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ABSTRACT

Network embedding is to learn low-dimensional representations of nodes which
mostly preserve the network topological structure. In real-world networks, how-
ever, nodes are often associated with a rich set of attributes and labels which are
potentially valuable in seeking more effective vector representations. To properly
utilize this information, we propose a Joint Autoencoders framework for Multi-
task network Embedding (JAME), which aims to encode a shared representation
of local network structure, node attributes, and available node labels. Jointly em-
bedding via multi-task learning is strongly dependent on the relative weighting
between each task’s loss function. Tuning these weights by hand is an expensive
and difficult process, making multi-task learning prohibitive in practice. There-
fore, we define an adaptive loss weighting layer capable of learning an optimal
combination of loss weights during representation learning. Empirical evalua-
tions on real-world datasets show effectiveness and efficiency of our JAME model
compared to relevant baseline methods.

1 INTRODUCTION

Network embedding techniques project nodes in a network to a low-dimensional vector space while
preserving network structure and inherent properties. It has attracted increasing attention recently
due to significant progress in downstream graph mining tasks such as node classification (Grover &
Leskovec, 2016; Tang et al., 2015; Perozzi et al., 2014; Wang et al., 2016; Bojchevski & Günnemann,
2017; Tsitsulin et al., 2018), link prediction (Grover & Leskovec, 2016; Ou et al., 2016; Bojchevski
& Günnemann, 2017; Tsitsulin et al., 2018), community detection (Cavallari et al., 2017), and
shortest distance approximation (Rizi et al., 2018).

Traditionally, network embedding is mainly focused on preserving plain network structure, mapping
nodes in the same neighborhood close to each other in the vector space. In real-world scenarios,
however, nodes are often associated with a set of auxiliary information such as contents (e.g. profile
attributes or textual features) or labels (e.g. community or affiliation group) which form labeled
attributed networks. It has been shown that labels are strongly influenced by and inherently corre-
lated to both network structure and attribute information (Huang et al., 2017b). Therefore, modeling
and integrating node attribute proximity and labels into network embedding is potentially helpful in
learning more effective and meaningful vector representations.

Recently, various efforts have been devoted to learn low-dimensional vector representations for at-
tributed networks (Gao & Huang, 2018; Huang et al., 2017a; Meng et al., 2019; Yang et al., 2018;
Zhang et al., 2019). These methods considered network structure and attributes, but ignored abun-
dant labels associated to nodes that could potentially benefit network representation learning and
subsequent analytic tasks. To the best of our knowledge, only LANE (Huang et al., 2017b) smoothly
incorporates label information into the attributed network embedding while preserving their corre-
lations. More precisely, LANE learns three types of latent representations via spectral techniques
from attribute similarity matrix, network adjacent matrix, and label similarity matrix, and project
them into a common embedding space. Indeed, three embedding tasks jointly encode the network
information into a shared representation through optimizing three objective functions. Despite the
great novel algorithm, LANE faces several drawbacks, like, 1) expensive computations for matrix
decomposition, 2) manually tuning weights for multiple objective functions, and 3) relatively low
performance in node classification and link prediction.
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To overcome the problems of the existing methods, we need to design an efficient multi-task learning
framework with adaptive loss weighting. It has been widely shown that multi-task learning improves
the overall performance of each task relative to learning them separately (Caruana, 1997; Chen
et al., 2009; 2011). Specifically, combining autoencoders as a unified framework has demonstrated
promising performance to solve multiple classification and regression tasks simultaneously (Meir
et al., 2017; Banijamali et al., 2017; Cadena et al., 2016; Zhuang et al., 2015). The structure of
autoencoders facilitates the integration of multiple information sources towards an efficient joint
representation learning. Therefore, we propose a Joint Autoencoders model for Multi-task network
Embedding, abbreviated as JAME, which encodes shared representations for nodes in the network
via optimizing multiple objectives. In detail, our end-to-end model consists of three autoencoders:
a graph convolutional network (GCN) (Kipf & Welling, 2016) autoencoder and two standard au-
toencoders. The GCN autoencoder captures graph local connectivity by applying spectral filters
followed by nonlinear activation functions. Two standard autoencoders perform supervised classifi-
cation tasks which infer the embeddings of nodes involving both labels and attributes. Overall, our
joint autoencoders handle three embedding tasks by optimizing three respective objective functions.
However, the performance is highly dependent on an appropriate choice of weighting between each
task’s loss. To search for an optimal weighting, we define an adaptive loss weighting layer where
inputs of the layer are loss values. During joint representation learning, weights within the loss
weighting layer are contributed to the gradient and get updated. In summary, the main contributions
of this paper are as follows:

• We propose a novel end-to-end model for labeled attributed networks, JAME, which aims
at encoding joint representations of nodes via multi-task learning.

• We define an adoptive loss weighting layer which simultaneously optimizes the weighted
combination of losses during representation learning.

• We empirically evaluate effectiveness and efficiency of JAME on real-world networks,
showing its superior performance to the state-of-the-art baselines.

The rest of the paper is organized as follows. Section 2 presents related work. We present notations
and the proposed model in Section 4. Section 5 presents empirical evaluation. In Section 6, we
conclude and discuss future work.

2 RELATED WORKS

Network embedding via deep neural networks has become an efficient tool to deal with today’s
large-scale networks. Recently, there has been numerous embedding methods which focused on
preserving the topological structure of plain networks (Goyal & Ferrara, 2018) along with various
real-world applications (Jia & Saule, 2018; Zhou, 2019; Rizi & Granitzer, 2019; Nikolentzos et al.,
2017). However, today’s networks are often associated with a rich set of attributes and abundant la-
bel information, which can be encoded within a joint embedding framework. Gao & Huang (2018)
proposed DANE, a joint autoencoders model which takes graph adjacency matrix and attributes as
input to learn a shared representation via optimizing four objective functions, i.e. first-order prox-
imity loss, high-order proximity loss, semantic proximity loss, and complementary loss. Their final
embeddings preserve first-order and high-order proximity of the network which result superior per-
formance in typical graph mining tasks. Another work by Meng et al. (2019) named CAN employs
two variational autoencoders containing an inference and a generative model. The inference model
encodes features of nodes and attributes into Gaussian distributions while the generative model re-
constructs the original edges and attributes. During representation learning, a reparameterization
method is applied to transform embeddings from the Gaussian random variables to the deterministic
variables which helps to measure affinities between nodes and attributes. CAN finally learns sepa-
rate embeddings for attributes and nodes in the same semantic space, mapping nodes nearby their
relevant attributes.

Some recent works like BANE (Yang et al., 2018) and LANE (Huang et al., 2017b) applied matrix
factorization techniques to attributed networks to jointly embed nodes and attributes into a shared
vector space. BANE first applies Weisfeiler-Lehman proximity to aggregate adjacency and attribute
matrices into a unified proximity matrix. The proximity matrix then is factorize by Weisfeiler-
Lehman factorization approach to obtain final binary representations. LANE first integrate attributes
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and labels in to same proximity matrix applying a spectral technique persevering node and attribute
proximities. Then, it uses graph Laplacian (Chung & Graham, 1997) to smoothly embed label matrix
and proximity matrix uniformly into the final vector representations. Although, LANE observes
abundant labels during representation learning, the performance is relatively low with an expensive
runtime complexity.

Multi-task learning conducts multiple related learning tasks simultaneously such that useful infor-
mation can be shared among tasks. During multi-task learning usually multiple objectives are jointly
optimized to improve efficiency and accuracy of all relevant tasks. Here, the main challenge is how
to automatically obtain optimal weights for these objectives within model training. Kendall et al.
(2018) propose a multi-task loss function based on maximising the Gaussian likelihood with ho-
moscedastic uncertainty which optimizes combination of multiple objectives during joint training.
The presented model can learn multi-task weighting and outperforms separate models trained indi-
vidually on each task. Similarly, BenTaieb & Hamarneh (2017) define a multi-loss objective function
integrating uncertainty in each loss term which is trainable during learning. Their convolutional au-
toencoder classifies medical images while learning how to optimally combine multiple objectives.
To our best knowledge, we are the first employing multiple loss weighting into graph embedding to
improve graph analysis tasks.

3 PROBLEM DEFINITION AND PRELIMINARIES

LetG = (V,E) be a labeled attributed network, where V is a set of n nodes andE is the set of edges.
Each node in the network is associated with a set of attributes and label information indicating its
affiliation group. We denote A ∈ {0, 1}n×n as adjacency matrix, X ∈ {0, 1}n×f as the attribute
matrix with f attributes, and Y ∈ {0, 1}n×k as label matrix with k categories. In the attribute matrix
X, every row xi describes the attributes associated with node i. In the label matrix, Yij = 1 indicates
node i belongs to category j. The final embedding matrix is denoted as U ∈ Rn×d where d� n is
the embedding dimension size.

Based on the terminologies described above, we formally define the problem of multi-task network
embedding as follows: Given a labeled attributed network G, the goal is to learn a mapping function
Θ : {A,X,Y} 7→ U in an supervised manner such that the network structure A, attribute X, and
label information Y are preserved running the following learning tasks:

• Network structure embedding encodes network topological structure into vector repre-
sentation:

Θa : {A} 7→ U (1)

• Attributed network embedding integrates attributes of the nodes into vector space:

Θx : {A,X} 7→ U (2)

• Labeled network embedding incorporates node labels into vector embeddings:

Θy : { A,Y} 7→ U (3)

4 PROPOSED APPROACH

4.1 FRAMEWORK

In this paper, we propose JAME, a Joint Autoencoders model for Multi-task network Embedding
with adoptive loss weights. The framework of JAME is shown in Figure 1. In general, JAME
consists of three major parts: network structure autoencoder, attributed network autoencoder, and
labeled network autoencoder. These three autoencoders handle three embedding tasks which are op-
timized at the same time. The network structure autoencoder employs GCN (Kipf & Welling, 2016)
layers to encode local links by reconstruction of the adjacency matrix A. The attributed network
autoencoder receives the adjacency matrix as input and tries to predict their associated attributes
X. The labeled network autoencoder aims at predicting nodes labels Y during joint training. For a
multi-task learning problem containing multiple objective functions, JAME offers an adaptive loss
weighting layer L capable of learning optimal weighted combination of several objectives. In the
following subsections, we will introduce our proposed JAME model in detail.
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Figure 1: The framework of our end-to-end JAME model. The model is fitted with the adjacency
matrix A as input and outputs adjacency matrix A, attribute matrix X and binary label matrix Y,
respectively. Shared Embedding layer aggregates information from structure, attribute and labels
while Loss Weighting layer learns optimal weights for each embedding task.

4.2 NETWORK STRUCTURE EMBEDDING

We employ GCN (Kipf & Welling, 2016) layers into basic autoencoders to encapsulate non-linear
structure of the input graph. In Figure 1, the GCN encoder gets latent representations for each node
while the decoder computes the pair-wise distance between node latent representations produced by
the encoder. After applying a non-linear activation function, the decoder reconstructs the original
adjacency matrix. More formally, our GCN encoder is defined as:

Hgcn = σ(Ã ReLU(ÃW (0) + b(0))W (1) + b(1)), (4)

where Ã = D−
1
2 (A + In)D−

1
2 ) is a symmetrically normalized adjacency matrix with self-

connections, In is the identity matrix, and Dii =
∑

j Aij . Hgcn ∈ Rn×s is the hidden representation
from the GCN encoder with dimension size s. W (l) is the trainable weight matrix and b(l) is the
bias of lth layer. Sigmoid σ(.) and ReLU are non-linear element-wise activation functions.

In Figure 1, the bottleneck features in the shared embedding layer constitutes an informative compact
representation of the data. More formally, shared embedding is the summation of representations
from the GCN encoder Hgcn, attribute encoder Hx and label encoder Hy:

U = σ((Hgcn + Hx + Hy)W (2) + b(2)), (5)

The graph decoder reconstructs the graph adjacency matrix:

Â = σ(ReLU(UW (3) + b(3))), (6)

where Â is the reconstruction of the adjacency matrix, and U ∈ Rn×d is the shared representation
matrix with dimension size d. Inspired by Tran (2018), we learn model parameters by minimizing a
masked cross-entropy loss formulation:

Lce = −ai log(σ(âi))− (1− ai) log(1− σ(âi)), (7)

La =

∑
imi � Lce∑

imi
. (8)
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where ai ∈ Rn is an adjacency vector of A, and âi ∈ Rn is the reconstruction output vector of Â. �
is the Hadamard (element-wise) product, and mi is a Boolean mask: mi = 1 if ai = 1, else mi = 0.

4.3 ATTRIBUTED NETWORK EMBEDDING

To capture attribute proximity associated to nodes, we employ a standard autoencoder. The encoder
gets latent representations for each node while the decoder reconstructs the attributes of nodes. The
hidden representation of the attribute encoder is defined as:

Hx = σ(ReLU(AW (0) + b(0))W (1) + b(1)), (9)
here A is the adjacency matrix, and Hx ∈ Rn×s is the hidden representation from the attribute
encoder with dimension size s.

The attribute decoder rebuilds the attributes associated to nodes:

X̂ = σ(ReLU(UW (3) + b(3))), (10)

where X̂ is the reconstruction of the attribute matrix, and U ∈ Rn×d is the final shared representation
with dimension size d. Due to the binary valued representation of the attribute matrix, we optimize
the binary cross-entropy to learn model weights:

Lx = −xi log(σ(x̂i))− (1− xi) log(1− σ(x̂i)), (11)

where, xi ∈ Rn is an attribute vector of X, and x̂i ∈ Rn is a reconstruction output vector of X̂.

4.4 LABEL INFORMED NETWORK EMBEDDING

Label information plays an essential role in determining the inscape of each node with strong intrin-
sic correlations to network structure and node attributes. We propose to model labels information via
a supervised autoencoder. The encoder gets latent representations for each node while the decoder
predicts the labels of nodes. The label encoder transformation is defined as:

Hy = σ(ReLU(AW (0) + b(0))W (1) + b(1)), (12)
where Hy ∈ Rn×s is the hidden representation from the label encoder with dimension size s.

The label decoder predicts the abundant labels of nodes:

Ŷ = σ(ReLU(UW (3) + b(3))), (13)

where Ŷ is the reconstruction of the binary label matrix, and U ∈ Rn×d is the final shared repre-
sentation matrix with dimension size d. In multi-class setting, we minimize the categorical cross
entropy loss to update model parameters:

Ly =

k∑
i=1

−yi log(σ(ŷi)), (14)

here yi ∈ Rn is a label vector of Y, ŷi ∈ Rn is a reconstruction output vector of Ŷ, and k is the
number of label categories.

4.5 MULTI-TASK WEIGHTING

JAME handles three embedding tasks through optimizing three objective functions. To learn joint
vector representations, we need to combine multiple loss functions where each loss has a weight.
Since searching for the optimal weightings is expensive and difficult, we propose to learn a weighted
linear sum of losses using a loss weighting layer:

L = ReLU(waLa + wxLx + wyLy), (15)
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where wa, wx, and wy are weights for the network structure, attribute, and label embedding loss
respectively. The parameters in the layer L are trained jointly with autoencoders, hence the weights
are contributing to the gradient and get updated.

4.6 JAME TRAINING

Our goal is to minimize the multi-task loss function L =
∑

i wiLi, where the sum runs over all T
tasks. We thus propose an adaptive method, in which wi can vary at each training step t : wi =
wi(t). To optimize the weights wi(t) in L(t) =

∑
i wi(t)Li(t), we propose a simple algorithm that

wi directly involved to the backpropagated gradient from each task. The detail of our method is
described in Algorithm 1. At each training step t, the algorithm receives a mini-batch of nodes and
updates loss weights and model weights until convergence.

Algorithm 1: JAME Training with Adaptive Loss Weights
Initialize loss weights wi(0) = 1 ∀i
Initialize model weights W (l) ∀l
Pick weights of the shared layer W (U)

for t = 0 to max iterations do
Input batch to compute Li(t) ∀i and L(t) =

∑
i wiLi(t) [standard forward pass]

Compute G(i)

W (U)(t) = ∇W (U)wi(t)Li(t) ∀i
Compute Lgrad =

∑
iG

(i)

W (U)(t)

Compute loss weights gradients∇wiLgrad

Compute standard gradients ∇W (l)L(t)

Update wi(t) 7→ wi(t+ 1) using ∇wiLgrad

Update W (l)(t) 7→W (l)(t+ 1) using∇W (l)L(t) [standard backward pass]
end

4.7 TRAINING COMPLEXITY

It is not difficult to see that the runtime complexity of JAME is O(ncdI), where n is the number of
nodes in the graph, d is the maximum dimension of the hidden layers, I is the number of iterations.
c is the average number of non-zero entries in each row of matrix A (average degree of the network)
which is a constant in scale-free networks (Barabási & Bonabeau, 2003). Parameter d is related to
the dimension of embedding vectors but not related to the number of nodes. I is also a constant and
independent from n. Therefore, cdI is independent from n, and thus the overall training complexity
is O(n) which linear to the number of nodes in the network.

5 EMPIRICAL EVALUATION

In this section, we conduct experiments to evaluate the effectiveness of JAME on node classifi-
cation, link prediction and attribute inferring tasks. Single task evaluation can reveal whether
our shared embeddings retain certain type of information. We first introduce the datasets,
baseline methods, and experimental settings before presenting the main experiments. We
then investigate how loss weighting effects the performance of each individual task. Last,
we study the efficiency of JAME framework compared to the baseline methods. Our refer-
ence code and data are available at https://www.dropbox.com/sh/zyuwgi067ojn427/
AAAzfwpfml3BpMI9vbY7TGzOa?dl=0. 1

5.1 DATASETS

We conduct our experiments on the following labeled attributed network datasets: Cora (Sen et al.,
2008), Citeseer (Sen et al., 2008) and Facebook (Leskovec & Mcauley, 2012). Cora and Citeseer are
citation networks, where nodes are publications and edges are citation links. Attributes of each node

1 We will share the code on Github in future.
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are bag-of-words representations of the corresponding publications. The labels indicate research
topics of the publications. The Facebook network is built from relation data of 10 ego networks,
while attributes are constructed from profile information. We set the ego number of each node as its
group label. The statistics of the datasets are provided in Table 1.

Table 1: Statistics of datasets.

Dataset Nodes Edges Attributes Labels
Cora 2,708 5,429 1,433 7

Citeseer 3,312 4,660 3,703 6
Facebook 4,049 88,234 576 10

5.2 BASELINES

We compare JAME with the following relevant network embedding baselines:

• LANE: It is a labeled attributed network embedding model that learns node representa-
tions based on eigen-decomposition of the graph affinity, attribute affinity and label affinity
matrices (Huang et al., 2017b).

• CAN: It learns network representations via a variational auto-encoder algorithm, which
consists of an inference model for encoding attributes into Gaussian distributions and a
generative model for reconstructing both real edges and attributes (Meng et al., 2019).

• attri2vec: It integrates the network structure and node attributes together seamlessly by a
defined transformation function (Zhang et al., 2019). To preserve the network structure,
DeepWalk (Perozzi et al., 2014) mechanism is employed, which makes nodes sharing sim-
ilar neighbors embedded closely in the attribute subspace.

• DANE: It captures the network non-linearity and preserves the proximity of both topolog-
ical structure and node attributes via a joint autoencoder model (Gao & Huang, 2018).

5.3 PARAMETER SETTINGS

For all of the baselines, we follow the authors suggested hyperparameter settings available in the
original papers as follows. DANE needs to construct a high-order adjacency matrix where the win-
dow size is w = 10, the walk length is l = 80, and the number of walks is γ = 10. For CAN, the
hyperparameters of prior distributions, σV , σA, are set as 1, and the model is trained in 200 itera-
tions. In attri2vec, w = 10, l = 100, γ = 40, and the number of iterations is 100 million. LANE
has three objective functions which are manually weighted as 1, α1 > 1 and α2 > 10 to achieve the
optimal performance. We train our JAME model for 8 iterations using the Adam optimizer (Kingma
& Ba, 2014) with the learning rate being 0.01. The dimension size of each hidden layer is s = 300.

5.4 NODE CLASSIFICATION

Node classification is a widely adopted task for validating quality of network embeddings (Goyal
& Ferrara, 2018). To investigate the contribution of integrating node labels, we partially observe
node labels during representation learning, then we conduct node classification. Among baselines,
only LANE (Huang et al., 2017b) is able to leverage node labels into vector representations, hence
we set it as our main baseline. For both methods, we choose embedding dimension d = 128, and
we employ Macro-F1 to measure the performance of node classification. To make a comprehensive
evaluation, we randomly observe 10% to 100% of the labels during representation learning. From
Table 2, we can find that our proposed JAME consistently outperforms LANE on Citeseer and
Facebook. In Cora, observing more than 50% of labeled nodes shows better performance. It shows
JAME fed with more labels achieves higher performance since multiple tasks potentially compensate
each other by learning from the shared information. In Table 3, once more labels are contributed in
multi-task learning, more attributes and links are also involved in shared representations. Overall,
the presented results indicate effectiveness and robustness of JAME to handle and encode additional
label information associated to the network.
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Table 2: Performance of node classification observing different percentages of labels during repre-
sentation learning.

Dataset Model Macro-F1
10% 30% 50% 80% 100%

Cora JAME 0.621± 0.002 0.663± 0.002 0.729 ± 0.002 0.892 ± 0.002 0.981 ± 0.002
LANE 0.663 ± 0.001 0.684 ± 0.001 0.726± 0.001 0.769± 0.001 0.808± 0.001

Citeseer JAME 0.616 ± 0.002 0.651 ± 0.002 0.731 ± 0.002 0.810 ± 0.002 0.936 ± 0.002
LANE 0.538± 0.001 0.607± 0.001 0.616± 0.001 0.635± 0.001 0.677± 0.001

Facebook JAME 0.740 ± 0.002 0.769 ± 0.002 0.813 ± 0.002 0.902 ± 0.002 0.983 ± 0.002
LANE 0.522± 0.001 0.534± 0.001 0.559± 0.001 0.578± 0.001 0.581± 0.001

Table 3: Impact of observing labels on multi-task weighting during representation learning.

Dataset Task Weights
50% 80% 100%

wa wx wy wa wx wy wa wx wy

Cora 0.163 0.206 0.633 0.225 0.316 0.652 0.333 0.383 0.678

Citeseer 0.120 0.109 0.528 0.166 0.135 0.556 0.251 0.237 0.588

Facebook 0.153 0.138 0.346 0.182 0.150 0.368 0.281 0.224 0.398

5.5 NETWORK VISUALIZATION

To further show capability of JAME for label encoding, we learn representations d = 128 observing
full labeled networks, and visualize them by t-SNE (Maaten & Hinton, 2008). The visualization
results for all datasets are shown in Figure 2. Different node colors indicate different users groups.
We see learned embeddings from different classes are clearly compact and separated.
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Figure 2: Network visualization of JAME embeddings observing full labeled networks.

5.6 LINK PREDICTION

Link prediction is a commonly used task to demonstrate the meaningfulness of the vector repre-
sentations for preserving local connections in the network. To carry out the link prediction, we
follow Grover & Leskovec (2016) experiments which gather positive and negative edges. The pos-
itive examples are obtained by randomly removing 50% of the existing edges from the original
graph whereas negative examples are node pairs which are not connected by edges (non-existing
edges). We construct edge features from node representations by the Hadamard product (Grover &
Leskovec, 2016) to feed a logistic regression. Figure 3 shows the link prediction performance of
JAME and the baselines for different embedding sizes. As shown, in the Citeseer dataset, JAME
consistently performs better than any of the baseline models. In Cora and Facebook datasets, JAME
obtains competitive AUC scores as CAN, since both employ GCN to encode local connections in
the network.
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Figure 3: Link prediction performance of different methods for different embedding sizes

5.7 ATTRIBUTE INFERENCE

Attribute inference aims at predicting the value of attributes associated to the nodes in the network.
We follow the CAN (Meng et al., 2019) experiments for attribute inference which conduct a binary
classification task using a logistic regression. To evaluate our learned embeddings, we randomly
divide nodes into a training (80%), and a test set (20%). We employ the AUC to measure the at-
tribute inference performance since attributes of the nodes are 0/1-valued. Figure 4 presents the
performance of JAME against the baseline models on the three attributed networks. We can find that
JAME and CAN show competitive performance in the Citeseer and Facebook datasets as both em-
ploy joint autoencoders. CAN employs two variational autoencoders to simultaneously reconstruct
both adjacency and attribute matrices that leads to more accurate attribute persevering in final vector
embeddings.
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Figure 4: Attribute inference performance of different methods for different embedding sizes

5.8 LOSS WEIGHTING FOR MULTI-TASK LEARNING

Multi-task learning concerns the problem of optimizing a joint model with respect to multiple ob-
jectives. Training the model with different loss weights can effect the performance in multiple tasks.
We initialize all weights in the loss weighting layer to 1.0 then the model adjusts these weights to the
optimal values during representation learning. Table 4 demonstrates the training steps for learning
optimal weights on the Cora dataset. We observe that the loss weighting layer learns the optimal
combination of weights to have the highest performance on each task.

5.9 EFFICIENCY EVALUATION

To study the efficiency of JAME, we compare it with all the baselines on the Facebook dataset.
Among baselines, attri2vec (Zhang et al., 2019) requires around 10944.35 sec to learn embeddings
for the Facebook network. Due to the high runtime of attri2vec, we compare JAME to the other
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Table 4: Performance of Link Prediction (LP), Attribute Inference (AI), and Node Classification
(NC) applying weighted combination of multiple embedding tasks. Results are reported on the Cora
network dataset.

Epoch Task Weights LP AI NC
wa wx wy AUC AUC Macro-F1

1 0.920 0.930 0.916 0.746 0.811 0.615
2 0.837 0.856 0.831 0.829 0.895 0.818
3 0.755 0.777 0.763 0.887 0.929 0.913
4 0.671 0.698 0.733 0.922 0.938 0.960
5 0.587 0.619 0.714 0.937 0.946 0.964
6 0.503 0.542 0.704 0.944 0.948 0.972
7 0.418 0.459 0.689 0.947 0.954 0.978
8 0.333 0.383 0.678 0.951 0.956 0.981

baselines which learn representations in more reasonable time. From the results in Figure 5, we
observe that JAME takes much less running time than LANE, DANE and CAN consistently. As
the number of input nodes increases, the performance difference in time also raises up. Although
DANE and CAN employ autoencoders, they need a lot more iterations to converge which increases
the computation time. In summary, all these observations illustrate the efficiency and scalability of
our proposed joint model.
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Figure 5: Running time comparison of baselines with respect to the number of nodes on Facebook.

6 CONCLUSION AND FUTURE WORK

Labeled data is an essential information source available in a variety of attributed networks, which
is beneficial to network representation learning. Incorporating labels into network representation
learning is promising however challenging. To this end, we propose a novel framework JAME,
which jointly projects labels and attributes into a unified vector space by running multiple embedding
tasks. Our proposed model learns a weighted combination of multiple objective functions via a loss
weighting layer. Via experiments on three real-world networks, we demonstrate (1) JAME can
effectively incorporate the network structure, attributes, and labels into final representations, (2)
learning embeddings by JAME is more efficient than the baselines as training complexity is linear
to the number of nodes. As to future work, we aim to extend our JAME model to a heterogeneous
one, where the network contains multiple types of nodes and edges.
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