
Published as a conference paper at ICLR 2018

NEURAL LANGUAGE MODELING
BY JOINTLY LEARNING SYNTAX AND LEXICON

Yikang Shen, Zhouhan Lin, Chin-Wei Huang & Aaron Courville
Department of Computer Science and Operations Research
Universit de Montral
Montral, QC H3C3J7, Canada
{yi-kang.shen, zhouhan.lin, chin-wei.huang, aaron.courville}@umontreal.ca

ABSTRACT

We propose a neural language model capable of unsupervised syntactic structure
induction. The model leverages the structure information to form better semantic
representations and better language modeling. Standard recurrent neural networks
are limited by their structure and fail to efficiently use syntactic information. On
the other hand, tree-structured recursive networks usually require additional struc-
tural supervision at the cost of human expert annotation. In this paper, We pro-
pose a novel neural language model, called the Parsing-Reading-Predict Networks
(PRPN), that can simultaneously induce the syntactic structure from unannotated
sentences and leverage the inferred structure to learn a better language model. In
our model, the gradient can be directly back-propagated from the language model
loss into the neural parsing network. Experiments show that the proposed model
can discover the underlying syntactic structure and achieve state-of-the-art perfor-
mance on word/character-level language model tasks.

1 INTRODUCTION

Linguistic theories generally regard natural language as consisting of two part: a lexicon, the com-
plete set of all possible words in a language; and a syntax, the set of rules, principles, and processes
that govern the structure of sentences (Sandra & Taft, 1994). To generate a proper sentence, tokens
are put together with a specific syntactic structure. Understanding a sentence also requires lexical
information to provide meanings, and syntactical knowledge to correctly combine meanings. Cur-
rent neural language models can provide meaningful word represent (Bengio et al., 2003; Mikolov
et al., 2013; Chen et al., 2013). However, standard recurrent neural networks only implicitly model
syntax, thus fail to efficiently use structure information (Tai et al., 2015).

Developing a deep neural network that can leverage syntactic knowledge to form a better semantic
representation has received a great deal of attention in recent years (Socher et al., 2013; Tai et al.,
2015; Chung et al., 2016). Integrating syntactic structure into a language model is important for dif-
ferent reasons: 1) to obtain a hierarchical representation with increasing levels of abstraction, which
is a key feature of deep neural networks and of the human brain (Bengio et al., 2009; LeCun et al.,
2015; Schmidhuber, 2015); 2) to capture complex linguistic phenomena, like long-term dependency
problem (Tai et al., 2015) and the compositional effects (Socher et al., 2013); 3) to provide shortcut
for gradient back-propagation (Chung et al., 2016).

A syntactic parser is the most common source for structure information. Supervised parsers can
achieve very high performance on well constructed sentences. Hence, parsers can provide accurate
information about how to compose word semantics into sentence semantics (Socher et al., 2013),
or how to generate the next word given previous words (Wu et al., 2017). However, only major
languages have treebank data for training parsers, and it request expensive human expert annotation.
People also tend to break language rules in many circumstances (such as writing a tweet). These
defects limit the generalization capability of supervised parsers.

Unsupervised syntactic structure induction has been among the longstanding challenges of compu-
tational linguistic (Klein & Manning, 2002; 2004; Bod, 2006). Researchers are interested in this

1



Published as a conference paper at ICLR 2018

problem for a variety of reasons: to be able to parse languages for which no annotated treebanks ex-
ist (Marecek, 2016); to create a dependency structure to better suit a particular NLP application (Wu
et al., 2017); to empirically argue for or against the poverty of the stimulus (Clark, 2001; Chomsky,
2014); and to examine cognitive issues in language learning (Solan et al., 2003).

In this paper, we propose a novel neural language model: Parsing-Reading-Predict Networks
(PRPN), which can simultaneously induce the syntactic structure from unannotated sentences and
leverage the inferred structure to form a better language model. With our model, we assume that
language can be naturally represented as a tree-structured graph. The model is composed of three
parts:

1. A differentiable neural Parsing Network uses a convolutional neural network to compute
the syntactic distance, which represents the syntactic relationships between all successive
pairs of words in a sentence, and then makes soft constituent decisions based on the syn-
tactic distance.

2. A Reading Network that recurrently computes an adaptive memory representation to sum-
marize information relevant to the current time step, based on all previous memories that
are syntactically and directly related to the current token.

3. A Predict Network that predicts the next token based on all memories that are syntactically
and directly related to the next token.

We evaluate our model on three tasks: word-level language modeling, character-level language
modeling, and unsupervised constituency parsing. The proposed model achieves (or is close to) the
state-of-the-art on both word-level and character-level language modeling. The model’s unsuper-
vised parsing outperforms some strong baseline models, demonstrating that the structure found by
our model is similar to the intrinsic structure provided by human experts.

2 RELATED WORK

The idea of introducing some structures, especially trees, into language understanding to help a
downstream task has been explored in various ways. For example, Socher et al. (2013); Tai et al.
(2015) learn a bottom-up encoder, taking as an input a parse tree supplied from an external parser.
There are models that are able to infer a tree during test time, while still need supervised signal on
tree structure during training. For example, (Socher et al., 2010; Alvarez-Melis & Jaakkola, 2016;
Zhou et al., 2017; Zhang et al., 2015), etc. Moreover, Williams et al. (2017) did an in-depth analysis
of recursive models that are able to learn tree structure without being exposed to any grammar trees.
Our model is also able to infer tree structure in an unsupervised setting, but different from theirs, it
is a recurrent network that implicitly models tree structure through attention.

Apart from the approach of using recursive networks to capture structures, there is another line of
research which try to learn recurrent features at multiple scales, which can be dated back to 1990s
(e.g. El Hihi & Bengio (1996); Schmidhuber (1991); Lin et al. (1998)). The NARX RNN (Lin et al.,
1998) is another example which used a feed forward net taking different inputs with predefined time
delays to model long-term dependencies. More recently, Koutnik et al. (2014) also used multiple
layers of recurrent networks with different pre-defined updating frequencies. Instead, our model tries
to learn the structure from data, rather than predefining it. In that respect, Chung et al. (2016) relates
to our model since it proposes a hierarchical multi-scale structure with binary gates controlling intra-
layer connections, and the gating mechanism is learned from data too. The difference is that their
gating mechanism controls the updates of higher layers directly, while ours control it softly through
an attention mechanism.

In terms of language modeling, syntactic language modeling can be dated back to Chelba (1997).
Charniak (2001); Roark (2001) have also proposed language models with a top-down parsing mech-
anism. Recently Dyer et al. (2016); Kuncoro et al. (2016) have introduced neural networks into
this space. It learns both a discriminative and a generative model with top-down parsing, trained
with a supervision signal from parsed sentences in the corpus. There are also dependency-based
approaches using neural networks, including Buys & Blunsom (2015); Emami & Jelinek (2005);
Titov & Henderson (2010).

2



Published as a conference paper at ICLR 2018

Parsers are also related to our work since they are all inferring grammatical tree structure given a
sentence. For example, SPINN (Bowman et al., 2016) is a shift-reduce parser that uses an LSTM as
its composition function. The transition classifier in SPINN is supervisedly trained on the Stanford
PCFG Parser (Klein & Manning, 2003) output. Unsupervised parsers are more aligned with what
our model is doing. Klein & Manning (2004) presented a generative model for the unsupervised
learning of dependency structures. Klein & Manning (2002) is a generative distributional model for
the unsupervised induction of natural language syntax which explicitly models constituent yields
and contexts. We compare our parsing quality with the aforementioned two papers in Section 6.3.

3 MOTIVATION

Figure 1: Hard arrow represents syntactic tree structure and parent-to-child dependency relation,
dash arrow represents dependency relation between siblings

Suppose we have a sequence of tokens x0, ..., x6 governed by the tree structure showed in Figure 1.
The leafs xi are observed tokens. Node yi represents the meaning of the constituent formed by its
leaves xl(yi), ..., xr(yi), where l(·) and r(·) stands for the leftmost child and right most child. Root r
represents the meaning of the whole sequence. Arrows represent the dependency relations between
nodes. The underlying assumption is that each node depends only on its parent and its left siblings.

Directly modeling the tree structure is a challenging task, usually requiring supervision to learn (Tai
et al., 2015). In addition, relying on tree structures can result in a model that is not sufficiently robust
to face ungrammatical sentences (Hashemi & Hwa, 2016). In contrast, recurrent models provide a
convenient way to model sequential data, with the current hidden state only depends on the last
hidden state. This makes models more robust when facing nonconforming sequential data, but it
suffers from neglecting the real dependency relation that dominates the structure of natural language
sentences.

Figure 2: Proposed model architecture, hard line indicate valid connection in Reading Network,
dash line indicate valid connection in Predict Network.

3



Published as a conference paper at ICLR 2018

In this paper, we use skip-connection to integrate structured dependency relations with recurrent
neural network. In other words, the current hidden state does not only depend on the last hidden
state, but also on previous hidden states that have a direct syntactic relation to the current one.

Figure 2 shows the structure of our model. The non-leaf node yj is represented by a set of hidden
states yj = {mi}l(yj)≤i≤r(yj), where l(yj) is the left most descendant leaf and r(yj) is the right
most one. Arrows shows skip connections built by our model according to the latent structure. Skip
connections are controlled by gates gti . In order to define gti , we introduce a latent variable lt to
represent local structural context of xt:

• if xt is not left most child of any subtree, then lt is the position of xt’s left most sibling.

• if xt is the left most child of a subtree yi, then lt is the position of the left most child that
belongs to the left most sibling of yi.

and gates are defined as:

gti =

{
1, lt ≤ i < t

0, 0 < i < lt
(1)

Given this architecture, the siblings dependency relation is modeled by at least one skip-connect.
The skip connection will directly feed information forward, and pass gradient backward. The parent-
to-child relation will be implicitly modeled by skip-connect relation between nodes.

The model recurrently updates the hidden states according to:

mt = h(xt,m0, ...,mt−1, g
t
0, ..., g

t
t−1) (2)

and the probability distribution for next word is approximated by:

p(xt+1|x0, ..., xt) ≈ p(xt+1; f(m0, ...,mt, g
t+1
0 , ..., gt+1

t )) (3)

where gti are gates that control skip-connections. Both f and h have a structured attention mech-
anism that takes gti as input and forces the model to focus on the most related information. Since
lt is an unobserved latent variable, We explain an approximation for gti in the next section. The
structured attention mechanism is explained in section 5.1.

4 MODELING SYNTACTIC STRUCTURE

4.1 MODELING LOCAL STRUCTURE

In this section we give a probabilistic view on how to model the local structure of language. A
detailed elaboration for this section is given in Appendix B. At time step t, p(lt|x0, ..., xt) repre-
sents the probability of choosing one out of t possible local structures. We propose to model the
distribution by the Stick-Breaking Process:

p(lt = i|x0, ..., xt) = (1− αt
i)

t−1∏
j=i+1

αt
j (4)

The formula can be understood by noting that after the time step i+1, ..., t−1 have their probabilities
assigned,

∏t−1
j=i+1 α

t
j is remaining probability, 1−αt

i is the portion of remaining probability that we
assign to time step i. Variable αt

j is parametrized in the next section.

As shown in Appendix B, the expectation of gate value gti is the Cumulative Distribution Function
(CDF) of p(lt = i|x0, ..., xt). Thus, we can replace the discrete gate value by its expectation:

gti = P(lt ≤ i) =
t−1∏

j=i+1

αt
j (5)

With these relaxations, Eq.2 and 3 can be approximated by using a soft gating vector to update the
hidden state and predict the next token.

4



Published as a conference paper at ICLR 2018

4.2 PARSING NETWORK

Inferring tree structure with Syntactic Distance In Eq.4, 1− αt
j is the portion of the remaining

probability that we assign to position j. Because the stick-breaking process should assign high
probability to lt, which is the closest constituent-beginning word. The model should assign large
1 − αt

j to words beginning new constituents. While xt itself is a constituent-beginning word, the
model should assign large 1− αt

j to words beginning larger constituents. In other words, the model
will consider longer dependency relations for the first word in constituent. Given the sentence in
Figure 1, at time step t = 6, both 1−α6

2 and 1−α6
0 should be close to 1, and all other 1−α6

j should
be close to 0.

In order to parametrize αt
j , our basic hypothesis is that words in the same constituent should have a

closer syntactic relation within themselves, and that this syntactical proximity can be represented by
a scalar value. From the tree structure point of view, the shortest path between leafs in same subtree
is shorter than the one between leafs in different subtree.

To model syntactical proximity, we introduce a new feature Syntactic Distance. For a sentence with
length K, we define a set of K real valued scalar variables d0, ..., dK−1, with di representing a
measure of the syntactic relation between the pair of adjacent words (xi−1, xi). x−1 could be the
last word in previous sentence or a padding token. For time step t, we want to find the closest words
xj , that have larger syntactic distance than dt. Thus αt

j can be defined as:

αt
j =

hardtanh ((dt − dj) · τ) + 1

2
(6)

where hardtanh(x) = max(−1,min(1, x)). τ is the temperature parameter that controls the sensi-
tivity of αt

j to the differences between distances.

The Syntactic Distance has some nice properties that both allow us to infer a tree structure from it
and be robust to intermediate non-valid tree structures that the model may encounter during learning.
In Appendix C and D we list these properties and further explain the meanings of their values.

Parameterizing Syntactic Distance Roark & Hollingshead (2008) shows that it’s possible to
identify the beginning and ending words of a constituent using local information. In our model,
the syntactic distance between a given token (which is usually represented as a vector word embed-
ding ei) and its previous token ei−1, is provided by a convolutional kernel over a set of consecutive
previous tokens ei−L, ei−L+1, ..., ei. This convolution is depicted as the gray triangles shown in
Figure 3. Each triangle here represent 2 layers of convolution. Formally, the syntactic distance di
between token ei−1 and ei is computed by

hi = ReLU(Wc

 ei−L
ei−L+1

...
ei

+ bc) (7)

di = ReLU (Wdhi + bd) (8)
whereWc, bc are the kernel parameters. Wd and bd can be seen as another convolutional kernel with
window size 1, convolved over hi’s. Here the kernel window size L determines how far back into
the history node ei can reach while computing its syntactic distance di. Thus we call it the look-back
range.

Convolving h and d on the whole sequence with length K yields a set of distances. For the tokens
in the beginning of the sequence, we simply pad L − 1 zero vectors to the front of the sequence in
order to get K − 1 outputs.

5 MODELING LANGUAGE

5.1 READING NETWORK

The Reading Network generate new states mt considering on input xt, previous memory states
m0, ...,mt−1, and gates gt0, ..., g

t
t−1, as shown in Eq.2.

5



Published as a conference paper at ICLR 2018

Figure 3: Convolutional network for computing syntactic distance. Gray triangles represent 2 layers
of convolution, d0 to d7 are the syntactic distance output by each of the kernel position. The blue
bars indicate the amplitude of di’s, and yi’s are the inferred constituents.

Similar to Long Short-Term Memory-Network (LSTMN) (Cheng et al., 2016), the Reading Net-
work maintains the memory states by maintaining two sets of vectors: a hidden tape Ht−1 =
(ht−Nm

, ..., ht−1), and a memory tape Ct−1 = (ct−L, ..., ct−1), where Nm is the upper bound
for the memory span. Hidden states mi is now represented by a tuple of two vectors (hi, ci). The
Reading Network captures the dependency relation by a modified attention mechanism: structured
attention. At each step of recurrence, the model summarizes the previous recurrent states via the
structured attention mechanism, then performs a normal LSTM update, with hidden and cell states
output by the attention mechanism.

Structured Attention At each time step t, the read operation attentively links the current token to
previous memories with a structured attention layer:

kt =Whht−1 +Wxxt (9)

s̃ti = softmax(
hik

T
t√
δk

) (10)

where, δk is the dimension of the hidden state. Modulated by the gates in Eq.5, the structured
intra-attention weight is defined as:

sti =
gti s̃

t
i∑

i g
t
i

(11)

This yields a probability distribution over the hidden state vectors of previous tokens. We can then
compute an adaptive summary vector for the previous hidden tape and memory denoting by h̃t and
c̃t: [

h̃t
c̃t

]
=

t−1∑
i=1

sti ·mi =

t−1∑
i=1

sti ·
[
hi
ci

]
(12)

Structured attention provides a way to model the dependency relations shown in Figure 1.

Recurrent Update The Reading Network takes xt, c̃t and h̃t as input, computes the values of ct
and ht by the LSTM recurrent update (Hochreiter & Schmidhuber, 1997). Then the write operation
concatenates ht and ct to the end of hidden and memory tape.

5.2 PREDICT NETWORK

Predict Network models the probability distribution of next word xt+1, considering on hidden states
m0, ...,mt, and gates gt+1

0 , ..., gt+1
t . Note that, at time step t, the model cannot observe xt+1 , a

temporary estimation of dt+1 is computed considering on xt−L, ..., xt:
d′t+1 = ReLU(W ′dht + b′d) (13)

From there we compute its corresponding {αt+1} and {gt+1
i } for Eq.3. We parametrize f(·) func-

tion as:
f(m0, ...,mt, g

t+1
0 , ..., gt+1

t ) = f̂([hl:t−1, ht]) (14)

6



Published as a conference paper at ICLR 2018

Figure 4: Syntactic distance estimated by Parsing Network. The model is trained on PTB dataset at
the character level. Each blue bar is positioned between two characters, and represents the syntactic
distance between them. From these distances we can infer a tree structure according to Section 4.2.

where hl:t−1 is an adaptive summary of hlt+1≤i≤t−1, output by structured attention controlled by
gt+1
0 , ..., gt+1

t−1. f̂(·) could be a simple feed-forward MLP, or more complex architecture, like ResNet,
to add more depth to the model.

6 EXPERIMENTS

We evaluate the proposed model on three tasks, character-level language modeling, word-level lan-
guage modeling, and unsupervised constituency parsing.

6.1 CHARACTER-LEVEL LANGUAGE MODEL

From a character-level view, natural language is a discrete sequence of data, where discrete symbols
form a distinct and shallow tree structure: the sentence is the root, words are children of the root, and
characters are leafs. However, compared to word-level language modeling, character-level language
modeling requires the model to handle longer-term dependencies. We evaluate a character-level
variant of our proposed language model over a preprocessed version of the Penn Treebank (PTB)
and Text8 datasets.

When training, we use truncated back-propagation, and feed the final memory position from the
previous batch as the initial memory of next one. At the beginning of training and test time, the
model initial hidden states are filled with zero. Optimization is performed with Adam using learning
rate lr = 0.003, weight decay wdecay = 10−6, β1 = 0.9, β2 = 0.999 and σ = 10−8. We carry
out gradient clipping with maximum norm 1.0. The learning rate is multiplied by 0.1 whenever
validation performance does not improve during 2 checkpoints. These checkpoints are performed at
the end of each epoch. We also apply layer normalization (Ba et al., 2016) to the Reading Network
and batch normalization to the Predict Network and parsing network. For all of the character-level
language modeling experiments, we apply the same procedure, varying only the number of hidden
units, mini-batch size and dropout rate.

Penn Treebank we process the Penn Treebank dataset (Marcus et al., 1993) by following the
procedure introduced in (Mikolov et al., 2012). For character-level PTB, Reading Network has two
recurrent layers, Predict Network has one residual block. Hidden state size is 1024 units. The
input and output embedding size are 128, and not shared. Look-back range L = 10, temperature
parameter τ = 10, upper band of memory spanNm = 20. We use a batch size of 64, truncated back-
propagation with 100 timesteps. The values used of dropout on input/output embeddings, between
recurrent layers, and on recurrent states were (0, 0.25, 0.1) respectively.

In Figure 4, we visualize the syntactic distance estimated by the Parsing Network, while reading
three different sequences from the PTB test set. We observe that the syntactic distance tends to be
higher between the last character of a word and a space, which is a reasonable breakpoint to sepa-
rate between words. In other words, if the model sees a space, it will attend on all previous step. If
the model sees a letter, it will attend no further then the last space step. The model autonomously
discovered to avoid inter-word attention connection, and use the hidden states of space (separator)
tokens to summarize previous information. This is strong proof that the model can understand the
latent structure of data. As a result our model achieve state-of-the-art performance and significantly

7



Published as a conference paper at ICLR 2018

Model BPC
Norm-stabilized RNN (Krueger & Memisevic, 2015) 1.48

CW-RNN (Koutnik et al., 2014) 1.46
HF-MRNN (Mikolov et al., 2012) 1.41

MI-RNN (Wu et al., 2016) 1.39
ME n-gram (Mikolov et al., 2012) 1.37

BatchNorm LSTM (Cooijmans et al., 2016) 1.32
Zoneout RNN (Krueger et al., 2016) 1.27

HyperNetworks (Ha et al., 2016) 1.27
LayerNorm HM-LSTM (Chung et al., 2016) 1.24
LayerNorm HyperNetworks (Ha et al., 2016) 1.23

PRPN 1.202

Table 1: BPC on the Penn Treebank test set

outperform baseline models. It is worth noting that HM-LSTM (Chung et al., 2016) also unsuper-
visedly induce similar structure from data. But discrete operations in HM-LSTM make their training
procedure more complicated then ours.

6.2 WORD-LEVEL LANGUAGE MODEL

Comparing to character-level language modeling, word-level language modeling needs to deal with
complex syntactic structure and various linguistic phenomena. But it has less long-term dependen-
cies. We evaluate the word-level variant of our language model on a preprocessed version of the
Penn Treebank (PTB) (Marcus et al., 1993) and Text8 (Mahoney, 2011) dataset.

We apply the same procedure and hyper-parameters as in character-level language model. Except
optimization is performed with Adam with β1 = 0. This turns off the exponential moving average
for estimates of the means of the gradients (Melis et al., 2017). We also adapt the number of hidden
units, mini-batch size and the dropout rate according to the different tasks.

Penn Treebank we process the Penn Treebank dataset (Mikolov et al., 2012) by following the
procedure introduced in (Mikolov et al., 2010). For word-level PTB, the Reading Network has two
recurrent layers and the Predict Network do not have residual block. The hidden state size is 1200
units and the input and output embedding sizes are 800, and shared (Inan et al., 2016; Press & Wolf,
2017). Look-back range L = 5, temperature parameter τ = 10 and the upper band of memory span
Nm = 15. We use a batch size of 64, truncated back-propagation with 35 time-steps. The values
used of dropout on input/output embeddings, between recurrent layers, and on recurrent states were
(0.7, 0.5, 0.5) respectively.

Model PPL
RNN-LDA + KN-5 + cache (Mikolov & Zweig, 2012) 92.0

LSTM (Zaremba et al., 2014) 78.4
Variational LSTM (Kim et al., 2016) 78.9

CharCNN (Kim et al., 2016) 78.9
Pointer Sentinel-LSTM (Merity et al., 2016) 70.9

LSTM + continuous cache pointer (Grave et al., 2016) 72.1
Variational LSTM (tied) + augmented loss (Inan et al., 2016) 68.5

Variational RHN (tied) (Zilly et al., 2016) 65.4
NAS Cell (tied) (Zoph & Le, 2016) 62.4

4-layer skip connection LSTM (tied) (Melis et al., 2017) 58.3
PRPN 61.98

Table 2: PPL on the Penn Treebank test set

8



Published as a conference paper at ICLR 2018

Model PPL
PRPN 61.98
- Parsing Net 64.42
- Reading Net Attention 64.63
- Predict Net Attention 63.65
Our 2-layer LSTM 65.81

Table 3: Ablation test on the Penn Treebank. “- Parsing Net” means that we remove Parsing Net-
work and replace Structured Attention with normal attention mechanism; “- Reading Net Attention”
means that we remove Structured Attention from Reading Network, that is equivalent to replace
Reading Network with a normal 2-layer LSTM; “- Predict Net Attention” means that we remove
Structured Attention from Predict Network, that is equivalent to have a standard projection layer;
“Our 2-layer LSTM” is equivalent to remove Parsing Network and remove Structured Attention
from both Reading and Predict Network.

Text8 dataset contains 17M training tokens and has a vocabulary size of 44k words. The dataset is
partitioned into a training set (first 99M characters) and a development set (last 1M characters) that is
used to report performance. As this dataset contains various articles from Wikipedia, the longer term
information (such as current topic) plays a bigger role than in the PTB experiments (Mikolov et al.,
2014). We apply the same procedure and hyper-parameters as in character-level PTB, except we use
a batch size of 128. The values used of dropout on input/output embeddings, between Recurrent
Layers and on recurrent states were (0.4, 0.2, 0.2) respectively.

Model PPL
LSTM-500 (Mikolov et al., 2014) 156

SCRNN (Mikolov et al., 2014) 161
MemNN (Sukhbaatar et al., 2015) 147
LSTM-1024 (Grave et al., 2016) 121

LSTM + continuous cache pointer (Grave et al., 2016) 99.9
PRPN 81.64

Table 4: PPL on the Text8 valid set

In Table 2, our results are comparable to the state-of-the-art methods. Since we do not have the
same computational resource used in (Melis et al., 2017) to tune hyper-parameters at large scale, we
expect that our model could achieve better performance after an aggressive hyperparameter tuning
process. As shown in Table 4, our method outperform baseline methods. It is worth noticing that
the continuous cache pointer can also be applied to output of our Predict Network without modifi-
cation. Visualizations of tree structure generated from learned PTB language model are included in
Appendix A. In Table 3, we show the value of test perplexity for different variants of PRPN, each
variant remove part of the model. By removing Parsing Network, we observe a significant drop of
performance. This stands as empirical evidence regarding the benefit of having structure information
to control attention.

6.3 UNSUPERVISED CONSTITUENCY PARSING

The unsupervised constituency parsing task compares hte tree structure inferred by the model with
those annotated by human experts. The experiment is performed on WSJ10 dataset. WSJ10 is the
7422 sentences in the Penn Treebank Wall Street Journal section which contained 10 words or less
after the removal of punctuation and null elements. Evaluation was done by seeing whether pro-
posed constituent spans are also in the Treebank parse, measuring unlabeled F1 (UF1) of unlabeled
constituent precision and recall. Constituents which could not be gotten wrong (those of span one
and those spanning entire sentences) were discarded. Given the mechanism discussed in Section
4.2, our model generates a binary tree. Although standard constituency parsing tree is not limited
to binary tree. Previous unsupervised constituency parsing model also generate binary trees (Klein

9



Published as a conference paper at ICLR 2018

& Manning, 2002; Bod, 2006). Our model is compared with the several baseline methods, that are
explained in Appendix E.

Different from the previous experiment setting, the model treat each sentence independently during
train and test time. When training, we feed one batch of sentences at each iteration. In a batch,
shorter sentences are padded with 0. At the beginning of the iteration, the model’s initial hidden
states are filled with zero. When testing, we feed on sentence one by one to the model, then use
the gate value output by the model to recursively combine tokens into constituents, as described in
Appendix A.

Model UF1

LBRANCH 28.7
RANDOM 34.7

DEP-PCFG (Carroll & Charniak, 1992) 48.2
RBRANCH 61.7

CCM (Klein & Manning, 2002) 71.9
DMV+CCM (Klein & Manning, 2005) 77.6

UML-DOP (Bod, 2006) 82.9
PRPN 70.02

UPPER BOUND 88.1

Table 5: Parsing Performance on the WSJ10 dataset

Table 5 summarizes the results. Our model significantly outperform the RANDOM baseline indicate
a high consistency with human annotation. Our model also shows a comparable performance with
CCM model. In fact our parsing network and CCM both focus on the relation between successive
tokens. As described in Section 4.2, our model computes syntactic distance between all successive
pair of tokens, then our parsing algorithm recursively assemble tokens into constituents according
to the learned distance. CCM also recursively model the probability whether a contiguous subse-
quences of a sentence is a constituent. Thus, one can understand how our model is outperformed
by DMV+CCM and UML-DOP models. The DMV+CCM model has extra information from a de-
pendency parser. The UML-DOP approach captures both contiguous and non-contiguous lexical
dependencies (Bod, 2006).

7 CONCLUSION

In this paper, we propose a novel neural language model that can simultaneously induce the syntactic
structure from unannotated sentences and leverage the inferred structure to learn a better language
model. We introduce a new neural parsing network: Parsing-Reading-Predict Network, that can
make differentiable parsing decisions. We use a new structured attention mechanism to control skip
connections in a recurrent neural network. Hence induced syntactic structure information can be
used to improve the model’s performance. Via this mechanism, the gradient can be directly back-
propagated from the language model loss function into the neural Parsing Network. The proposed
model achieve (or is close to) the state-of-the-art on both word/character-level language modeling
tasks. Experiment also shows that the inferred syntactic structure highly correlated to human expert
annotation.

ACKNOWLEDGEMENT

The authors would like to thank Timothy J. O’Donnell and Chris Dyer for the helpful discussions.

REFERENCES

David Alvarez-Melis and Tommi S Jaakkola. Tree-structured decoding with doubly-recurrent neural
networks. 2016.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

10



Published as a conference paper at ICLR 2018

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

Yoshua Bengio et al. Learning deep architectures for ai. Foundations and trends R© in Machine
Learning, 2(1):1–127, 2009.

Rens Bod. An all-subtrees approach to unsupervised parsing. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and the 44th annual meeting of the Association
for Computational Linguistics, pp. 865–872. Association for Computational Linguistics, 2006.

Samuel R Bowman, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christopher D Manning, and
Christopher Potts. A fast unified model for parsing and sentence understanding. arXiv preprint
arXiv:1603.06021, 2016.

Jan Buys and Phil Blunsom. Generative incremental dependency parsing with neural networks. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers),
volume 2, pp. 863–869, 2015.

Glenn Carroll and Eugene Charniak. Two experiments on learning probabilistic dependency gram-
mars from corpora. Department of Computer Science, Univ., 1992.

Eugene Charniak. Immediate-head parsing for language models. In Proceedings of the 39th Annual
Meeting on Association for Computational Linguistics, pp. 124–131. Association for Computa-
tional Linguistics, 2001.

Ciprian Chelba. A structured language model. In Proceedings of the eighth conference on Eu-
ropean chapter of the Association for Computational Linguistics, pp. 498–500. Association for
Computational Linguistics, 1997.

Yanqing Chen, Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. The expressive power of word
embeddings. arXiv preprint arXiv:1301.3226, 2013.

Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-networks for machine
reading. arXiv preprint arXiv:1601.06733, 2016.

Noam Chomsky. Aspects of the Theory of Syntax, volume 11. MIT press, 2014.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent neural net-
works. arXiv preprint arXiv:1609.01704, 2016.

Alexander Clark. Unsupervised induction of stochastic context-free grammars using distributional
clustering. In Proceedings of the 2001 workshop on Computational Natural Language Learning-
Volume 7, pp. 13. Association for Computational Linguistics, 2001.

Tim Cooijmans, Nicolas Ballas, César Laurent, Çağlar Gülçehre, and Aaron Courville. Recurrent
batch normalization. arXiv preprint arXiv:1603.09025, 2016.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A Smith. Recurrent neural network
grammars. arXiv preprint arXiv:1602.07776, 2016.

Salah El Hihi and Yoshua Bengio. Hierarchical recurrent neural networks for long-term dependen-
cies. 1996. URL http://www.iro.umontreal.ca/˜lisa/pointeurs/elhihi_
bengio_96.pdf.

Ahmad Emami and Frederick Jelinek. A neural syntactic language model. Machine learning, 60
(1-3):195–227, 2005.

Edouard Grave, Armand Joulin, and Nicolas Usunier. Improving neural language models with a
continuous cache. arXiv preprint arXiv:1612.04426, 2016.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Homa B Hashemi and Rebecca Hwa. An evaluation of parser robustness for ungrammatical sen-
tences. In EMNLP, pp. 1765–1774, 2016.

11

http://www.iro.umontreal.ca/~lisa/pointeurs/elhihi_bengio_96.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/elhihi_bengio_96.pdf


Published as a conference paper at ICLR 2018

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors and word classifiers: A
loss framework for language modeling. arXiv preprint arXiv:1611.01462, 2016.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware neural language
models. In AAAI, pp. 2741–2749, 2016.

Dan Klein and Christopher D Manning. A generative constituent-context model for improved gram-
mar induction. In Proceedings of the 40th Annual Meeting on Association for Computational
Linguistics, pp. 128–135. Association for Computational Linguistics, 2002.

Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In Proceedings of the 41st
Annual Meeting on Association for Computational Linguistics - Volume 1, ACL ’03, pp. 423–430,
Stroudsburg, PA, USA, 2003. Association for Computational Linguistics. doi: 10.3115/1075096.
1075150. URL https://doi.org/10.3115/1075096.1075150.

Dan Klein and Christopher D Manning. Corpus-based induction of syntactic structure: Models of
dependency and constituency. In Proceedings of the 42nd Annual Meeting on Association for
Computational Linguistics, pp. 478. Association for Computational Linguistics, 2004.

Dan Klein and Christopher D Manning. Natural language grammar induction with a generative
constituent-context model. Pattern recognition, 38(9):1407–1419, 2005.

Jan Koutnik, Klaus Greff, Faustino Gomez, and Juergen Schmidhuber. A clockwork rnn. In Inter-
national Conference on Machine Learning, pp. 1863–1871, 2014.

David Krueger and Roland Memisevic. Regularizing rnns by stabilizing activations. arXiv preprint
arXiv:1511.08400, 2015.

David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas Ballas, Nan Rose-
mary Ke, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, Aaron Courville, et al. Zoneout:
Regularizing rnns by randomly preserving hidden activations. arXiv preprint arXiv:1606.01305,
2016.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng Kong, Chris Dyer, Graham Neubig, and Noah A
Smith. What do recurrent neural network grammars learn about syntax? arXiv preprint
arXiv:1611.05774, 2016.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

Tsungnan Lin, Bill G Horne, Peter Tino, and C Lee Giles. Learning long-term dependencies is not
as difficult with narx recurrent neural networks. Technical report, 1998.

Matt Mahoney. Large text compression benchmark, 2011.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

David Marecek. Twelve years of unsupervised dependency parsing. In ITAT, pp. 56–62, 2016.

Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in neural language
models. arXiv preprint arXiv:1707.05589, 2017.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Tomas Mikolov and Geoffrey Zweig. Context dependent recurrent neural network language model.
SLT, 12:234–239, 2012.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Recurrent
neural network based language model. In Interspeech, volume 2, pp. 3, 2010.

12

https://doi.org/10.3115/1075096.1075150


Published as a conference paper at ICLR 2018

Tomáš Mikolov, Ilya Sutskever, Anoop Deoras, Hai-Son Le, Stefan Kombrink, and Jan Cer-
nocky. Subword language modeling with neural networks. preprint (http://www. fit. vutbr.
cz/imikolov/rnnlm/char. pdf), 2012.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Tomas Mikolov, Armand Joulin, Sumit Chopra, Michael Mathieu, and Marc’Aurelio Ranzato.
Learning longer memory in recurrent neural networks. arXiv preprint arXiv:1412.7753, 2014.

Ofir Press and Lior Wolf. Using the output embedding to improve language models. In Proceedings
of the 15th Conference of the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers, pp. 157–163. Association for Computational Linguistics, 2017. URL
http://www.aclweb.org/anthology/E17-2025.

Brian Roark. Probabilistic top-down parsing and language modeling. Computational linguistics, 27
(2):249–276, 2001.

Brian Roark and Kristy Hollingshead. Classifying chart cells for quadratic complexity context-free
inference. In Proceedings of the 22nd International Conference on Computational Linguistics-
Volume 1, pp. 745–751. Association for Computational Linguistics, 2008.

Dominiek Sandra and Marcus Taft. Morphological structure, lexical representation and lexical
access. Taylor & Francis, 1994.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85–117,
2015.

Jrgen Schmidhuber. Neural sequence chunkers. Technical report, 1991.

Richard Socher, Christopher D Manning, and Andrew Y Ng. Learning continuous phrase represen-
tations and syntactic parsing with recursive neural networks. In Proceedings of the NIPS-2010
Deep Learning and Unsupervised Feature Learning Workshop, pp. 1–9, 2010.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Zach Solan, Eytan Ruppin, David Horn, and Shimon Edelman. Automatic acquisition and efficient
representation of syntactic structures. In Advances in Neural Information Processing Systems, pp.
107–114, 2003.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. In Advances
in neural information processing systems, pp. 2440–2448, 2015.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations
from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075, 2015.

Ivan Titov and James Henderson. A latent variable model for generative dependency parsing. In
Trends in Parsing Technology, pp. 35–55. Springer, 2010.

Adina Williams, Andrew Drozdov, and Samuel R Bowman. Learning to parse from a semantic
objective: It works. is it syntax? arXiv preprint arXiv:1709.01121, 2017.

Shuangzhi Wu, Dongdong Zhang, Nan Yang, Mu Li, and Ming Zhou. Sequence-to-dependency
neural machine translation. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), volume 1, pp. 698–707, 2017.

Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua Bengio, and Ruslan R Salakhutdinov. On multi-
plicative integration with recurrent neural networks. In Advances in Neural Information Process-
ing Systems, pp. 2856–2864, 2016.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329, 2014.

13

http://www.aclweb.org/anthology/E17-2025


Published as a conference paper at ICLR 2018

Xingxing Zhang, Liang Lu, and Mirella Lapata. Top-down tree long short-term memory networks.
arXiv preprint arXiv:1511.00060, 2015.

Ganbin Zhou, Ping Luo, Rongyu Cao, Yijun Xiao, Fen Lin, Bo Chen, and Qing He. Generative
neural machine for tree structures. arXiv preprint arXiv:1705.00321, 2017.

Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutnı́k, and Jürgen Schmidhuber. Recurrent
highway networks. arXiv preprint arXiv:1607.03474, 2016.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

14



Published as a conference paper at ICLR 2018

APPENDIX

A INFERRED TREE STRUCTURE

Figure 5: Syntactic structures of two different sentences inferred from {di} given by Parsing Net-
work.

The tree structure is inferred from the syntactic distances yielded by the Parsing Network. We first
sort the di’s in decreasing order. For the first di in the sorted sequence, we separate sentence into
constituents ((x<i), (xi, (x>i))). Then we separately repeat this operation for constituents (x<i)
and (x>i). Until the constituent contains only one word.

15



Published as a conference paper at ICLR 2018

B MODELING LOCAL STRUCTURE

In this section we give a probabilistic view on how to model the local structure of language. Given
the nature of language, sparse connectivity can be enforced as a prior on how to improve general-
ization and interpretability of the model.

At time step t, p(lt|x0, ..., xt) represents the probability of choosing one out of t possible local
structures that defines the conditional dependencies. If lt = t′, it means xt depends on all the
previous hidden state from mt′ to mt (t′ ≤ t).
A particularly flexible option for modeling p(lt|x0, ..., xt) is the Dirichlet Process, since being non-
parametric allows us to attend on as many words as there are in a sentence; i.e. number of possible
structures (mixture components) grows with the length of the sentence. As a result, we can write the
probability of lt+1 = t′ as a consequence of the stick breaking process 1:

p(lt = t′|x0, ..., xt) = (1− αt
t′)

t−1∏
j=t′+1

αt
j (15)

for 1 ≤ t′ < t− 1, and

p(lt = t− 1|x0, ..., xt) = (1− αt
t−1); p(lt = 0|x0, ..., xt) =

t−1∏
j=1

αt
j (16)

where αj = 1 − βj and βj is a sample from a Beta distribution. Once we sample lt from the
process, the connectivity is realized by a element-wise multiplication of an attention weight vector
with a masking vector gt defined in Eq. 1. In this way, xt becomes functionally independent of all
xs for all s < lt. The expectation of this operation is the CDF of the probability of l, since

Elt [g
{t′}
t ] =

∏
j=1

αt
j + (1− αt

1)
∏
j=2

αt
j + ...+ (1− αt

t′)
∏

j=t′+1

αt
j

=

t′∑
k=0

p(lt = k|x0, ..., xt) = P(lt ≤ t′)
(17)

By telescopic cancellation, the CDF can be expressed in a succinct way:

P(lt ≤ t′) =
t−1∏

j=t′+1

αt
j (18)

for t′ < t, and P(lt ≤ t) = 1. However, being Bayesian nonparametric and assuming a latent
variable model require approximate inference. Hence, we have the following relaxations

1. First, we relax the assumption and parameterize αt
j as a deterministic function depending

on all the previous words, which we will describe in the next section.

2. We replace the discrete decision on the graph structure with a soft attention mechanism, by
multiplying attention weight with the multiplicative gate:

gti =

t∏
j=i+1

αt
j (19)

With these relaxations, Eq. (3) can be approximated by using a soft gating vector to update the
hidden state h and the predictive function f . This approximation is reasonable since the gate is the
expected value of the discrete masking operation described above.

1Note that the index is in decreasing order.

16



Published as a conference paper at ICLR 2018

C NO PARTIAL OVERLAPPING IN DEPENDENCY RANGES

In this appendix, we show that having no partial overlapping in dependency ranges is an essential
property for recovering a valid tree structure, and PRPN can provide a binary version of gti , that have
this property.

The masking vector gti introduced in Section 4.1 determines the range of dependency, i.e., for the
word xt we have gti = 1 for all lt ≤ i < t. All the words fall into the range lt ≤ i < t is considered
as xt’s sibling or offspring of its sibling. If the dependency ranges of two words are disjoint with
each other, that means the two words belong to two different subtrees. If one range contains another,
that means the one with smaller range is a sibling, or is an offspring of a sibling of the other word.
However, if they partially overlaps, they can’t form a valid tree.

While Eq.5 and Eq.6 provide a soft version of dependency range, we can recover a binary version
by setting τ in Eq.6 to +∞. The binary version of αt

j corresponding to Eq. 6 becomes:

αt
j =

sign (dt − dj+1) + 1

2
(20)

which is basically the sign of comparing dt and dj+1, scaled to the range of 0 and 1. Then for each
of its previous token the gate value gti can be computed through Eq.5.

Now for a certain xt, we have

gti =

{
1, t′ ≤ i < t

0, 0 ≤ i < t′
(21)

where
t′ = max i, s.t. di > dt (22)

Now all the words that fall into the range t′ ≤ i < t are considered as either sibling of xt, or
offspring of a sibling of xt (Figure 3). The essential point here is that, under this parameterization,
the dependency range of any two tokens won’t partially overlap. Here we provide a terse proof:

Proof. Let’s assume that the dependency range of xv and xn partially overlaps. We should have
gui = 1 for u ≤ i < v and gni = 1 for m ≤ i < n. Without losing generality, we assume
u < m < v < n so that the two dependency ranges overlap in the range [m, v].

1. For xv , we have αv
i = 1 for all u ≤ i < v. According to Eq. 6 and 5, we have di < dv for

all u ≤ i < v. Since u < m, we have dm < dv .

2. Similarly, for xn, we have di < dn for all m ≤ i < n. Since m < v, we have dv < dn. On
the other hand, since the range stops at m, we should also have dm > dn. Thus dm > dv .

Items 1 and 2 are contradictory, so the dependency ranges of xv and xn won’t partially overlap.

D PROPERTIES AND INTUITIONS OF gti AND di

First, for any fixed t, gti is monotonic in i. This ensures that gti still provides soft truncation to define
a dependency range.

The second property comes from τ . The hyperparameter τ has an interesting effect on the tree
structure: if it is set to 0, then for all t, the gates gti will be open to all of et’s predecessors, which
will result in a flat tree where all tokens are direct children of the root node; as τ becomes larger,
the number of levels of hierarchy in the tree increases. As it approaches + inf , the hardtanh(·)
becomes sign(·) and the dependency ranges form a valid tree. Note that, due to the linear part of
the gating mechanism, which benefits training, when τ has a value in between the two extremes
the truncation range for each token may overlap. That may sometimes result in vagueness in some
part of the inferred tree. To eliminate this vagueness and ensure a valid tree, at test time we use
τ = + inf .

Under this framework, the values of syntactic distance have more intuitive meanings. If two adjacent
words are siblings of each other, the syntactic distance should approximate zero; otherwise, if they

17



Published as a conference paper at ICLR 2018

belong to different subtrees, they should have a larger syntactic distance. In the extreme case, the
syntactic distance approaches 1 if the two words have no subtree in common. In Figure 3 we show
the syntactic distances for each adjacent token pair which results in the tree shown in Figure 1.

E BASELINE METHODS FOR UNSUPERVISED CONSTITUENCY PARSING

Our model is compared with the same baseline methods as in (Klein & Manning, 2005). RANDOM
chooses a binary tree uniformly at random from the set of binary trees. This is the unsupervised
baseline. LBRANCH and RBRANCH choose the completely left- and right-branching structures, re-
spectively. RBRANCH is a frequently used baseline for supervised parsing, but it should be stressed
that it encodes a significant fact about English structure, and an induction system need not beat it to
claim a degree of success. UPPER BOUND is the upper bound on how well a binary system can do
against the Treebank sentences. Because the Treebank sentences are generally more flat than binary,
limiting the maximum precision which can be attained, since additional brackets added to provide a
binary tree will be counted as wrong.

We also compared our model with other unsupervised constituency parsing methods. DEP-PCFG
is dependency-structured PCFG (Carroll & Charniak, 1992). CCM is constituent-context model
(Klein & Manning, 2002). DMV is an unsupervised dependency parsing model. DMV+CCM is
a combined model that jointly learn both constituency and dependency parser (Klein & Manning,
2004).

18


	Introduction
	Related Work
	Motivation
	Modeling Syntactic Structure
	Modeling Local Structure
	Parsing Network

	Modeling Language
	Reading Network
	Predict Network

	Experiments
	Character-level Language Model
	Word-level Language Model
	Unsupervised Constituency Parsing

	Conclusion
	Inferred Tree Structure
	Modeling Local Structure
	No Partial Overlapping in Dependency Ranges
	Properties and Intuitions of git and di
	Baseline Methods for Unsupervised Constituency Parsing

