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ABSTRACT

Learning explainable patient temporal embeddings from observational data has
mostly ignored the use of RNN architectures that excel in capturing temporal data
dependencies but at the expense of explainability. This paper addresses this problem
by introducing and applying an information theoretic approach to estimate and
quantify the degree of explainability of such architectures. Using a communication
paradigm, we formalize metrics of explainability by estimating the amount of
information that an AI model needs to convey to a human end user to explain and
rationalize its outputs. A key aspect of this work is to model human preferences
and prior knowledge at the receiving end and measure a lack of explainability as a
deviation from these human preferences. We apply this paradigm to medical patient
representation problems by regularizing loss functions of temporal autoencoders
according to the derived explainability metrics to guide the learning process towards
models producing explainable outputs. We illustrate the approach with convincing
experimental results for the generation of explainable temporal embeddings for
critical care patient data.

1 INTRODUCTION

The success of AI models to solve real world problems has been hindered by the inability to fully
understand the complex mechanisms behind inferences produced by these models. This problem
is exacerbated in healthcare where clinicians and other stakeholders consuming AI model outputs
need to understand the rationales behind the underlying AI inference processes. Learning explainable
representations for patient data has proved to be notoriously difficult and has slowed the adoption of
powerful sequence to sequence architectures for this task. In Choi et al. (2016a), the authors describe
an interesting and effective approach for the embedding of medical patient data. However, they avoid
RNN like architectures probably able to produce more accurate representations but at the expense of
explainability.

Explainability in AI in general has been receiving a great deal of attention within the academic
community with numerous methodological advances for the learning of models that are easier to
digest by humans. In Ribeiro et al. (2016) and Ribeiro et al. (2018), the authors proposed to locally
learn simple linear or tree models to approximate the local performance of complex classifiers. Their
approach assumes that explainability is heavily related to model complexity. In Choi et al. (2016b),
the authors proposed a Recurrent Neural Network architecture able to compute attention coefficients
linking the predictions of the model back to the raw features used by the model at different time points.
In this case, explainability is also a local concept that relates to attention mechanisms justifying
the predictions made by a model by pointing back to the source data deemed responsible for the
predictions. Recently in Dhurandhar et al. (2018), the authors proposed to relate explainability not
only to the presence of input features responsible for an inference but also to the omission of input
features (e.g., the man who does not wear glasses). In Koh & Liang (2017), the authors proposed
to use influence functions to understand the internals of an AI model by tracing back predictions to
training data instances that have influenced it.

While these papers cleverly shed light on how complex AI models are behaving, they all use different
informal notions of explainability–may it be complexity, attentiveness linking predictions to input
features or training data influence on predictions. They all treat explainability as a qualitative
characteristic of AI models and do not rely on well defined measurable aspects of explainability. In
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this paper, we treat aspects of explainability as quantitative measurable properties of models and
propose approaches to measure the degrees of explainability of learned models in a regression setting,
with application to computational embedding. In general, formalizing explainability is quite hard. In
this work, we only focus on specific aspects of it that are grounded with the following principles:

• Observability: We restrict our efforts to the generation of explanations as seen by an external
observer witnessing the input-output relationship for a given AI system. This principle is
restrictive as it treats any AI agent as a black box. However, we deem it to be a reasonable
assumption that humans commonly make, specially in physical sciences when modeling
complex physical phenomena from observational data.

• Communicability: We consider explainability to be a communication problem, with a dialog
between an external AI observer and a rational human actor with the external AI observer
explaining the behavior of the AI system to the rational human actor at the receiving end
of this communication. The amount of information that needs to be produced by the AI
external observer for explainability is consequently inversely proportional to the degree of
explainability of the AI system.

• Subjectivity: We view explainability as a subjective concept that depends on the mind
set of the receiving rational human actor, in terms of his/her preferences and amount of
prior knowledge that he/she may have acquired. This principle prompts us to model some
notion of preferences and/or assumed prior knowledge available to these human actors with
prior distributions. In these cases, AI models are deemed less explainable as they produce
predictions based on facts that are harder to explain using generally accepted human prior
knowledge.

Based on these principles, we model explainability using information theoretic constructs measuring
the amount of information that need to be transmitted by an AI agent to a human end user to explain
the rationales behind the predictions. The main contributions of this paper are three fold: (i) an
information theoretic framework to effectively measure aspects of explainability, (ii) the application of
the framework to regression problems using attention mechanisms, and (iii) conclusive experimental
results on patient temporal embedding problems. The rest of the paper is organized according to
these three contribution areas.

2 EXPLAINABILITY WITH THE MINIMUM DESCRIPTION LENGTH PRINCIPLE

2.1 NOTATIONS

Throughout the paper, scalars are represented with lower case letters in a non bold typeface, e.g., x.
Sets are represented with upper case letters in a calligraphic typeface, e.g., H. Vectors are denoted
in bold lower case letters e.g., x 2 Rk from some positive k 2 N. Matrices are represented in bold
upper case letters, e.g., A 2 Rn⇥m, where both n,m 2 N. In general, we use subscripts to index
elements in a vector or in a matrix. For instance, xi is a scalar corresponding to the ith element of
vector x while Ai,j denotes the i, j entry of matrix A. The data elements in this paper are always
attached to a specific entity (e.g., a patient in healthcare). To avoid notation clutter, we often drop
these references to entities and describe the methodology at the entity level. The data for a given
entity is represented by a matrix X 2 Rn⇥m. A row Xi, 1  i  n represents an m dimensional
feature vector collected at discrete time i. Similarly, the output of an AI model processing X is
represented by the matrix Y 2 Rn⇥k corresponding to a discrete time series of k dimensional output
vectors.

2.2 THE MINIMUM DESCRIPTION LENGTH PRINCIPLE

The Minimum Description Length principle is a formalization of the Occam Razor principle guiding
the search for good models that explain data using description lengths (Grünwald (2007),Rissanen
(1998)). A simple version of it uses a two-part coding approach to select the "best" model Mopt as
the one that minimizes the sum of the length in bits for a description of the model (part one of the
code) and the length in bit of the effective description of the data using using the model.
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Figure 1: Conceptual explainability model with an external observer model Mo explaining the behavior of an
AI model M in the presence of prior Mp.

Let M denote the set of all computable models in the Turing sense. The MDL defines the best model
as:

M
opt := min

M2M
(L(M) + L(X|M)) (1)

where L is a function that returns description lengths. The MDL approach imposes preferences for
models that balance their complexity with their goodness of fit. The first part of the code is essentially
the model complexity while the second part measures the goodness of fit for the model on the data.
An idealized version of the MDL has been defined in Vitányi & Li (2000) where L is replaced with
K, the Kolmogorov complexity. However, this version is not computable in the Turing sense. In the
following sections, we present practical methods to compute estimate L for explainability purposes.

2.3 EXPLAINABILITY METRICS

Following the observability and communicability assumptions described in Section 1 and the MDL
principle, we measure the explainability of an AI model M with description lengths of an external
observer model only able to perceive the inputs and outputs of M to model this relationship (See
Figure 1). In this setting, an explanation M

o for an AI model M is essentially such an observer
model describing how its inputs X and outputs Y are related in a language that is understandable by
human actors. Assuming the presence of no additional knowledge for Mo to characterize this input
output relationship, we measure the effectiveness of Mo with two part codes as follows:
Definition 1. The explainability provided by an observer Mo of model M is defined as:

e
ag(Mo

,M,X) := L(Mo) + L(M(X)|Mo
,X) (2)

The knowledge agnostic explainability of a model M is defined as:
E

ag(M,X) := min
Mo2M

e
ag(Mo

,M,X) = min
Mo2M

[L(Mo) + L(M(X)|Mo
,X)] (3)

As stated in Section 1, we also assume that explainability can be subjective and dependent on the
mind set of receiving rational human actors, in terms of the amount of prior knowledge that they
have acquired. In our framework, this prior knowledge is represented as a prior model Mp that these
human actors would use to explain the (X,Y) relationship. For instance, an expert physician may
explain the general loss of health of a critical care patient from features representing reductions in
heart rate variability in the source data. For this physician, an AI model producing rationales that
are inline with this prior knowledge would certainly by easier to explain than other AI models using
variables that are further from her/his mental mind set. Consequently, we modify the complexity term
of the previous definition to come up with the following measures of explainability in the presence of
prior knowledge.
Definition 2. With a computable prior knowledge M

p, the explainability provided by an observer
M

o of model M is defined as:
e
aw(Mo

,M,M
p
,X) := L(Mo

|M
p) + L(M(X)|Mo

,X) (4)
The knowledge aware explainability of a model M is defined as:
E

aw(M,M
p
,X) := min

Mo2M
e
aw(Mo

,M
p
,M,X) = min

Mo2M
[L(Mo

|M
p)+L(M(X)|Mo

,X)] (5)
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While we have not put any restrictions on the class of models for M
o, practical computability

considerations prompt us to focus on models that can be algorithmically derived and with structural
properties that are understandable by humans (e.g., regression trees, linear regression models).

2.4 EXPLAINABILITY WITH ATTENTION MODELS FOR REGRESSION PROBLEMS

E
ag and E

aw are not computable in the general Turing sense of the word. However, with restrictions
on the class M of models, approximations for these quantities can be defined. In practice, these
restrictions are typically dictated by the problem at hand. In the rest of this paper, we focus exclusively
on regression problems, thus allowing us to tackle the medical patient embedding problem that we
are interested in. Consequently, we restrict M to the set Mreg of regression models for all models
M that estimate Y from X, and all observers Mo that estimate the Ŷ = M(X) from X.

With the popularity and effectiveness of attention mechanisms to provide input/output rationales, we
further impose attention mechanisms in the architecture of our observers. This additional step not
only allows us to measure the complexity of our observers but also allows us to produce effective
explanations. More specifically, our observers make use of local attention models estimating at
each time i the attention that M is applying to each input feature Xij . We define ↵i(Xi) =
SoftMax( (Xi)) 2 Rm, where  is an arbitrarily complex model producing attention coefficients.
Dense layers are typically used to compute  but more complex recurrent neural architectures to
compute attention coefficients can also be used as suggested in Choi et al. (2016b). Mo leverages the
↵i’s in the following way:

M
o(Xi) = W↵i �Xi = (W[:, k]� ↵i)X

T
i = PXT

i (6)

where P = W[:, k] � ↵i with � denoting the Hadamard product and P = W[:, k] � ↵i being a
matrix obtained by stacking the results of the Hadamard product of columns of W with ↵i.

2.4.1 ESTIMATING THE GOODNESS OF FIT FOR REGRESSIVE OBSERVERS

With this restriction to Mreg, we model the regression error with a zero mean normal distribution.
This is quite common in regression analysis and also in the application of the MDL to regression
problems (Grünwald (2007)). Hence, for all Mo

2 Mreg,Y = M
o(X) + ✏, where ✏j ⇠ N(0,�2)

for 1  j  k This restriction allows us to approximate the goodness of fit term L(M(X)|Mo
,X)

in Equations 2 and 4 for any regressive observer for any AI model without any further assumption on
M . Since this term essentially measures the amount of information that cannot be explained by the
model Mo, it tends to have random properties and can be approximated using its Shannon-Fano code
(Cover & Thomas (2006),Grünwald (2007)):

L(M(X)|Mo
,X) ⇡ � log p(M(X)|Mo(X),X) = �

kX

i=1

log p(M(X)i|M
o(X),X) (7)

using the conditional independence of each (M(X))i given X. Clearly, for each i,
p(M(X)i|Mo(X),X) follows also a Gaussian distribution N(Mo(X)i,�2). Hence, the goodness
of fit can be rewritten as a scaled mean squared error between M(X) and M

o(X):

L(M(X)|Mo
,X) =

nk

2
log(2⇡�2) +

1

2�2

kX

j=1

nX

i=1

(M(X)ij �M
o(X)ij)

2 (8)

2.4.2 ESTIMATING THE COMPLEXITY OF LINEAR REGRESSIVE OBSERVERS

As stated in Grünwald (2007), the basic MDL principle does not define the expression of the
complexity terms in Equations 2 and 4. These terms are very much dependent on the restricted class
of observer models and not on any properties of the data X. From Equation 6, we are restricted
to M

o(X) = PXT , a multiplication of the input with the m by k matrix P. Rows of P can be
scaled into attentive distribution that we use to estimate the complexity of Mo by measuring the
compactness of these rows. Intuitively, the more compact these row vectors are, the easier it is to
explain the corresponding predictions produced by M since the observer would hypothetically need
to communicate less bits of information to describe how inputs X relate to outputs in M . A natural
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measure of compactness is the Shannon entropy and we estimate the model complexity as follows:
Let Q be a matrix such that Qj = SoftMax(|Pj |), then:

L(Mo) ⇡
1

k

kX

j=1

H(Qj) (9)

where H(p) =
P

i pi log
1
pi

With a conditional on preferences or prior knowledge M
p, one may be tempted to measure

L(Mo
|M

p) with a conditional entropy, thus extending naturally the approach that we used to
estimate L(Mo). However, the computation of such conditional entropy is ill defined as it requires
an unknown joint distribution. Instead, we complement L(Mo) with the KL divergence between
the attentions Qj , 0  j  k and their counterpart computed from prior preferences or knowledge
�j , 0  j  k.

Consequently,

L(Mo
|M

p) ⇡
1

k

kX

j=1

(H(Qj) +DKL(Qj ||�j)) =
1

k

kX

j=1

Qj . log�j (10)

In this case, the complexity becomes a simple average cross entropy across all k dimensions of the
output.

3 LEARNING EXPLAINABLE TEMPORAL EMBEDDINGS

Despite the large-scale adoption of Electronic Health Records (EHR) by medical institutions, the
secondary re-use of these data sets and its impact in healthcare has been lukewarm at best. Beyond
all the data governance challenges that need to be overcome for proper access and integration, these
data sets are quite raw, with very complex data models. They always need to be refined to become
ready for analysis and these data refinement steps are quite expensive, often tailored for specific
applications and not reusable. Deep representation learning techniques have been proposed by several
research groups to tackle these challenges. However, most of these approaches refrain from using
RNN architectures in attempts to preserve the interpretability of the learned models at the expense of
being able to encode efficiently the temporal patterns in the data. Using external regressive operators
as observers, we address this issue and present in this section an RNN based framework for the
representation learning of temporal embeddings.

3.1 AN RNN PIPELINE FOR TEMPORAL EMBEDDINGS

Figure 2 illustrates the proposed deep learning architecture. At a high level, this architecture is an
auto-encoder consisting of three components. First, an RNN encoder Menc is used to transform the
input data X into embeddings Y. We experimented with various RNN cells for the encoder including
the popular LSTM and GRU cells. We eventually settled on the minimalRNN cell presented in Chen
(2017) and Chen et al. (2018) because of its predictable dynamics as it is designed to rule out mixing
effects across dimensions of the embeddings produced by our autoencoder. This choice allows us to
improve the likelihood of developing a regressive observer model with a reasonable goodness of fit
without sacrificing too much on the quality of the embeddings.

The second component is an RNN based decoder Mdec that attempts to reconstruct the original data
X from the output of the encoder. We have equipped this decoder with a temporal attention scheme
similar to the ones typically used in NLP sequence 2 sequence architectures for machine translation.
This temporal attention allows the decoder to reconstruct Xi using embeddings already computed at
previous times i� 1 to i� w, w being a hyper-parameter that we keep small (i.e., less than 10).

The third component of this deep learning architecture is the regressive observer Mo described in
the previous section and used to track the inputs and outputs of the encoder to provide and estimate
explainability. This component is taking X as input and producing an estimate Ŷ of the embedding
Y. During training, this component may have access to a prior model of user preferences Mp that it
may use in regularization steps to control deviations from these preferences. Mp allows us to control
the contribution of input variables into each dimension of the embeddings produced by the encoder.
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Figure 2: Attentive RNN based embedding

To train this deep learning architecture, we use a multi-task approach where we train each of these
components jointly. The joint training of this autoencoder with the observer allows us to softly
enforce explainability constraints in this pipeline. While the role of the observer is essentially to
estimate the degree of explainability, we use it here to constrain the generation embeddings towards
explainable models according to the metrics that we defined in the previous section. The encoder and
decoder are trained together to minimize the mean square reconstruction error between X and X̂,
according a loss Lrec expressed as:

L
rec =

1

nk

nX

i=1

kX

j=1

((X)ij � (X̂)ij)
2 (11)

The regressive observer is trained to provide the best explanations in the MDL sense. In the absence
of prior preferences, its learning is associated with a loss Lag defined as:

L
ag = e

ag(Mo
,M

enc
,X) ⇡

1

k

kX

j=1

H(Qj) +
1

2�2

kX

j=1

nX

i=1

(M(X)ij �M
o(X)ij)

2 (12)

Please note that we dropped the term nk
2 log(2⇡�2) from the formal expression of eag(Mo

,M
enc)

since this term does not have impact on the optimization of the loss function when � is estimated. In
the presence of prior knowledge, the learning of the M

o is associated with a loss Law defined as:

L
aw = e

aw(Mo
,M

enc
,X) ⇡

1

k

kX

j=1

Qj . log�j +
1

2�2

kX

j=1

nX

i=1

(M(X)ij �M
o(X)ij)

2 (13)

Putting all these terms together allows us to define the overall loss function for this architecture:

L =

⇢
L
rec + �agL

ag in the absence of prior knowledge
L
rec + �awL

aw in the presence of prior knowledge

3.2 EXPERIMENTAL RESULTS

We have performed experiments to demonstrate the effectiveness of our proposed metrics for patient
data embedding using the MIMIC-III Johnson et al. (2016) dataset. For these experiments, we used a
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Figure 3: Suggested domain knowledge for the grouping of features into embedding dimensions

cohort of 2395 patients who experienced sepsis, resulting in a total of 109886 data samples. This
data set is sampled on an hourly basis. Each data sample consists of 37 variables together with a
timestamp and a patient ID. The name of these variables are shown on the Y axis of the plot shown
on Figure 3.

The RNN architecture shown in Figure 2 has been implemented on tensorflow v1.5 (Abadi et al.
(2015)). Experiments were performed on a cloud environment using a small cluster of K80 GPU
units. Various values of learning rate were tried for the training and the results provided in the paper
uses a learning rate of 0.0005 with batch size of 10. All results were obtained using a 5 fold cross
validation approach with partitions computed at the patient level.

A prior model Mp was gathered manually to impose soft constraints on how input variables may be
grouped together to define each of the k embedding dimensions. This prior suggests a uniformly
distributed focus for each variable in a given group. This manual grouping led us to define 16 groups
that are shown in Figure 3. This figure shows the heat map of a matrix with rows corresponding
to input variables and columns corresponding to embedding dimensions. Each column shows a
suggested distribution of input variables within an embedding dimension. For instance, the third
column suggests a concentration of variables that relates to the Glasgow Coma score (a neurological
score estimating the consciousness of patients) while the fourth column suggests a concentration of
variables measuring various aspects of the cardiovascular system. Different prior preference models
have been tested, providing results that are consistent with the evaluation that we are describing here
for the specific M

p shown in Figure 3.

We focused on evaluating two aspects of the system, namely the qualitatively analysis of Mo and the
analysis of the impact of explainability regularization on L

rec

Figures 4 and 5 qualitatively illustrate the explanations provided by M
o. Figure 4 focuses on the

knowledge agnostic case and shows heat maps of average attention coefficients for each embedding
dimensions for �ag = 1 and �ag = 10. It is clear from that figure that increasing �ag adds sparsity
on the heat maps and help provide more explainable rationales. We also looked at the actual input
variables that are selected in each of the dimensions. With �ag = 10, most embedding dimensions are
dominated by a single variable except for the 13th dimension focusing heavily on the blood pressure
variables and the first dimension focusing on respiration rate and mean arterial pressure.

Figure 5 focuses on the knowledge aware case and shows heat maps of the average attention
coefficients for each embedding dimensions for �aw = 1 and �aw = 5. A quick look at these plots
shows that the system is indeed attempting to learn explanations that are in accordance with the prior
preferences imposed by regularization. As �aw increases, Mo converges more and more towards
M

p.
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Figure 4: Distribution of the attention coefficients for �ag = 1 on the left and �ag = 10 on the right.

Figure 5: Distribution of the attention coefficients for �aw = 1 on the left and �aw = 5 on the right.

To analyze the impact of explainability regularization on the overall loss and the generated embed-
dings, we looked at the R2 associated with the overall reconstruction error and the R2 associated with
the fitness of Mo, both as a function of regularization parameters. Table 1 shows R2 results obtained
for various values of the �aw. We can notice that the R

2 penalty for the reconstruction is maximized
at �aw = 0. However, as �aw increases, the R

2 remains mostly flat. In general, we noticed in our
experiments that lower values of �aw do not necessarily yield better R2 despite reduction in entropy
on the columns of W . This observation could be a manifestation of the Occam Razor principle that
gives preferences for simpler and less complex models that focus on less variables. However, the
penalty is much more severe on the goodness of fit of Mo as we vary �aw. As �aw increases, the
complexity of the M

o decreases as shown in Figure 5 but this reduction of complexity limits Mo’s
ability to effectively estimate M . The explanations provided by the observer become trivial for the
complexity of the task at hand.

4 CONCLUDING REMARKS

We have presented an MDL based approach to estimate the explainability of AI models while taking
into account prior preferences. We have shown how these concepts can be used to regularize the
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�aw 0 1 2 3 4 5
Avg R

2 between X and X̂ 0.912 0.839 0.829 0.838 0.847 0.842
Avg R

2 between Y and Ŷ 0.997 0.861 0.672 0.461 0.434 0.386

Table 1: R2 for different values of �aw

learning of temporal embeddings with regularization terms constraining the production of explainable
models, according to metrics that we have defined. Experimental results on a real patient data set
from MIMICIII has demonstrated the applicability of the proposed metrics for the generation of
explainable models trading explanation complexity for overall accuracy. In the future, we plan to
run further experiments on larger EHR data sets for other predictive tasks, with prior knowledge
extracted from medical guidelines and ontologies. Furthermore, we plan to extend these concepts to
reinforcement learning, in a policy-based setting where we constrain the learning of optimal policies
with knowledge aware explainability metrics to produce explainable policies.
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