
DAC Replication Report

Yichen Chai
yichen_chai@brown.edu

Zhe Hu
zhe_hu@brown.edu

Cancan Huang
cancan_huang@brown.edu

Yan Huang
yan_huang@brown.edu

Ziyao Huang
ziyao_huang@brown.edu

Zezhi Wang
zezhi_wang@brown.edu

Abstract

This paper is a reproduction of DAC: The Double Actor-Critic Architecture for1

Learning Options by Zhang and Whiteson ((2019)). It tried to apply the actor-2

critic technique to hierarchical reinforcement learning. We re-implemented the3

DAC and some other baselines the author used for experiments and evaluated the4

reproducibility of this work. We conducted empirical studies on 4 Mujoco games5

the authors used with their hyper-parameters. In this setting, our results partially6

support their claims.7

1 Introduction8

This DAC paper focuses on the hierarchical reinforcement learning area. The author examines the9

existing hierarchical reinforcement learning methods and addresses two issues: (reference here)10

• Although policy-based methods are often preferred in the MDP setting, theoretical study for11

learning a master policy with policy-based intra-option methods is limited, and its empirical12

success has not been witnessed so far.13

• Despite the recent successes of gradient-based option learning algorithms, most of them14

customize the original algorithm to the option-based SMDP. Consequently, we cannot15

directly leverage recent advances in gradient-based policy optimization from MDPs.16

To address these issues, this paper reformulates the SMDP of the option framework as two augmented17

MDPs: one master MDP to select option, and several lower level MDPs for deciding action given18

a specific option. The author applies actor-critic algorithm on each augmented MDP. Under this19

setting, any policy optimization algorithms can be easily applied without specific customization for20

the policy learning. The author also ran experiments on a few OpenAI Mujoco tasks, using their DAC21

architecture combined with the Proximal Policy Optimization algorithm.22

This paper contains two main experiments: single task learning and transfer learning. We will focus23

on replicating the single task learning experiments first.24

The conclusions from the single task learning experiments are:25

• DAC+PPO outperform other algorithms (OC, IOPG, DAC+A2C). This shows that the26

performance boose mainly comes from the PPO algorithm, which is the advantage of DAC27

and AHP: to use policy optimization algorithms off the shelf to learn options.28

• DAC+PPO performs similarly to vanilla PPO in 3 out of 4 single tasks. This is because29

options aren’t necessary for single tasks for good performance.30

Figure 1: DAC single task learning result

The original single task learning experiment results are shown in Figure 1.31

Therefore, we would like to rerun the experiments using these algorithms:32

DAC+PPO, PPO, DAC+A2C, OC, PPOC

to see if our results are consistent with their conclusion. Since OC and IOPG have similar performance,33

we will only do OC instead of both as a baseline.34

2 Algorithms Explanation35

2.1 Double Actor-Critic Architecture36

The Double Actor-Critic architecture (DAC) reformulates the traditional option framework into two37

augmented MDPs. One high level MDP MH is used to learn options, and a low level MDP ML38

learns actions for a given option. Both MDPs share same samples from the environment for higher39

sample efficiency.40

The agent’s learning process is shown in Algorithm 1:41

Algorithm 1: Double Actor Critic algorithm
Initialize networks weight;
Reset the task env;
Get the initial state S1 of the task, and initial option O0;
while current step < max step do

for timestep=1,2,· · · do
Sample an option Ot from πh(O|(Ot−1, St));
Sample an action At from lower level policy πl(A|(Ot, St));
Apply the sampled action in the task to get next state St+1 and reward Rt;
Update current step number and record the reward Rt for plotting;

Apply some policy gradient algorithm to update networks weights;

42

In our actual training, we set the max step to be two million for all of our agents, as the author did.43

2.2 Proximal Policy Optimization44

Proximal Policy Optimization(PPO) is an algorithm proposed by Schulman et al. ((2017)), having45

state-of-the-art performance but is easy to implement and tune compared to other algorithms. It46

stems from the idea of off-policy policy gradient, utilizing importance sampling in the process of47

updating the policy so that the same set of data can be used to train the agent for several epochs,48

largely improving the data efficiency. Besides, it improves upon Trust Region Policy Optimization49

(TRPO) in that it uses a much simpler constraint while achieving similar performance.50

For PPO, the objective function is51

LCLIP(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)], rt(θ) =
πθ(a|s)
πθold(a|s)2

In contrast to TRPO where a constraint of KL-divergence between the old and new policy is applied,52

PPO simply clips the loss function to serve the purpose of ensuring the stability of the training53

process, and it turns out to work pretty well in many kinds of tasks.54

The Pseudo Code of PPO is shown in Algorithm 2.55

Algorithm 2: Proximal Policy Optimization
Run πθold for T timesteps ;
Compute advantage estimates Â1, · · · , ÂT , and record πθold(a1|s1), · · ·πθold(aT |sT);
for epoch=1,2,· · · do

for minibatch=1,· · ·T/minibatch_size do
Sample minibatch_size of experience steps;
Compute LCLIP(θ) with current πθ;
Compute the critic error and add them together;
Backprop to update πθ;

56

2.3 Option Critic57

The Option-Critic Architecture proposed by Bacon et al. ((2017)) is an architecture built upon the58

combination of option framework and the classical actor-critic algorithm, where they derived the59

policy gradient theorems for options, i.e.60

∇νvπ(S0) =
∑
s,o

ρ(s, o|S0, O0)
∑
a

qπ(s, o, a)∇νπo(a|s),

∇φvπ(S0) = −
∑
s′,o

ρ(s′, o|S1, O0)(qπ(s′, o)− vπ(s′))∇φβo(s′)

where ρ(s, o|S0, O0) =
∑∞
t=0 γ

tP (st = s, ot = o|S0, O0). Based on these theorems, they con-61

structed an algorithm known as option-critic, where the actor consists of the intra-option policies,62

termination functions, while the critic contains the calculation of qπ (and vπ), and a ε-greedy master63

policy is applied over options.64

The pseudo code of OC is shown in Algorithm 3:65

Algorithm 3: Option-critic with Q-learning
s← s0;
Choose ω according to an ε-soft policy over options πΩ(s);
while s is non-terminal do

Choose action α according to πω,θ(α | s);
Execute α in s, observe s′, r;
δ ← r −QU (s, ω, α);
if s′ is non-terminal then

δ ← δ + γ(1− βω,ϑ(s′))QΩ(s′, ω) + γβω,ϑ(s′) maxω̄ QΩ(s′, ω̄);
QU (s, ω, α)← QU (s, ω, α) + ασ;
θ ← θ + αθ

∂ log πω,θ(α|s)
∂θ QU (s, ω, α);

ϑ← ϑ− αϑ ∂βω,ϑ(s′)
∂ϑ (QΩ(s′, ω)− VΩ(s′));

if βω,ϑ terminates in s′ then
choose new ω according to ε-soft(πΩ(s′));
s← s′;

66

2.4 Advantage Actor-Critic67

Advantage Actor-Critic (A2C) released by OpenAI is a synchronous, deterministic variant of Asyn-68

chronous Advantage Actor-Critic proposed by Mnih et al. ((2016)) with equal performance.69

The advantage of a state-action pair is the difference between the state-action Q value, and the state’s70

3

value:71

A(s, a) = Q(s, a)− V (s)

In this algorithm, first initialize network parameters θ with random values. Second, play N steps72

in the environment using the current policy πθ, saving state st, action at and reward rt. Third,73

R = 0 if the end of the episode is reached or Vθ(st). Fourth, for i = t− 1...tstart, accumulate the74

PG δθπ ← δθπ +∇θlogπθ(ai|si)(R− Vθ(si)) and the value gradients δθv ← δθv + δ(R−Vθ(si))
2

δθv
.75

Finally, update parameters using the accumulated gradients, moving in the direction of PG δθπ and in76

the opposite direction of the value gradients δθv. Repeat from second step until the convergence is77

reached.78

3 Challenges79

Throughout the process of trying to understand and replicate this work, we encountered some80

challenges.81

• Understanding the DAC architecture required us to have deep understandings of some prior82

works that were new to us.83

• Implementing several baselines is a considerable amount of work.84

• The way policy gradient algorithms are used to optimize the two MDPs separately in DAC85

architecture is confusing to us, so we had to look at the author’s implementation as a86

reference to help us understand how DAC and policy gradient are integrated together.87

4 Implementation88

Our code for experiment can be found at our Github Repository1.89

4.1 Fully Connected Network90

Each of our agents utilizes multiple fully connected networks in their implementation. They all have91

similar architecture, with the difference mostly being in the output layer.92

They all have an input layer with dimension being the state dimension, two hidden layers with 6493

nodes each, and one output layer. The author used the Tanh activation function for the first three94

layers in Mujoco tasks, but we found a ReLU activation function generates better results. That’s what95

we use for our replicate experiments.96

4.2 PPO97

Our implementation of PPO is based on higgsfield’s implementation 2. In the real implementation, a98

parametrized Gaussian policy is employed as the actor in the continuous situation, and Generalized99

Advantage Estimation(GAE) by Schulman et al. ((2015)) is used to compute the advantage function.100

10 epochs are applied to train the data from every 2048 steps, with a minibatch size of 64.101

Also, we find an interesting phenomenon that the orthogonal initialization by Saxe et al. ((2013))102

with an appropriate weight scale plays an important role in achieving good performance for the PPO103

algorithm. For example, in the HalfCheetah task, the PPO algorithm without orthogonal initialization104

can only achieve an average episodic reward of 2500 to 3000 in 2e6 steps, while with orthogonal105

initialization (weight scale 1) the PPO algorithm is able to achieve an average episodic reward over106

3000 to even 4000.107

4.3 DAC Architecture108

Our DAC agent keeps track of 2k + 2 separate fully connected networks, where k is the number of109

options.110

1https://github.com/DAC-Prime/supreme-waffle
2https://github.com/higgsfield/RL-Adventure-2/blob/master/3.ppo.ipynb

4

https://github.com/DAC-Prime/supreme-waffle
https://github.com/higgsfield/RL-Adventure-2/blob/master/3.ppo.ipynb

We use 2 networks for high level MDP learning, one to predict master policy, the other one to predict111

the values of the current state. Both networks have the number of options as their output dimension.112

The policy net uses softmax as output layer activation function, and the value net output the prediction113

directly without any activation function.114

For each option, we utilize two more networks for action selection. The first one generates an action115

policy for its corresponding option given a state, and the other one predicts the termination probability.116

The policy net outputs a tensor with the same shape as the Mujoco task action. It has Tanh as the final117

activation function. The termination net predicts a single number, using sigmoid as final activation.118

4.4 OC119

For OC, we here implement a slightly different version of option-critic based on the implementation120

of DAC’s authors’3 for comparison, which uses multiple (16) workers to train the option-critic121

synchronously, and only compute the gradients and update the policy every 5 steps.122

Built upon option-critic, we also implement the Proximal Policy Option Critic (PPOC) algorithm123

proposed by Klissarov et al. ((2017)), which is a combination of PPO and OC. PPOC employs the124

PPO loss function to train the intra-option policies, and include the master policy (softmax) over125

options in its actor so that it will also be trained by backpropagation.126

4.5 A2C127

We consulted the OpenAI baselines for A2C 4.128

5 Environment Setup129

5.1 OpenAI Gym and Mujoco130

The experiments in this paper consist of two parts: single task learning and transfer learning. The131

single task learning part, which we focus on, uses four Mujoco environments from OpenAI Gym:132

HalfCheetah-v2, Walker2d-v2, Hopper-v2, Swimmer-v2

In the appendix, the author mentioned that the states from environments are normalized using running133

std and mean as preprocessing steps. This is also confirmed in the OpenAI Gym Github repo that134

Mujoco environments states require this normalization preprocess for it to be learned properly. We135

utilized the existing normalizer provided in the OpenAI Baseline Github repo5 for this purpose.136

5.2 Platform137

The experiments are all ran on the cluster of Center for Computation Vision at Brown University.138

Anaconda is used for package control and environment setup. The activation file of Mujoco is139

provided by Prof. Michael Littman. To maintain the consistency between different systems, we also140

create a Docker recipe from which a Docker image can be built and ran in any system.141

5.3 Plotting142

For our experiments, to avoid coincidence and extend the universality, we have trained 10 agents for143

each of the four Mujoco tasks(HalfCheetah-v2, Walker2d-v2, Hopper-v2, and Swimmer-v2) to plot144

our episodic cumulative rewards graph. The results of the mean value with the standard error were145

plotted for the agents we have implemented.146

6 Experiments Result147

Our replicated performance of the DAC-PPO, DAC-A2C, OC, PPO and PPOC agent roughly matches148

the result reported in the original DAC paper.149

3https://github.com/ShangtongZhang/DeepRL/blob/DAC/deep_rl/agent/OC_agent.py
4https://github.com/openai/baselines/blob/master/baselines/a2c
5https://github.com/openai/baselines

5

http://cs.brown.edu/~mlittman/
https://github.com/ShangtongZhang/DeepRL/blob/DAC/deep_rl/agent/OC_agent.py
https://github.com/openai/baselines/blob/master/baselines/a2c
https://github.com/openai/baselines

(a) HalfCheetah (b) Walker2d

(c) Hopper (d) Swimmer

Figure 2: Experimental results for four Mujoco games

Specifically,150

1. Our implementations of DAC-A2C and OC turn out to have approximately the same per-151

formance as the authors’, which is worse than that of PPO and DAC-PPO. The author152

concluded that the advantage mainly comes from PPO, and our results are in line with this153

claim.154

2. For HalfCheetah-v2 and Hopper-v2, our DAC-PPO agent and PPO agent achieve approxi-155

mately the same performance after two million steps of learning. This matches the original156

result.157

3. For Walker-v2 task, the author concluded that the DAC-PPO and PPO agents perform158

similarly, although the graph showed that the vanilla PPO performs a little better than159

DAC-PPO. Our agents perform pretty close to each other at the end of training.160

4. For Swimmer-v2 setting, the author reported a better performance from DAC-PPO agent161

compared to vanilla PPO. Our DAC-PPO agent achieved similar cumulative rewards to the162

author’s result, but our vanilla PPO performed better than theirs. So our result doesn’t have163

that large margin in the original result.164

We have also noticed a larger variation in our replicated agents’ performance compared to the graph165

reported in the DAC paper. The reason could be due to a bug inside the original implementation. The166

author unintentionally fixed the Mujoco environments random seed across multiple runs, making167

their experiment less stochastic.6168

6https://github.com/ShangtongZhang/DeepRL/issues/67

6

https://github.com/ShangtongZhang/DeepRL/issues/67

We did not have the chance to re-implement and experiment the Augmented Hierarchical Policy169

(AHP) architecture, so our replication could not verify the author’s comparison between DAC and170

AHP.171

7 Reflection172

Our experiment results roughly match those reported by the author. We think our replication173

experience partially supports the paper.174

About the first point, our replication generates state-of-art performance in the four Mujoco tasks.175

This is an empirical success of master policy learning with policy-cased intra-option methods.176

Our replication verifies that the proposed DAC architecture is able to utilize PPO and A2C algorithms177

for optimization. However, it’s hard for us to figure out the way DAC architecture and policy gradient178

algorithms are integrated together from the paper alone. It’s probably due to our lack of background179

knowledge and experience, but that’s still not intuitive from our perspective.180

The choice of activation function can influence the results significantly, which might be worth digging181

in the underneath reasons.182

References183

Shangtong Zhang and Shimon Whiteson. Dac: The double actor-critic architecture for learning184

options. ArXiv, abs/1904.12691, 2019.185

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy186

optimization algorithms. In arXiv preprint, arXiv:1707.06347., 2017.187

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Thirty-First AAAI188

Conference on Artificial Intelligence, 2017.189

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim190

Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement191

learning. In International conference on machine learning, 2016.192

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional193

continuous control using generalized advantage estimation, 2015.194

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics195

of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.196

Martin Klissarov, Pierre-Luc Bacon, Jean Harb, and Doina Precup. Learnings options end-to-end for197

continuous action tasks, 2017.198

7

	Introduction
	Algorithms Explanation
	Double Actor-Critic Architecture
	Proximal Policy Optimization
	Option Critic
	Advantage Actor-Critic

	Challenges
	Implementation
	Fully Connected Network
	PPO
	DAC Architecture
	OC
	A2C

	Environment Setup
	OpenAI Gym and Mujoco
	Platform
	Plotting

	Experiments Result
	Reflection

