We summarize our results in comparison to the best previous
results in Section 5.4. We show several additional results and detailed comparisons in Appendix
A.2. We provide analysis of train and test error surfaces of fast-SWA solutions along the directions
connecting fast-SWA and SGD in Section A.1.

5.1 SETUP

We evaluate the weight averaging methods SWA and fast-SWA on different network architectures and
learning rate schedules. We are able to improve on the base models in all settings. In particular, we
consider a 13-layer CNN and a 12-block (26-layer) Residual Network (He et al., 2015) with Shake-
Shake regularization (Gastaldi, 2017), which we refer to simply as CNN and Shake-Shake respectively
(see Section A.8 for details on the architectures). For training all methods we use the stochastic
gradient descent (SGD) optimizer with the cosine annealing learning rate described in Section 4. We
use two learning rate schedules, the short schedule with ` = 180, `0 = 210, c = 30, similar to the
experiments in Tarvainen and Valpola (2017), and the long schedule with ` = 1500, `0 = 1800, c =
200, similar to the experiments in Gastaldi (2017). We note that the long schedule improves the
performance of the base models compared to the short schedule; however, SWA can still further
improve the results. See Section A.9 of the Appendix for more details on other hyperparameters. We
repeat each CNN experiment 3 times with different random seeds to estimate the standard deviations
for the results in the Appendix.

5.2 CIFAR-10
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Figure 4: Prediction errors of ⇧ and MT models with and without fast-SWA. (a) CIFAR-10 with
CNN (b) CIFAR-100 with CNN. 50k+ and 50k+⇤ correspond to 50k+500k and 50k+237k⇤ settings
(c) CIFAR-10 with ResNet + Shake-Shake using the short schedule (d) CIFAR-10 with ResNet +
Shake-Shake using the long schedule.

We evaluate the proposed fast-SWA method using the ⇧ and MT models on the CIFAR-10 dataset
(Krizhevsky). We use 50k images for training with 1k, 2k, 4k, 10k and 50k labels and report the
top-1 errors on the test set (10k images). We visualize the results for the CNN and Shake-Shake
architectures in Figures 4a, 4c, and 4d. For all quantities of labeled data, fast-SWA substantially
improves test accuracy in both architectures. Additionally, in Tables 2, 4 of the Appendix we provide
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a thorough comparison of different averaging strategies as well as results for VAT (Miyato et al.,
2017), TE (Laine and Aila, 2016), and other baselines.

Note that we applied fast-SWA for VAT as well which is another popular approach for semi-supervised
learning. We found that the improvement on VAT is not drastic – our base implementation obtains
11.26% error where fast-SWA reduces it to 10.97% (see Table 2 in Section A.2). It is possible that
the solutions explored by VAT are not as diverse as in ⇧ and MT models due to VAT loss function.
Throughout the experiments, we focus on the ⇧ and MT models as they have been shown to scale to
powerful networks such as Shake-Shake and obtained previous state-of-the-art performance.

In Figure 5 (left), we visualize the test error as a function of iteration using the CNN. We observe that
when the cyclical learning rate starts after epoch ` = 180, the base models drop in performance due
to the sudden increase in learning rate (see Figure 3 left). However, fast-SWA continues to improve
while collecting the weights corresponding to high learning rates for averaging. In general, we also
find that the cyclical learning rate improves the base models beyond the usual cosine annealing
schedule and increases the performance of fast-SWA as training progresses. Compared to SWA, we
also observe that fast-SWA converges substantially faster, for instance, reducing the error to 10.5% at
epoch 200 while SWA attains similar error at epoch 350 for CIFAR-10 4k labels (Figure 5 left). We
provide additional plots in Section A.2 showing the convergence of the ⇧ and MT models in all label
settings, where we observe similar trends that fast-SWA results in faster error reduction.

We also find that the performance gains of fast-SWA over base models are higher for the ⇧ model
compared to the MT model, which is consistent with the convexity observation in Section 3.3 and
Figure 2. In the previous evaluations (see e.g. Oliver et al., 2018; Tarvainen and Valpola, 2017), the ⇧
model was shown to be inferior to the MT model. However, with weight averaging, fast-SWA reduces
the gap between ⇧ and MT performance. Surprisingly, we find that the ⇧ model can outperform
MT after applying fast-SWA with moderate to large numbers of labeled points. In particular, the
⇧+fast-SWA model outperforms MT+fast-SWA on CIFAR-10 with 4k, 10k, and 50k labeled data
points for the Shake-Shake architecture.

Figure 5: Prediction errors of base models and their weight averages (fast-SWA and SWA) for CNN
on (left) CIFAR-10 with 4k labels, (middle) CIFAR-100 with 10k labels, and (right) CIFAR-100
50k labels and extra 500k unlabeled data from Tiny Images (Torralba et al., 2008).

5.3 CIFAR-100 AND EXTRA UNLABELED DATA

We evaluate the ⇧ and MT models with fast-SWA on CIFAR-100. We train our models using 50000
images with 10k and 50k labels using the 13-layer CNN. We also analyze the effect of using the Tiny
Images dataset (Torralba et al., 2008) as an additional source of unlabeled data.

The Tiny Images dataset consists of 80 million images, mostly unlabeled, and contains CIFAR-100
as a subset. Following Laine and Aila (2016), we use two settings of unlabeled data, 50k+500k
and 50k+237k⇤ where the 50k images corresponds to CIFAR-100 images from the training set and
the +500k or +237k⇤ images corresponds to additional 500k or 237k images from the Tiny Images
dataset. For the 237k⇤ setting, we select only the images that belong to the classes in CIFAR-100,
corresponding to 237203 images. For the 500k setting, we use a random set of 500k images whose
classes can be different from CIFAR-100. We visualize the results in Figure 4b, where we again
observe that fast-SWA substantially improves performance for every configuration of the number of
labeled and unlabeled data. In Figure 5 (middle, right) we show the errors of MT, SWA and fast-SWA
as a function of iteration on CIFAR-100 for the 10k and 50k+500k label settings. Similar to the
CIFAR-10 experiments, we observe that fast-SWA reduces the errors substantially faster than SWA.
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We provide detailed experimental results in Table 3 of the Appendix and include preliminary results
using the Shake-Shake architecture in Table 5, Section A.2.

5.4 ADVANCING STATE-OF-THE-ART

We have shown that fast-SWA can significantly improve the performance of both the ⇧ and MT
models. We provide a summary comparing our results with the previous best results in the literature
in Table 1, using the 13-layer CNN and the Shake-Shake architecture that had been applied previously.
We also provide detailed results the Appendix A.2.

Table 1: Test errors against current state-of-the-art semi-supervised results. The previous best numbers
are obtained from (Tarvainen and Valpola, 2017)1, (Park et al., 2017)2, (Laine and Aila, 2016)3 and
(Luo et al., 2018)4. CNN denotes performance on the benchmark 13-layer CNN (see A.8). Rows
marked † use the Shake-Shake architecture. The result marked ‡ are from ⇧ + fast-SWA, where the
rest are based on MT + fast-SWA. The settings 50k+500k and 50k+237k⇤ use additional 500k and
237k unlabeled data from the Tiny Images dataset (Torralba et al., 2008) where ⇤ denotes that we use
only the images that correspond to CIFAR-100 classes.

Dataset CIFAR-10 CIFAR-100
No. of Images 50k 50k 50k 50k 50k+500k 50k+237k⇤

No. of Labels 1k 2k 4k 10k 50k 50k

Previous Best CNN 18.414 13.644 9.222 38.653 23.623 23.793

Ours CNN 15.58 11.02 9.05 33.62 21.04 20.98

Previous Best† 6.281

Ours† 6.6 5.7 5.0‡ 28.0 19.3 17.7

5.5 PRELIMINARY RESULTS ON DOMAIN ADAPTATION

Domain adaptation problems involve learning using a source domain Xs equipped with labels Ys

and performing classification on the target domain Xt while having no access to the target labels at
training time. A recent model by French et al. (2018) applies the consistency enforcing principle
for domain adaptation and achieves state-of-the-art results on many datasets. Applying fast-SWA to
this model on domain adaptation from CIFAR-10 to STL we were able to improve the best results
reported in the literature from 19.9% to 16.8%. See Section A.10 for more details on the domain
adaptation experiments.

6 DISCUSSION

Semi-supervised learning is crucial for reducing the dependency of deep learning on large labeled
datasets. Recently, there have been great advances in semi-supervised learning, with consistency
regularization models achieving the best known results. By analyzing solutions along the training
trajectories for two of the most successful models in this class, the ⇧ and Mean Teacher models,
we have seen that rather than converging to a single solution SGD continues to explore a diverse
set of plausible solutions late into training. As a result, we can expect that averaging predictions or
weights will lead to much larger gains in performance than for supervised training. Indeed, applying
a variant of the recently proposed stochastic weight averaging (SWA) we advance the best known
semi-supervised results on classification benchmarks.

While not the focus of our paper, we have also shown that weight averaging has great promise in
domain adaptation (French et al., 2018). We believe that application-specific analysis of the geometric
properties of the training objective and optimization trajectories will further improve results over
a wide range of application specific areas, including reinforcement learning with sparse rewards,
generative adversarial networks (Yazıcı et al., 2018), or semi-supervised natural language processing.
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A APPENDIX

A.1 ADDITIONAL PLOTS
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Figure 6: All plots are a obtained using the 13-layer CNN on CIFAR-10 with 4k labeled and 46k
unlabeled data points unless specified otherwise. Left: Test error as a function of distance along
random rays for the ⇧ model with 0, 4k, 10k, 20k or 46k unlabeled data points, and standard fully
supervised training which uses only the cross entropy loss. All methods use 4k labeled examples.
Middle: Train and test errors along rays connecting SGD solutions (showed with circles) to SWA
solutions (showed with squares) for each respective model. Right: Comparison of train and test
errors along rays connecting two SGD solutions, random rays, and adversarial rays for the Mean
Teacher model.

In this section we provide several additional plots visualizing the train and test error along different
types of rays in the weight space. The left panel of Figure 6 shows how the behavior of test error
changes as we add more unlabeled data points for the ⇧ model. We observe that the test accuracy
improves monotonically, but also the solutions become narrower along random rays.

The middle panel of Figure 6 visualizes the train and test error behavior along the directions connecting
the fast-SWA solution (shown with squares) to one of the SGD iterates used to compute the average
(shown with circles) for ⇧, MT and supervised training. Similarly to Izmailov et al. (2018) we
observe that for all three methods fast-SWA finds a centered solution, while the SGD solution lies
near the boundary of a wide flat region. Agreeing with our results in section 3.2 we observe that for
⇧ and Mean Teacher models the train and test error surfaces are much wider along the directions
connecting the fast-SWA and SGD solutions than for supervised training.

In the right panel of Figure 6 we show the behavior of train and test error surfaces along random rays,
adversarial rays and directions connecting the SGD solutions from epochs 170 and 180 for the Mean
Teacher model (see section 3.2).
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Figure 7: (Left): The evolution of the gradient covariance trace in the ⇧, MT, and supervised models
during training. (Middle): Scatter plot of the decrease in error Cavg for weight averaging versus
diversity. (Right): Scatter plot of the distance between pairs of weights versus diversity in their
predictions.

In the left panel of Figure 7 we show the evolution of the trace of the gradient of the covariance of
the loss

tr cov(rwL(w)) = EkrwL(w) � ErwL(w)k2
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for the ⇧, MT and supevised training. We observe that the variance of the gradient is much larger for
the ⇧ and Mean Teacher models compared to supervised training.

In the middle and right panels of figure 7 we provide scatter plots of the improvement C obtained
from averaging weights against diversity and diversity against distance. We observe that diversity is
highly correlated with the improvement C coming from weight averaging. The correlation between
distance and diversity is less prominent.

A.2 DETAILED RESULTS

In this section we report detailed results for the ⇧ and Mean Teacher models and various baselines on
CIFAR-10 and CIFAR-100 using the 13-layer CNN and Shake-Shake.

The results using the 13-layer CNN are summarized in Tables 2 and 3 for CIFAR-10 and CIFAR-100
respectively. Tables 4 and 5 summarize the results using Shake-Shake on CIFAR-10 and CIFAR-
100. In the tables ⇧ EMA is the same method as ⇧, where instead of SWA we apply Exponential
Moving Averaging (EMA) for the student weights. We show that simply performing EMA for the
student network in the ⇧ model without using it as a teacher (as in MT) typically results in a small
improvement in the test error.

Figures 8 and 9 show the performance of the ⇧ and Mean Teacher models as a function of the training
epoch for CIFAR-10 and CIFAR-100 respectively for SWA and fast-SWA.

Table 2: CIFAR-10 semi-supervised errors on test set with a 13-layer CNN. The epoch numbers are
reported in parenthesis. The previous results shown in the first section of the table are obtained from
Tarvainen and Valpola (2017)1, Park et al. (2017)2, Laine and Aila (2016)3, Miyato et al. (2017)4.

Number of labels 1000 2000 4000 10000 50000

TE3 - - 12.16 ± 0.31 5.60 ± 0.15
Supervised-only1 46.43 ± 1.21 33.94 ± 0.73 20.66 ± 0.57 5.82 ± 0.15
⇧ 1 27.36 ± 1.20 18.02 ± 0.60 13.20 ± 0.27 6.06 ± 0.15
MT1 21.55 ± 1.48 15.73 ± 0.31 12.31 ± 0.28 5.94 ± 0.15
VAdD3 9.22 ± 0.10 4.40 ± 0.12
VAT + EntMin4 10.55

MT 18.78 ± 0.31 14.43 ± 0.20 11.41 ± 0.27 8.74 ± 0.30 5.98 ± 0.21
MT + fast-SWA (180) 18.19 ± 0.38 13.46 ± 0.30 10.67 ± 0.18 8.06 ± 0.12 5.90 ± 0.03
MT + fast-SWA (240) 17.81 ± 0.37 13.00 ± 0.31 10.34 ± 0.14 7.73 ± 0.10 5.55 ± 0.03
MT + SWA (240) 18.38 ± 0.29 13.86 ± 0.64 10.95 ± 0.21 8.36 ± 0.50 5.75 ± 0.29
MT + fast-SWA (480) 16.84 ± 0.62 12.24 ± 0.31 9.86 ± 0.27 7.39 ± 0.14 5.14 ± 0.07
MT + SWA (480) 17.48 ± 0.13 13.09 ± 0.80 10.30 ± 0.21 7.78 ± 0.49 5.31 ± 0.43
MT + fast-SWA (1200) 15.58 ± 0.12 11.02 ± 0.23 9.05 ± 0.21 6.92 ± 0.07 4.73 ± 0.18
MT + SWA (1200) 15.59 ± 0.77 11.42 ± 0.33 9.38 ± 0.28 7.04 ± 0.11 5.11 ± 0.35

⇧ 21.85 ± 0.69 16.10 ± 0.51 12.64 ± 0.11 9.11 ± 0.21 6.79 ± 0.22
⇧ EMA 21.70 ± 0.57 15.83 ± 0.55 12.52 ± 0.16 9.06 ± 0.15 6.66 ± 0.20
⇧ + fast-SWA (180) 20.79 ± 0.38 15.12 ± 0.44 11.91 ± 0.06 8.83 ± 0.32 6.42 ± 0.09
⇧ + fast-SWA (240) 20.04 ± 0.41 14.77 ± 0.15 11.61 ± 0.06 8.45 ± 0.28 6.14 ± 0.11
⇧ + SWA (240) 21.37 ± 0.64 15.38 ± 0.85 12.05 ± 0.40 8.58 ± 0.41 6.36 ± 0.55
⇧ + fast-SWA (480) 19.11 ± 0.29 13.88 ± 0.30 10.91 ± 0.15 7.91 ± 0.21 5.53 ± 0.07
⇧ + SWA (480) 20.06 ± 0.64 14.53 ± 0.81 11.35 ± 0.42 8.04 ± 0.37 5.77 ± 0.51
⇧ + fast-SWA (1200) 17.23 ± 0.34 12.61 ± 0.18 10.07 ± 0.27 7.28 ± 0.23 4.72 ± 0.04
⇧ + SWA (1200) 17.70 ± 0.25 12.59 ± 0.29 10.73 ± 0.39 7.13 ± 0.23 4.99 ± 0.41

VAT 11.99
VAT + SWA 11.16
VAT+ EntMin 11.26
VAT + EntMin + SWA 10.97
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Table 3: CIFAR-100 semi-supervised errors on test set. All models are trained on a 13-layer CNN.
The epoch numbers are reported in parenthesis. The previous results shown in the first section of the
table are obtained from (Laine and Aila, 2016)3.

Number of labels 10k 50k 50k + 500k 50k + 237k⇤

Supervised-only3 44.56 ± 0.30 26.42 ± 0.17
⇧ model3 39.19 ± 0.54 26.32 ± 0.04 25.79 ± 0.17 25.43 ± 0.17
Temporal Ensembling3 38.65 ± 0.51 26.30 ± 0.15 23.62 ± 0.17 23.79 ± 0.17

MT (180) 35.96 ± 0.77 23.37 ± 0.16 23.18 ± 0.06 23.18 ± 0.24
MT + fast-SWA (180) 34.54 ± 0.48 21.93 ± 0.16 21.04 ± 0.16 21.09 ± 0.12
MT + SWA (240) 35.59 ± 1.45 23.17 ± 0.86 22.00 ± 0.23 21.59 ± 0.22
MT + fast-SWA (240) 34.10 ± 0.31 21.84 ± 0.12 21.16 ± 0.21 21.07 ± 0.21
MT + SWA (1200) 34.90 ± 1.51 22.58 ± 0.79 21.47 ± 0.29 21.27 ± 0.09
MT + fast-SWA (1200) 33.62 ± 0.54 21.52 ± 0.12 21.04 ± 0.04 20.98 ± 0.36
⇧ (180) 38.13 ± 0.52 24.13 ± 0.20 24.26 ± 0.15 24.10 ± 0.07
⇧ + fast-SWA (180) 35.59 ± 0.62 22.08 ± 0.21 21.40 ± 0.19 21.28 ± 0.20
⇧ + SWA (240) 36.89 ± 1.51 23.23 ± 0.70 22.17 ± 0.19 21.65 ± 0.13
⇧ + fast-SWA (240) 35.14 ± 0.71 22.00 ± 0.21 21.29 ± 0.27 21.22 ± 0.04
⇧ + SWA (1200) 35.35 ± 1.15 22.53 ± 0.64 21.53 ± 0.13 21.26 ± 0.34
⇧ + fast-SWA (1200) 34.25 ± 0.16 21.78 ± 0.05 21.19 ± 0.05 20.97 ± 0.08

Table 4: CIFAR-10 semi-supervised errors on test set. All models use Shake-Shake Regularization
(Gastaldi, 2017) + ResNet-26 (He et al., 2015).

Number of labels 1000 2000 4000 10000 50000

Short Schedule (` = 180)
MT† (Tarvainen and Valpola, 2017) 6.28

MT (180) 10.2 8.0 7.1 5.8 3.9
MT + SWA (240) 9.7 7.7 6.2 4.9 3.4
MT + fast-SWA (240) 9.6 7.4 6.2 4.9 3.2
MT + SWA (1200) 7.6 6.4 5.8 4.6 3.1
MT + fast-SWA (1200) 7.5 6.3 5.8 4.5 3.1
⇧ (180) 12.3 9.1 7.5 6.4 3.8
⇧ + SWA (240) 11.0 8.3 6.7 5.5 3.3
⇧ + fast-SWA (240) 11.2 8.2 6.7 5.5 3.3
⇧ + SWA (1200) 8.2 6.7 5.7 4.2 3.1
⇧ + fast-SWA (1200) 8.0 6.5 5.5 4.0 3.1
Long Schedule (` = 1500)
Supervised-only (Gastaldi, 2017) 2.86
MT (1500) 7.5 6.5 6.0 5.0 3.5
MT + fast-SWA (1700) 6.4 5.8 5.2 3.8 3.4
MT + SWA (1700) 6.9 5.9 5.5 4.2 3.2
MT + fast-SWA (3500) 6.6 5.7 5.1 3.9 3.1
MT + SWA (3500) 6.7 5.8 5.2 3.9 3.1

⇧ (1500) 8.5 7.0 6.3 5.0 3.4
⇧ + fast-SWA (1700) 7.5 6.2 5.2 4.0 3.1
⇧ + SWA (1700) 7.8 6.4 5.6 4.4 3.2
⇧ + fast-SWA (3500) 7.4 6.0 5.0 3.8 3.0
⇧ + SWA (3500) 7.9 6.2 5.1 4.0 3.0
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Table 5: CIFAR-100 semi-supervised errors on test set. Our models use Shake-Shake Regularization
(Gastaldi, 2017) + ResNet-26 (He et al., 2015).

Number of labels 10k 50k 50k + 500k 50k + 237k⇤

TE (CNN) (Laine and Aila, 2016) 38.65 ± 0.51 26.30 ± 0.15 23.62 ± 0.17 23.79 ± 0.17

Short Schedule (` = 180)
MT (180) 29.4 19.5 21.9 19.0
MT + fast-SWA (180) 28.9 19.3 19.7 18.3
MT + SWA (240) 28.4 18.8 19.9 17.9
MT + fast-SWA (240) 28.1 18.8 19.5 17.9
MT + SWA (300) 28.1 18.5 18.9 17.5
MT + fast-SWA (300) 28.0 18.4 19.3 17.7

Figure 8: Test errors as a function of training epoch for baseline models, SWA and fast-SWA on
CIFAR-10 trained using 1k, 2k, 4k, and 10k labels for (top) the MT model (bottom) the ⇧ model.
All models are trained using the 13-layer CNN.

Figure 9: Test errors versus training epoch for baseline models, SWA and fast-SWA on CIFAR-100
trained using 10k, 50k, 50k+500k, and 50k+237k⇤ labels for (top) the MT model (bottom) the ⇧
model. All models are trained using the 13-layer CNN.

A.3 EFFECT OF LEARNING RATE SCHEDULES

The only hyperparameter for the fast-SWA setting is the cycle length c. We demonstrate in Figure 10a
that fast-SWA’s performance is not sensitive to c over a wide range of c values. We also demonstrate
the performance for constant learning schedule. fast-SWA with cyclical learning rates generally
converges faster due to higher variety in the collected weights.
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(a) (b)

Figure 10: The plots are generated using the MT model with CNN trained on CIFAR-10. We
randomly select 5k of the 50k train images as a validation set. The remaining 45k images are splitted
into 4k labeled and 41k unlabeled data points. (a) Validation accuracy as a function of training epoch
for different cycle lengths c (b) fast-SWA with constant learning rate. The “learning rate epoch”
corresponds to the epoch in the unmodified cosine annealing schedule (Figure 3, left) at which the
learning rate is evaluated. We use this fixed learning rate for all epochs i � `.

A.4 EMA VERSUS SWA AS A TEACHER

The MT model uses an exponential moving average (EMA) of the student weights as a teacher in
the consistency regularization term. We consider two potential effects of using EMA as a teacher:
first, averaging weights improves performance of the teacher for the reasons discussed in Sections
3.2, 3.3; second, having a better teacher model leads to better student performance which in turn
further improves the teacher. In this section we try to separate these two effects. We apply EMA
to the ⇧ model in the same way in which we apply fast-SWA instead of using EMA as a teacher
and compare the resulting performance to the Mean Teacher. Figure 11 shows the improvement in
error-rate obtained by applying EMA to the ⇧ model in different label settings. As we can see while
EMA improves the results over the baseline ⇧ model, the performance of ⇧-EMA is still inferior
to that of the Mean Teacher method, especially when the labeled data is scarce. This observation
suggests that the improvement of the Mean Teacher over the ⇧ model can not be simply attributed to
EMA improving the student performance and we should take the second effect discussed above into
account.

Like SWA, EMA is a way to average weights of the networks, but it puts more emphasis on very
recent models compared to SWA. Early in training when the student model changes rapidly EMA
significantly improves performance and helps a lot when used as a teacher. However once the student
model converges to the vicinity of the optimum, EMA offers little gain. In this regime SWA is a
much better way to average weights. We show the performance of SWA applied to ⇧ model in Figure
11 (left).

Figure 11: (left) Comparison of different averaging methods. The y axis corresponds to the increased
error with respect to the MT model with fast-SWA solution (which has y = 0). All numbers are
taken from epoch 180. (right) The effects of using SWA as a teacher. W-T model corresponds to the
performance of a model with weight W using a model with a teacher being T.

17



Published as a conference paper at ICLR 2019

Since SWA performs better than EMA, we also experiment with using SWA as a teacher instead
of EMA. We start with the usual MT model pretrained until epoch 150. Then we switch to using
SWA as a teacher at epoch 150. In Figure 11 (right), our results suggest that using SWA as a teacher
performs on par with using EMA as a teacher. We conjecture that once we are at a convex region
of test error close to the optimum (epoch 150), having a better teacher doesn’t lead to substantially
improved performance. It is possible to start using SWA as a teacher earlier in training; however,
during early epochs where the model undergoes rapid improvement EMA is more sensible than SWA
as we discussed above.

A.5 CONSISTENCY LOSS APPROXIMATES JACOBIAN NORM

Estimator mean and variance: In the simplified ⇧ model with small additive data perturbations
that are normally distributed, z ⇠ N (0, I),

Q̂ = lim
✏!0

1
✏2

1
m

mX

i=1

`cons(w, xi, ✏) = 1
m

mX

i=1

lim
✏!0

1
✏2 kf(w, xi + ✏zi) � f(w, xi)k2

Taylor expanding `cons in ✏, we obtain `cons(w, x, ✏) = ✏2zTJT
x Jxz + O(✏4), where Jx is the

Jacobian of the network outputs f with respect to the input at a particular value of x. Therefore,

Q̂i = lim
✏!0

1
✏2 `cons(w, xi, ✏) = zTi J(xi)

TJ(xi)zi.

We can now recognize this term as a one sample stochastic trace estimator for tr(J(xi)TJ(xi)) with a
Gaussian probe variable zi; see Avron and Toledo (2011) for derivations and guarantees on stochastic
trace estimators.

Ez[Q̂i] = tr (J(xi)
TJ(xi)E[ziz

T
i ]) = kJ(xi)k2

F .

Taking an expectation over the m samples of x, we get E[Q̂] = Ex[kJxk2
F .

In general if we have m samples of x and n sampled perturbations for each x, then for a symmetric
matrix A with zik

iid⇠ N(0, I) and independent xi
iid⇠ p(x),
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Proof: Let qik ⌘ zTikA(xi)zik. It is easy to show that for fixed x, Ez[q11|x1] = 2tr(A(x1)2) +
tr(A(x1))2, (see e.g. Avron and Toledo, 2011). Note that Ez1,z2 [qi1qi2|xi] = tr(A(xi))2. Since�
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Non-isotropic perturbations along data manifold Consistency regularization with natural pertur-
bations such as image translation can also be understood as penalizing a Jacobian norm as in Section
3.1. For example, consider perturbations sampled from a normal distribution on the tangent space,
z ⇠ P (x)N (0, I) where P (x) = P (x)2 is the orthogonal projection matrix that projects down from
Rd to Tx(M), the tangent space of the image manifold at x. Then the consistency regularization
penalizes the Laplacian norm of the network on the manifold (with the inherited metric from Rd).
E[z] = 0 and E[zzT ] = PPT (=)P 2 = P which follows if P is an orthogonal projection matrix.
Then,

E[zTJTJz] = tr(JTJPPT ) = tr(PTJTJP ) = tr(JT
MJM) = kJMk2

F .
We view the standard data augmentations such as random translation (that are applied in the ⇧
and MT models) as approximating samples of nearby elements of the data manifold and therefore
differences x0 � x approximate elements of its tangent space.

A.6 RELATIONSHIP BETWEEN Ex[kJwk2
F ] AND RANDOM RAY SHARPNESS

In the following analysis we review an argument for why smaller Ex[kJwk2
F ], implies broader optima.

To keep things simple, we focus on the MSE loss, but in principle a similar argument should apply
for the Cross Entropy and the Error rate. For a single data point x and one hot vector y with k classes,
the hessian of `MSE(w) = kf(x, w) � yk2 can be decomposed into two terms, the Gauss-Newton
matrix G = JT

wJw and a term which depends on the labels.

H(w, x, y) = r2`MSE(w) = JT
wJw +

kX

i=1

(r2fi)(fi(x) � yi),

tr(H) = kJwk2
F +

kX

i=1

tr(r2fi)(fi(x) � yi)

| {z }
↵(x,y)

Thus tr(H) is also the sum of two terms, kJwk2
F and ↵. As the solution improves, the relative

size of ↵ goes down. In terms of random ray sharpness, consider the expected MSE loss, or risk,
RMSE(w) = E(x,y)kf(x, w) � yk2 along random rays. Let d be a random vector sampled from the
unit sphere and s is the distance along the random ray. Evaluating the risk on a random ray, and
Taylor expanding in s we have

RMSE(w + sd) = RMSE(w) + sdTE(x,y)[J
T
w (f � y)] + (1/2)s2dTE(x,y)[H]d + O(s3)

Since d is from the unit sphere, E[d] = 0 and E[ddT ] = I/p where p is the dimension. Averaging
over the rays, d ⇠ Unif(Sp�1), we have

Ed[RMSE(w+sd)]�RMSE(w) =
s2

2p
Ex[tr(H)]+O(s4) =

s2

2p
Ex[kJwk2

F ]+
s2

2p
E(x,y)[↵(x, y)]+O(s4)

All of the odd terms vanish because of the reflection symmetry of the unit sphere. This means that
locally, the sharpness of the optima (as measured by random rays) can be lowered by decreasing
Ex[kJwk2

F ].

A.7 INCLUDING HIGH LEARNING RATE ITERATES INTO SWA

As discussed in Mandt et al. (2017), under certain assumptions SGD samples from a Gaussian
distribution centered at the optimum of the loss w0 with covariance proportional to the learning
rate. Suppose then that we have n weights sampled at learning rate ⌘1, w(1)

i
iid⇠ N (w0, ⌘1⌃)

and m weights sampled with the higher learning rate ⌘2, w(2)
j

iid⇠ N (w0, ⌘2⌃). For the SWA
estimator ŵSWA = 1

n

P
i w

(1)
i , E[kŵSWA � w0k2] = tr(Cov(ŵSWA)) = ⌘1

n tr(⌃). But if we include
the high variance points in the average, as in fast-SWA, ŵfSWA = 1

n+m

�P
i w

(1)
i +

P
j w(2)

j

�
, then

E[kŵfSWA � w0k2] = n⌘1+m⌘2

(n+m)2 tr(⌃). If n⌘1+m⌘2

(n+m)2 < ⌘1

n then including the high learning rate points
decreases the MSE of the estimator for m > n

�⌘2

⌘1
� 2

�
. If we include enough points, we will still

improve the estimate.
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A.8 NETWORK ARCHITECTURES

In the experiments we use two DNN architectures – 13 layer CNN and Shake-Shake. The architecture
of 13-layer CNN is described in Table 6. It closely follows the architecture used in (Laine and
Aila, 2017; Miyato et al., 2017; Tarvainen and Valpola, 2017). We re-implement it in PyTorch and
removed the Gaussian input noise, since we found having no such noise improves generalization.
For Shake-Shake we use 26-2x96d Shake-Shake regularized architecture of Gastaldi (2017) with 12
residual blocks.

Table 6: A 13-layer convolutional neural networks for the
CNN experiments (CIFAR-10 and CIFAR-100) in Section
5.2 and 5.3. Note that the difference from the architecture
used in Tarvainen and Valpola (2017) is that we removed
a Gaussian noise layer after the horizontal flip.

Layer Hyperparameters
Input 32 ⇥ 32 RGB image
Translation Randomly {�x, �y} ⇠ [�4, 4]
Horizontal flip Randomly p = 0.5
Convolutional 128 filters, 3 ⇥ 3, same padding
Convolutional 128 filters, 3 ⇥ 3, same padding
Convolutional 128 filters, 3 ⇥ 3, same padding
Pooling Maxpool 2 ⇥ 2
Dropout p = 0.5
Convolutional 256 filters, 3 ⇥ 3, same padding
Convolutional 256 filters, 3 ⇥ 3, same padding
Convolutional 256 filters, 3 ⇥ 3, same padding
Pooling Maxpool 2 ⇥ 2
Dropout p = 0.5
Convolutional 512 filters, 3 ⇥ 3, valid padding
Convolutional 256 filters, 1 ⇥ 1, same padding
Convolutional 128 filters, 1 ⇥ 1, same padding
Pooling Average pool (6 ⇥ 6 ! 1⇥1 pixels)
Softmax Fully connected 128 ! 10

A.9 HYPERPARAMETERS

We consider two different schedules. In the short schedule we set the cosine half-period `0 = 210 and
training length ` = 180, following the schedule used in Tarvainen and Valpola (2017) in Shake-Shake
experiments. For our Shake-Shake experiments we also report results with long schedule where we
set ` = 1800, `0 = 1500 following Gastaldi (2017). To determine the initial learning rate ⌘0 and the
cycle length c we used a separate validation set of size 5000 taken from the unlabeled data. After
determining these values, we added the validation set to the unlabeled data and trained again. We
reuse the same values of ⌘0 and c for all experiments with different numbers of labeled data for both
⇧ model and Mean Teacher for a fixed architecture (13-layer CNN or Shake-Shake). For the short
schedule we use cycle length c = 30 and average models once every k = 3 epochs. For long schedule
we use c = 200, k = 20.

In all experiments we use stochastic gradient descent optimizer with Nesterov momentum (Loshchilov
and Hutter, 2016). In fast-SWA we average every the weights of the models corresponding to every
third epoch. In the ⇧ model, we back-propagate the gradients through the student side only (as
opposed to both sides in (Laine and Aila, 2016)). For Mean Teacher we use ↵ = 0.97 decay rate in
the Exponential Moving Average (EMA) of the student’s weights. For all other hyper-parameters we
reuse the values from Tarvainen and Valpola (2017) unless mentioned otherwise.

Like in Tarvainen and Valpola (2017), we use k · k2 for divergence in the consistency loss. Similarly,
we ramp up the consistency cost � over the first 5 epochs from 0 up to it’s maximum value of 100 as
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done in Tarvainen and Valpola (2017). We use cosine annealing learning rates with no learning rate
ramp up, unlike in the original MT implementation (Tarvainen and Valpola, 2017). Note that this is
similar to the same hyperparameter settings as in Tarvainen and Valpola (2017) for ResNet2. We note
that we use the exact same hyperparameters for the ⇧ and MT models in each experiment setting. In
contrast to the original implementation in Tarvainen and Valpola (2017) of CNN experiments, we use
SGD instead of Adam.

Understanding Experiments in Sections 3.2, 3.3 We use the 13-layer CNN with the short learning
rate schedule. We use a total batch size of 100 for CNN experiments with a labeled batch size of 50
for the ⇧ and Mean Teacher models. We use the maximum learning rate ⌘0 = 0.1. For Section 3.2
we run SGD only for 180 epochs, so 0 learning rate cycles are done. For Section 3.3 we additionally
run 5 learning rate cycles and sample pairs of SGD iterates from epochs 180-330 corresponding to
these cycles.

CIFAR-10 CNN Experiments We use a total batch size of 100 for CNN experiments with a
labeled batch size of 50. We use the maximum learning rate ⌘0 = 0.1.

CIFAR-10 ResNet + Shake-Shake We use a total batch size of 128 for ResNet experiments with
a labeled batch size of 31. We use the maximum learning rate ⌘0 = 0.05 for CIFAR-10. This applies
for both the short and long schedules.

CIFAR-100 CNN Experiments We use a total batch size of 128 with a labeled batch size of 31
for 10k and 50k label settings. For the settings 50k+500k and 50k+237k⇤, we use a labeled batch
size of 64. We also limit the number of unlabeled images used in each epoch to 100k images. We use
the maximum learning rate ⌘0 = 0.1.

CIFAR-100 ResNet + Shake-Shake We use a total batch size of 128 for ResNet experiments with
a labeled batch size of 31 in all label settings. For the settings 50k+500k and 50k+237k⇤, we also
limit the number of unlabeled images used in each epoch to 100k images. We use the maximum
learning rate ⌘0 = 0.1. This applies for both the short and long schedules.

A.10 DOMAIN ADAPTATION

We apply fast-SWA to the best experiment setting MT+CT+TFA for CIFAR-10 to STL according
to French et al. (2018). This setting involves using confidence thresholding (CT) and also an
augmentation scheme with translation, flipping, and affine transformation (TFA).

We modify the optimizer to use SGD instead of Adam (Kingma and Ba, 2015) and use cosine
annealing schedule with `0 = 600, ` = 550, c = 50. We experimented with two fast-SWA methods:
averaging weights once per epoch and averaging once every iteration, which is much more frequent
that averaging every epoch as in the semi-supervised case. Interestingly, we found that for this task
averaging the weights in the end of every iteration in fast-SWA converges significantly faster than
averaging once per epoch and results in better performance. We report the results in Table 7.

We observe that averaging every iteration converges much faster (600 epochs instead of 3000) and
results in better test accuracy. In our experiments with semi-supervised learning averaging more
often than once per epoch didn’t improve convergence or final results. We hypothesize that the
improvement from more frequent averaging is a result of specific geometry of the loss surfaces and
training trajectories in domain adaptation. We leave further analysis of applying fast-SWA to domain
adaptation for future work.

Implementation Details We use the public code3 of French et al. (2018) to train the model and
apply fast-SWA. While the original implementation uses Adam (Kingma and Ba, 2015), we use
stochastic gradient descent with Nesterov momentum and cosine annealing learning rate with `0 =
600, ` = 550, c = 100 and k = 100. We use the maximum learning rate ⌘0 = 0.1 and momentum

2We use the public Pytorch code https://github.com/CuriousAI/mean-teacher as our base
model for the MT model and modified it for the ⇧ model.

3https://github.com/Britefury/self-ensemble-visual-domain-adapt.git
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Table 7: Domain Adaptation from CIFAR-10 to STL. VADA results are from (Shu et al., 2018)
and the original SE⇤ is from French et al. (2018). SE is the score with our implementation without
fast-SWA. fast-SWA 1 performs averaging every epoch and the final result is obtained at epoch 3000.
fast-SWA 2 performs the averaging every iteration and the final result is obtained at epoch 600.

Method VADA SE⇤ SE SE + fast-SWA 1 SE + fast-SWA 2

Test Error 20.0 19.9 18.1 17.1 16.8

0.9 with weight decay of scale 2 ⇥ 10�4. We use the data augmentation setting MT+CF+TFA in
Table 1 of French et al. (2018) and apply fast-SWA. The result reported is from epoch 4000.
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