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ABSTRACT

Generative Adversarial Networks (GANs) have been shown to produce realisti-
cally looking synthetic images with remarkable success, yet their performance
seems less impressive when the training set is highly diverse. In order to provide
a better fit to the target data distribution when the dataset includes many different
classes, we propose a variant of the basic GAN model, a Multi-Modal Gaussian-
Mixture GAN (GM-GAN), where the probability distribution over the latent space
is a mixture of Gaussians. We also propose a supervised variant which is capable
of conditional sample synthesis. In order to evaluate the model’s performance,
we propose a new scoring method which separately takes into account two (typi-
cally conflicting) measures - diversity vs. quality of the generated data. Through
a series of experiments, using both synthetic and real-world datasets, we quantita-
tively show that GM-GANSs outperform baselines, both when evaluated using the
commonly used Inception Score (Salimans et al., 2016), and when evaluated us-
ing our own alternative scoring method. In addition, we qualitatively demonstrate
how the unsupervised variant of GM-GAN tends to map latent vectors sampled
from different Gaussians in the latent space to samples of different classes in the
data space. We show how this phenomenon can be exploited for the task of unsu-
pervised clustering, and provide quantitative evaluation showing the superiority of
our method for the unsupervised clustering of image datasets. Finally, we demon-
strate a feature which further sets our model apart from other GAN models: the
option to control the quality-diversity trade-off by altering, post-training, the prob-
ability distribution of the latent space. This allows one to sample higher quality
and lower diversity samples, or vice versa, according to one’s needs.

1 INTRODUCTION

Generative models have long been an important and active field of research in machine-learning.
Generative Adversarial Networks (Goodfellow et al., 2014) include a family of methods for learning
generative models where the computational approach is based on game theory. The goal of a GAN is
to learn a Generator () capable of generating samples from the data distribution (px ), by converting
latent vectors from a lower-dimension latent space (Z) to samples in a higher-dimension data space
(X). Usually, latent vectors are sampled from Z using the uniform or the normal distribution.

In order to train G, a Discriminator (D) is trained to distinguish real training samples from fake
samples generated by G. Thus D returns a value D(x) € [0, 1] which can be interpreted as the
probability that the input sample (x) is a real sample from the data distribution. In this configuration,
G is trained to obstruct D by generating samples which better resemble the real training samples,
while D is continuously trained to tell apart real from fake samples. Crucially, G has no direct access
to real samples from the training set, as it learns solely through its interaction with D. Both D and
G are implemented by deep differentiable networks, typically consisting of multiple convolutional
and fully-connected layers. They may be alternately trained using Stochastic Gradient Descent.

In the short period of time since the introduction of the GAN model, many different enhancement
methods and training variants have been suggested to improve their performance (see brief review
below). Despite these efforts, often a large proportion of the generated samples is, arguably, not
satisfactorily realistic. In some cases the generated sample does not resemble any of the real samples
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from the training set, and human observers find it difficult to classify synthetically generated samples
to one of the classes which compose the training set (see illustration in Figure 1).
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Figure 1: Images generated by different GANs trained on MNIST (top row), CelebA (middle row)
and STL-10 (bottom row). Red square mark images of, arguably, low quality (best seen in color).

This problem worsens with the increased complexity of the training set, and specifically when the
training set is characterized by large inter-class and intra-class diversity. In this work we focus
on this problem, aiming to improve the performance of GANs when the training dataset has large
inter-class and intra-class diversity.

Related Work. In an attempt to improve the performance of the original GAN model, many vari-
ants and extensions have been proposed in the past few years. These include architectural changes to
G and D as in Radford et al. (2015), modifications to the loss function as in Mao et al. (2016); Gulra-
jani et al. (2017), or the introduction of supervision into the training setting as in Mirza & Osindero
(2014); Odena et al. (2016). Another branch of related work, which is perhaps more closely related
to our work, involves the learning of a meaningfully structured latent space. Thus Info-GAN (Chen
et al., 2016) decomposes the input noise into an incompressible source and a “latent code”, Adver-
sarial Auto-Encoders (Makhzani et al., 2015) employ GANs to perform variational inference, and
Larsen et al. (2015) combine a Variational Auto-Encoder with a Generative Adversarial Network
(see Appendix A for a more comprehensive description).

Our Approach. Although modifications to the structure of the latent space have been investigated
before as described above, the significance of the probability distribution used for sampling latent
vectors was rarely investigated. A common practice today is to use a standard normal (e.g. N (0, I))
or uniform (e.g. U[0, 1]) probability distribution when sampling latent vectors from the latent space.
We wish to challenge this common practice, and investigate the beneficial effects of modifying the
distribution used to sample latent vectors in accordance with properties of the target dataset.

Specifically, many datasets, especially those of natural images, are quite diverse, with high inter-
class and intra-class variability. At the same time, the representations of these datasets usually span
high dimensional spaces, which naturally makes them very sparse. Intuitively, this implies that the
underlying data distribution, which we try to learn using a GAN, is also sparse, i.e. it mostly consists
of low-density areas with relatively few areas of high-density.

We propose to incorporate this prior-knowledge into the model, by sampling latent vectors using
a multi-modal probability distribution which better matches these characteristics of the data space
distribution. It is important to emphasize that this architectural modification is orthogonal to, and
can be used in conjunction with, other architectural improvements such as those reviewed above (see
for instance Figure 9 in Appendix D.) Supervision can be incorporated into this model by adding
correspondence (not necessarily injective) between labels and mixture components.

The rest of this paper is organized as follows: In Section 2 we describe the family of GM-GAN mod-
els. In Section 3 we offer an alternative method which focuses on measuring the trade-off between
sample quality and diversity of generative models. In Section 4 we empirically evaluate our pro-
posed model using various diverse datasets, showing that GM-GANs outperform the corresponding
baseline methods with uni-modal distribution in the latent space. In Section 5 we describe a method
for clustering datasets using GM-GANSs, and provide qualitative and quantitative evaluation using
various datasets of real images.
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2 MULTI-MODAL GAUSSIAN-MIXTURE GAN (GM-GAN)

Unsupervised GM-GAN. The target function which we usually optimize for, when training a
GAN composed of Generator GG and Discriminator D, can be written as follows:
minmaxV(D,G)= E [logD(x)]+ E [log(l— D(G(2)))] (1)
G D x~px(x) z~pz(z)
Above py denotes the distribution of real training samples, and pz denotes some d-dimensional
prior distribution which is used as a source of stochasticity for the Generator. The corresponding
loss functions of G and D can be written as follows:

L(G) = -, E (z)[log D(G(z))] 2
L(D) = - o (X)[log D(x)] - o E [log(1 — D(G(2)))] 3)

Usually, a multivariate uniform distribution (e.g. U[—1, l}d), or a multivariate normal distribution
(e.g. N(0,I4xq)), are used as substitute for pz when training GANs. In our proposed model, we
optimize the same target function as in (1), but instead of using a unimodal random distribution
for the prior pz, we propose to use a multi-modal distribution which can better suit the inherent
multi-modality of the real training data distribution, py.

Specifically, we propose to use a mixture of Gaussians as a multi-modal prior distribution where

pz(z) = Zszl ay * p(z). Here K denotes the number of Gaussians in the mixture, {ay }5_,
denotes a categorical random variable, and pg(z) denotes the multivariate Normal distribution
N (ug, X), defined by the mean vector uy, and the covariance matrix Y. In the absence of prior
knowledge we assume a uniform mixture of Gaussians, that is, Vk € [K] aj = %

The parameters [px, 2] of each Gaussian in the mixture can be fixed, or learned along with the pa-
rameters of the GAN in an “end-to-end” fashion to allow for a more flexible model. We investigated
two corresponding variants of the new model - one (Static) where the the parameters of the Gaus-
sians mixture are fixed throughout the model’s training process, and one (Dynamic) where these
parameters are allowed to change during the training process in order to potentially converge to a
better solution. The details of these two variants are given in Appendix B.

Supervised GM-GAN. In the supervised setting, we change the GM-GAN’s discriminator so that
instead of returning a single scalar, it returns a vector o € R where NN is the number of classes in
the dataset. Each element o; in this vector lies in [0, 1]. The Generator’s purpose in this setting is,
given a latent vector z sampled from the £’th Gaussian in the mixture, to generate a sample which
will be classified by the discriminator as a real sample from class f(k), where f : [K] — [N]is a
discrete function mapping identity of Gaussians to class labels. When K = N, f is bijective and
the model is trained to map each Gaussian to a unique class in the data space. When K > N f is
surjective, and multiple Gaussians can be mapped to the same class in order to model high diversity
classes. When K < N f is injective, and multiple classes can be grouped together by mapping to
the same Gaussian.

We modify both loss functions of G and D to accommodate the class labels. The modified loss
functions become the following:

N
L(G) ZZN;E(Z) log D(G(2)) (y(2)) + mzﬂ log(1 — D(G(2))m)
L m#f(y(z))
r N N
L(D) ZZN;E(Z) mz;llog(l —D(G(@)m)| — E log D(x)y(x) + mz;l log(1 — D(X))
m#f(y(z))

where y(x) denotes the class label of sample x, and y(z) denotes the index of the Gaussian from
which the latent vector z has been sampled. The training procedure for GM-GAN:S is fully described
in Algorithm 1.
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Algorithm 1 Training the GM-GAN model.
Require:
K - the number of Gaussians in the mixture.
d - the dimension of the latent space (2).
c - the range from which the Gaussians’ means are sampled.
o - scaling factor for the covariance matrices.
iters - the number of training iterations.
bp - the batch size for training the discriminator.
b - the batch size for training the Generator.
v - the learning rate.
f - amapping from Gaussian indices to class indices (in a supervised setting only).

1: fork=1..K do
2 Sample ps, ~ U[—c, c|? > init the mean vector of Gaussian k
3 Yk — 0% Igpq > init the covariance matrix of Gaussian k
4: for i = 1...iters do
5 for j = 1...bp do
6: Sample x; ~ px > get a real sample from the training-set.
7 Sample k ~ Categ(+, ..., ) > sample a Gaussian index.
8 Sample z; ~ N (g, L) > sample from the k’th Gaussian
9 X; + G(z;) > generate a fake sample using the Generator
10 if supervised then > compute the loss of D
1 Lreat(D)9) < —1og D(%3)y(x;) — Sometm () 108(1 = D))
12: Liake(D)D < =N _ log(1 — D(%;)m)
13: else
14: Lyeat(D)9) < —log D(x;)
15: Ltake(D)9) « —log(1 — D(%;))

bD . .
16:  L(D) & g5 > Lrear(D)9) + Lyape (D))
j=1

17: 0p < Adam(Vy,,L(D),0p,) > update the weights of D by a single GD step.
18: for j = 1...bg do

19: Sample k ~ Categ(+, ..., ) > sample a Gaussian index.
20: Sample z; ~ N (g, L) > sample from the k’th Gaussian
21: X; + G(z;) > generate a fake sample using the Generator
22: if supervised then > compute the loss of G
23: L(G)(j) <~ — IOg D()A(j)f(y(zj)) — ZZ:I,m;éf(y(zj)) log(l — D()A(J)m)

24: else

25: L(G)Y9) + —log D(%;)

bg
. 1 j
27: 0 < Adam(V,, L(G),0c,7) > update the weights of G by a single GD step.

3  GAN EVALUATION SCORE: THE QUALITY-DIVERSITY TRADE-OFF

We describe next a new scoring method for GANs, which is arguably better suited for the task than
the commonly used Inception Score proposed in Salimans et al. (2016) and described in Appendix C.
The Inception score has been used extensively over the last few years, but it has a number of draw-
backs: (i) It is limited to the evaluation of GANS which are trained to generate natural images. (ii) It
only measures the samples’ inter-class diversity, ignoring the intra-class diversity of samples. (iii) It
combines together a measure of quality and a measure of diversity into a single score. (iv) Different
scores can be achieved by the same GAN, when sampling latent vectors with different parameters
of the source probability distribution (e.g. o, see Figure 6 in Appendix C).

The Quality-Diversity trade-off: The quality of sample x € X may be measured by its probability
px(x), which implies that samples drawn from dense areas in the source domain (i.e. close to
the modes of the distribution) are mapped to high quality samples in the target domain, and vice
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versa. Therefore, we can increase the expected quality of generated samples in the target domain
by sampling with high probability from dense areas of the source domain, and with low probability
from sparse areas of the source domain. While increasing the expected quality of generated samples,
this procedure also reduces the sample diversity'. This fundamental trade-off between quality and
diversity must be quantified if we want to compare the performance of different GAN models.

Next we propose a new scoring method for either supervised or unsupervised GAN models, which is
useful for multi-class image datasets, evaluating the trade-off between samples’ quality and diversity.
This scoring method also relies on a pre-trained classifier C, but unlike the Inception Score, this
classifier is trained on the same training set on which the GAN is trained on. Classifier C is used to
measure both the quality and the diversity of generated samples, as explained below.

Quality Score To measure the quality of generated sample x, we propose to use the intermediate
representation of x in the pre-trained classifier C, and to measure the Euclidean distance from this
representation to its nearest-neighbor in the training set. More specifically, if C;(x) denotes the
activation levels in the pre-trained classifier’s layer [ given sample x, then the quality score ¢(x) ,
for sample x and a set of samples X, is defined as follows:

~exp(lex) — (NN (x))|l2)
exp (|[Ci(x) — Ci(NN(x))[l2) +a’

a(x) = o) =Y ) @

xeX

Above NN (x) denotes the nearest-neighbor of x in the training set, defined as NN(x) =
arg min||C;(x) — C;(x’)||2, and a denotes a positive constant.
x'€X

Diversity Score To measure the diversity of generated samples, we take into account both the
inter-class, and the intra-class diversity. We measure intra-class diversity by the average (nega-
tive) MS-SSIM metric (Wang et al., 2003) between all pairs of generated images in a given set of
generated images X:

1
dmtm(X)zl—'X‘Q > MS-SSIM(x,X) (5)
(x,x")eXxX

For inter-class diversity, we use the pre-trained classifier to classify the set of generated images,
such that for each sampled image x, we have a classification prediction in the form of a one-hot
vector ¢(x). We then measure the entropy of the average one-hot classification prediction vector to
evaluate the diversity between classes in the samples set:

dinger(X) = @H <|X1| ) c(x)) 6)

xeX

Finally, the diversity score is defined as the geometric mean of (5) and (6):

d(X) = \/dintra (X) * dinter (X) (7

4 EMPIRICAL EVALUATION

In this section we empirically evaluate the benefits of our proposed approach, comparing the per-
formance of GM-GAN with the corresponding baselines. Thus we compare the performance of the
unsupervised GM-GAN model to that of the originally proposed GAN (Goodfellow et al., 2014),
and the performance of our proposed supervised GM-GAN model to that of AC-GAN (Odena et al.,
2016). In both cases, the baseline models’ latent space probability distribution is standard normal,
i.e. z ~ N(0,I). The network architectures and hyper-parameters used for training the GM-GAN
models are similar to those used for training the baseline models. For the most part we used the Static
GM-GAN with default values d = 100, ¢ = 0.1, 0 = 0.15, Bp = 64, bg = 128, v = 0.0002; K

'In our experiments, we were able to control this quality-diversity trade-off by modifying the probability
distribution which is used for sampling latent vectors from the latent space Z (see Figures 3, 4). We further
elaborate on this matter in Section 4.3.
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and ¢ters varied in the different experiments. The Dynamic GM-GAN model was only used in the
experiments summarized in Figure 5.

In the following experiments we evaluate the different models on the 6 datasets listed in Table 1. In
all cases, the only pre-processing made on the training images is a transformation of pixel-values to
the range of [—1, 1].

Dataset Description Classes Samples Train Test
Name Number | Dimension | Samples Samples
Toy-Dataset Points sampled from dif- | 9 2 5,000 -

ferent Gaussians in the
2-D Euclidean space.

MNIST Images of handwritten | 10 28x28x1 60,000 10,000
digits.

Fashion- Images of clothing arti- | 10 28x28x1 60,000 10,000

MNIST cles.

CIFAR-10 Natural images. 10 32x32x3 50,000 10,000

STL-10 Natural images. 10 96x96x3 5,000 8,000

Synthetic Synthetic images of | 43 40x40x3 100,000 -

Traffic Signs street traffic signs.

Table 1: Details of the different datasets used in the empirical evaluation: a Toy-Dataset specially
created (see details in Section 4.1), MNIST (LeCun & Cortes, 2010), Fashion-MNIST (Xiao et al.,
2017), CIFAR-10 (Krizhevsky et al.), STL-10 (Adam Coates, 2011) and the Synthetic Traffic Signs
Dataset (Moiseev et al., 2013).

4.1 ToOY-DATASET

We first compare the performance of our proposed GM-GAN models to the aforementioned baseline
models using a toy dataset, which has been created in order to gain more intuition regarding the
properties of the GM-GAN model. The dataset consists of 5,000 training samples, where each
training sample x is a point in R? drawn from a homogeneous mixture of K Gaussians, i.e., ¥x
p(x) = ZkK:l +pi(x) where py,(x) ~ N(py, Sr). In our experiments we used K = 9 Gaussians,
Vk e [K] X, =01xTand p={-1,0,1} x {—1,0,1}. We labeled each sample with the identity
of the Gaussian from which it was sampled.

We trained two instances of the GM-GAN model, one supervised using the labels of the samples, and
one unsupervised oblivious of these labels. In both cases, we used K = 9 Gaussians in the mixture
from which latent vectors were sampled. Figure 2 presents samples generated by the baseline models
(GAN, AC-GAN) and samples generated by our proposed GM-GAN models (both unsupervised
and supervised variants). It is clear that both variants of the GM-GAN generate samples with a
higher likelihood, which matches the original distribution more closely as compared to the baseline
methods. The trade-off between quality and diversity is illustrated in Figure 3, showing high quality
and low diversity for ¢ = 0.25, and vice versa for o = 2.0 (see Section 4.3).

K ST
*‘ S ﬁ

(b)

Figure 2: Samples from the toy-dataset along with samples generated from: (a) GAN, (b) unsuper-
vised GM-GAN, (c¢) AC-GAN, (d) supervised GM-GAN. Samples from the training set are drawn in
black, and samples generated by the trained Generators are drawn in color. In (b) and (d), the color
of each sample represents the Gaussian from which the corresponding latent vector is sampled.
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Figure 3: Samples from the toy-dataset along with samples generated by an unsupervised GM-GAN
using different o values for sampling latent vectors from the latent space Z (0 = 1.0 was used
during training). The color code is the same as in Figure 2b,d.

An intriguing observation is that the GM-GAN’s Generator is capable, without any supervision, of
mapping each Gaussian in the latent space to samples in the data-space which are almost perfectly
aligned with a single Gaussian. We also observe this phenomenon when training unsupervised GM-
GAN on the MNIST and Fashion-MNIST datasets. In Section 5 we exploit this phenomenon to
achieve a clustering algorithm. Finally, we note that the GM-GAN models converge considerably
faster than the classical GAN model, see Figure 7 in Appendix D.

4.2 REAL DATASETS, INCEPTION SCORES

We next turn to evaluate our proposed models when trained on more complex datasets. We start
by using the customary Inception Score (Salimans et al., 2016) to evaluate and compare the per-
formance of the difference models, the two GM-GAN models and the baseline models (GAN and
AC-GAN). We trained the models on two real datasets with 10 classes each, CIFAR-10 and STL-10
(see Table 1). Each variant of the GM-GAN model was trained multiple times, each time using
a different number (K) of Gaussians in the latent space probability distribution. In addition, each
model was trained 10 times using different initial parameter values. We then computed for each
model its mean Inception Score and the corresponding standard error. The results for the two unsu-
pervised and two supervised models are presented in Table 2. In all cases, the two GM-GAN models
achieve higher scores when compared to the respective baseline model. The biggest improvement is
achieved in the supervised case, where the supervised variant of the GM-GAN model outperforms
AC-GAN by a large margin.

CIFAR-10 STL-10

Model (unsupervised) [ Score Model (unsupervised) [ Score

GAN 5.71 (£0.06) GAN 6.80 (£0.07)
GM-GAN (K = 10) 5.92 (£0.07) GM-GAN (K =10) | 7.06 (+0.11)
GM-GAN (K = 20) 5.91 (+0.05) GM-GAN (K = 20) 6.58 (+0.16)
GM-GAN (K =30) | 5.98 (£0.05) GM-GAN (K = 30) 7.03 (£0.10)
Model (supervised) | Score Model (supervised) | Score

AC-GAN 6.23 (£0.07) AC-GAN 7.45 (£0.10)
GM-GAN (K = 10) | 6.84 (+£0.03) GM-GAN (K = 10) | 8.32 (+0.06)
GM-GAN (K =20) | 6.81 (£+0.04) GM-GAN (K =20) | 8.16 (£0.05)
GM-GAN (K = 30) | 6.83 (+£0.02) GM-GAN (K = 30) | 8.08 (+0.07)

Table 2: Inception Scores for different GM-GAN models vs. baselines trained on 2 datasets.

4.3 TRADE-OFF BETWEEN QUALITY AND DIVERSITY

As discussed in Section 3, the Inception Score is not sufficient, on its own, to illustrate the trade-off
between the quality and the diversity of samples which a certain GAN is capable of generating. In
our experiments, we control the quality-diversity trade-off by varying, after the model’s training,
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the probability distribution which is used to sample latent vectors from the latent space. We do so
by multiplying the covariance matrix of each Gaussian by a scaling factor o. Specifically, when
using the baseline models we sample z ~ N (0,0 * I), and when using the GM-GAN models we
sample z|k ~ N(py, 0% 3y), k ~ Categ(%, ..., 7). Thus, when o < 1, latent vectors are sampled
with lower variance around the modes of the latent space probability distribution, and therefore the
respective samples generated by the Generator are of higher expected quality, but lower expected di-
versity. The opposite happens when o > 1, where the respective samples generated by the Generator
are of lower expected quality, but higher expected diversity. Figures 3, 4 demonstrate qualitatively
the quality-diversity trade-off offered by GM-GANs when trained on the Toy and MNIST datasets.
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Figure 4: Samples taken from a GM-GAN trained on the MNIST dataset. In each panel, latent
vectors samples are drawn using different o values (o = 1.0 was used during training). Clearly The
quality of samples decreases, and the diversity increases, as ¢ grows.

Next, we evaluated each model by calculating our proposed Quality Score from Eq. (4), and the
Combined Diversity Score from Eq. (7), for each o € {0.5,0.6,...,1.9,2.0}. Each model was
trained 10 times using different initial parameter values. We computed for each model its mean
Quality and mean Combined Diversity scores and the corresponding standard errors. The Quality
and Diversity Scores of the GM-GAN and baseline models, when trained on the CIFAR-10 and
STL-10 datasets, are presented in Figure 5 (see additional datasets in Figure 8 in Appendix D).

In some cases (e.g. supervised training on CIFAR-10 and STL-10) the results show a clear advantage
for our proposed model as compared to the baseline, as both the quality and the diversity scores of
GM-GAN surpass those of AC-GAN, for all values of o. In other cases (e.g. unsupervised training
on CIFAR-10 and STL-10), the results show that for the lower-end range of o, the baseline model
generates images of higher quality but dramatically lower diversity, as compared to our proposed
model. In accordance, when visually examining the samples generated by the two models, we
notice that most samples generated by the baseline model belong to a single class, while samples
generated by our model are much more diverse and are scattered uniformly among the different
classes. In all cases, the charts predictably show an ascending Quality Score, and a descending
Combined Diversity Score, as o is increased.

5 UNSUPERVISED CLUSTERING USING GM-GANS

Throughout our experiments, we noticed an intriguing phenomenon where the unsupervised variant
of GM-GAN tends to map latent vectors sampled from different Gaussians in the latent space to
samples of different classes in the data space. Specifically, each Gaussian in the latent space is
usually mapped, by the GM-GAN’s Generator, to a single class in the data space. Figure 10 in
Appendix D demonstrates this phenomenon using different datasets. The fact that the latent space in
our proposed model is sparse, while being composed of multiple Gaussians with little overlap, may
be the underlying reason for this phenomenon. In this section we exploit this observation to develop
a new clustering algorithm, and provide quantitative evaluation of the proposed method.

Clustering Method In the proposed method we first train an unsupervised GM-GAN which re-
ceives as input the data points without corresponding labels. K, the number of Gaussians forming
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Figure 5: Quality and Diversity scores of GM-GANS vs. baselines trained on 2 datasets: CIFAR-10
(top) and STL-10 (bottom). Left column: AC-GANSs vs. supervised GM-GANSs. Right column:
GANSs vs. unsupervised GM-GANSs. Error bars show the standard error of the mean.

the latent space, is set to equal the number of clusters in the intended partition. Using the trained
GM-GAN model, we sample from each Gaussian k € [K] a set of M latent vectors, from which

we generate a set of M synthetic samples X = {3&,(;)} o We then train a K-way multi-class
i€

classifier on the unified set of samples from all Gaussians [ J, €[K] X k» where the label of sample

X € X}, is set to k, i.e. the index of the Gaussian from which the corresponding latent vector has
been sampled. Finally, we obtain the soft-assignment to clusters of each sample x in the original
dataset by using the output of this classifier ¢(x) € [0,1]% when given x as input. Each element
c(x) (k € [K]) of this output vector marks the association level of the sample x to the cluster k.
Hard-assignment to clusters can be trivially obtained from the soft-assignment vector by selecting
the most likely cluster k& = arg maxy,¢(x) ¢(X). This procedure is formally described in Algorithm
2.

Algorithm 2 Unsupervised clustering procedure using GM-GANSs.
Require:

X - aset of samples to cluster.

K - number of clusters.

M - number of samples to draw from each Gaussian.

I: (G,D) + GM-GAN(X, K) > Train an unsupervised GM-GAN on X using K Gaussians.
2: fork =1...K do

3: Sample Zj; ~ N (pu, X)) > Sample M latent vectors from the k’th latent Gaussian.
4: X k — G(Z) > Generate M samples using the set of latent vectors Zj.
5: VX € X, y(X) < k > Label every sample by the Gaussian from which it was generated.
6 X « U & Xy, > Unite all samples into the set X .
7: ¢ + classifier(X, y) > Train a classifier on samples X and labels y.
8: Vx € X cluster(x) < arg maxye() ¢(X)x > Cluster X using classifier c.
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Dataset | Method | ACC | NMI
MNIST K-Means (Xie et al., 2016) 0.5349 0.500
AE + K-Means (Xie et al., 2016) 0.8184 -
DEC (Xie et al., 2016) 0.8430 -
DCEC (Guo et al., 2017) 0.8897 0.8849
InfoGAN (Chen et al., 2016) 0.9500 -
CAE-ls + K-Means (Aytekin et al., 2018) | 0.9511 -
CatGAN (Springenberg, 2015) 0.9573 -
DEPICT (Dizaji et al., 2017) 0.9650 0.9170
DAC (Chang et al., 2017) 0.9775 0.9351
GAR (Kilinc & Uysal, 2018) 0.9832 -
IMSAT (Hu et al., 2017) 0.9840 -
GM-GAN (Ours) 0.9924 0.9618
Traffic Signs K-Means* 0.2447 0.1977
AE + K-Means* 0.2932 0.2738
GM-GAN (Ours) 0.8974 0.9274
Fashion-MNIST K-Means* 0.4714 0.5115
AE + K-Means* 0.5353 0.5261
GM-GAN (Ours) 0.5816 0.5690

Table 3: Clustering performance of our method on different datasets. Scores are based on clustering
accuracy (ACC) and normalized mutual information (NMI). Results of a broad range of recent ex-
isting solutions are also presented for comparison. The results of alternative methods are the ones
reported by the authors in the original papers. Methods marked with (*) are based on our own
implementation, as we didn’t find any published scores to compare to.

Empirical Evaluation We evaluated the proposed clustering method on three different datasets:
MNIST, Fashion-MNIST, and a subset of the Synthetic Traffic Signs Dataset containing 10 selected
classes (see Table 1). To evaluate clustering performance we adopt two commonly used metrics:
Normalized Mutual Information (NMI), and Clustering Accuracy (ACC). Clustering accuracy mea-
sures the accuracy of the hard-assignment to clusters, with respect to the best permutation of the
dataset’s ground-truth labels. Normalized Mutual Information measures the mutual information be-
tween the ground-truth labels and the predicted labels based on the clustering method. The range of
both metrics is [0, 1]. The unsupervised clustering scores of our method are presented in Table 3. We
noet in passing that Algorithm 2 can be implemented with other GAN variants which are augments
with a GM distribution of the latent space with similar beneficial results, see Figure 9 in Appendix D.

6 SUMMARY

This work is motivated by the observation that the commonly used GAN architecture may be ill
suited to model data in such cases where the training set is characterized by large inter-class and
intra-class diversity, a common case with real-world datasets these days. To address this problem
we propose a variant of the basic GAN model where the probability distribution over the latent space
is a mixture of Gaussians, a multi-modal distribution much like the target data distribution which
the GAN is trained to model. This model can be used with or without label supervision. In addition,
the proposed modifications can be applied to any GAN model, regardless of the specifics of the loss
function and architecture (see, for example, Figure 9 in Appendix D.).

In our empirical study, using both synthetic and real-world datasets, we quantitatively showed that
GM-GANSs outperform baselines, both when evaluated using the commonly used Inception Score
(Salimans et al., 2016), and when evaluated using our own alternative scoring method. We also
demonstrated how the quality-diversity trade-off offered by our models can be controlled by altering,
post-training, the probability distribution of the latent space. This allows one to sample higher-
quality, lower-diversity samples or vice versa, according to one’s needs. Finally, we qualitatively
demonstrated how the unsupervised variant of GM-GAN tends to map latent vectors sampled from
different Gaussians in the latent space to samples of different classes in the data space. We further
showed how this phenomenon can be exploited for the task of unsupervised clustering, and backed
our method with quantitative evaluation.
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A RELATED WORK

GANs have been extensively used in the domain of computer-vision, where their applications in-
clude super resolution from a single image (Ledig et al., 2016), text-to-image translation (Reed
et al., 2016), image-to-image translation (Zhu et al., 2017; Isola et al., 2016; Kim et al., 2017), im-
age in-painting (Yeh et al., 2016) and video completion (Mathieu et al., 2015). Aside from their
use in the computer-vision domain, GANs have been used for other tasks such as semi-supervised
learning (Kingma et al., 2014; Springenberg, 2015), music generation (Yang et al., 2017; Dong et al.,
2017), text generation (Yu et al., 2016) and speech enhancement (Pascual et al., 2017).

Subsequently much effort was directed at improving GANs through architectural changes to G and
D, as in the DCGANSs described in (Radford et al., 2015). Improved performance was reported in
Mao et al. (2016); Gulrajani et al. (2017), among others, by modifying the loss function used to
train the GAN model. Additional improvement was achieved by introducing supervision into the
training setting, as in conditional GANs (Mirza & Osindero, 2014; Odena et al., 2016). These con-
ditional variants were shown to enhance the quality of the generated sample, while also improving
the stability of the notorious training process of these models.

In an effort to impose a meaningfully structure on the latent space, Info-GAN (Chen et al., 2016)
decomposes the input noise into an incompressible source and a ”latent code”, attempting to discover
latent sources of variation by maximizing the mutual information between the latent code and the
Generator’s output. This latent code can be used to discover object classes in a purely unsupervised
fashion, although it is not strictly necessary that the latent code be categorical. Adversarial Auto-
Encoders (Makhzani et al., 2015) employ GANSs to perform variational inference by matching the
aggregated posterior of the auto-encoder’s hidden latent vector with an arbitrary prior distribution.
As a result, the decoder of the adversarial auto-encoder learns a deep generative model that maps
the imposed prior to the data distribution. Larsen et al. (2015) combined a Variational Auto-Encoder
with a Generative Adversarial Network in order to use the learned feature representations in the
GAN’s discriminator as basis for the VAE reconstruction objective. As a result, this hybrid model is
capable of learning a latent space in which high-level abstract visual features (e.g. wearing glasses)
can be modified using simple arithmetic of latent vectors.

B DyYNAMIC VS STATIC GM-GAN MODEL

The parameters of the mixture of Gauusian distribution used to sample the latent vector can be fixed
or learned. One may be able to choose these parameters by using prior knowledge, or pick them
randomly. Perhaps a more robust solution is to learn the parameters of the Gaussian Mixture along
with the parameters of the GAN in an “end-to-end” fashion. This should, intuitively, allow for a
more flexible, and perhaps better performing model. We therefore investigated two variants of the
new model - one (static) where the the parameters of the Gaussians mixture are fixed throughout
the model’s training process, and one (dynamic) where these parameters are allowed to change
during the training process in order to potentially converge to a better a solution. These variants are
described in detail next:

Static GM-GAN. In the basic GM-GAN model, which we call Static Multi-Modal GAN (Static GM-
GAN), we assume that the parameters of the mixture of Gaussians distribution are fixed be-
fore training the model, and cannot change during the training process. More specifically,
each of the mean vectors p; is uniformly sampled from the multivariate uniform distribu-
tion U[—c, c]d, and each of the covariance matrices >, has the form of o * I« 4, Where
c € Rand o € R are hyper-parameters left to be determined by the user.

Dynamic GM-GAN. We extend our basic model in order to allow for the dynamic tuning of pa-
rameters for each of the Gaussians in the mixture. We start by initializing the mean vectors
and covariance matrices as in the static case, but we include them in the set of learnable
parameters that are optimized during the GAN’s training process. This modification allows
the Gaussians’ means to wander to new locations, and lets each Gaussian have a unique
covariance matrix. This potentially allows the model to converge to a better local optimum,
and achieve better performance.
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The architecture of the Dynamic GM-GAN is modified so that G receives as input a categorical
random variable k, which determines from which Gaussian the latent vector should be sampled.
This vector is fed into a stochastic node used for sampling latent vectors given the Gaussian’s index,
i.e. z|k ~ N(ug,Xx). In order to optimize the parameters of each Gaussian in the training phase,
back-propagation would have to be performed through this stochastic node, which is not possible.
To overcome this obstacle, we use the re-parameterization trick as suggested by Kingma & Welling
(2013): instead of sampling z ~ N (py, X)) we sample € ~ N(0,I) and define z = Age + g,
where A € R%*? and y;, € R? are parameters of the model, and d is the dimension of the latent
space. We thus get (1(z) = . and X(z) = A, AL

We note that when training either the static or dynamic variants of our model, we optimize for the
same loss functions as in (2) and (3). Clearly other loss functions can be used in conjunction with
the suggested architectural modifications, as those changes are independent.

We also note that the dynamic variant of our model includes additional K * (d* + d) trainable
parameters, as compared to the static model. In cases where K and d are sufficiently large, this can
introduce significant computational overhead to the optimization procedure. To mitigate this issue,
one can reduce the number of degrees of freedom in X, e.g. by assuming a diagonal matrix, in
which case the number of additional trainable parameters is reduced to 2 * K * d.

C THE Inception Score

Salimans et al. (2016) proposed a method to evaluate generative models for natural image synthesis,
such as VAEs and GAN:Ss, using a pre-trained classifier. It is based on the fact that good samples,
i.e. images that look like images from the true data distribution, are expected to yield: (i) low
entropy p(y|x), implying high prediction confidence; (ii) high entropy p(y), implying highly varied
predictions. Here x denotes an image sampled from the Generator, p(y|x) denotes the inferred
class label probability given x by the Inception network (Szegedy et al., 2016) pre-trained on the
ImageNet dataset, and p(y) denotes the marginal distribution over all images sampled from the
Generator. Thus the Inception Score is defined as:

exp (Ex~pe [Drcr(p(y[x)|[p(y))]) (8)

This score has a number of drawbacks which we found to be rather limiting:

1. The Inception Score is based on the Inception network (Szegedy et al., 2016), which was
pre-trained on the ImageNet dataset. This dataset contains ~ 1.2 million natural images
belonging to 1,000 different classes. As a result the use of the Inception Score is limited
to cases where the dataset consists of natural images. For example, we cannot use the
Inception Score to evaluate the performance of a GAN trained on the MNIST dataset,
which contains gray-scale images of hand-written digits.

2. Even in cases where the dataset on which we train a GAN consists of natural images, the
distribution of these images is likely to be very different from that of ImageNet. In which
case, the confidence of the Inception network’s prediction on such images may not correlate
well with their actual quality.

3. The Inception Score only measures the samples’ inter-class diversity, namely, the distri-
bution of these samples across different classes p(y). Another equally important measure,
which must be taken into account, is the intra-class diversity of samples, namely, the vari-
ance of different samples which all belong to the same class.

4. The Inception Score combines together a measure of quality and a measure of diversity
into a single score. When evaluating the qualities of a GAN using solely this combined
score, one cannot asses the true trade-off between the quality and the diversity of generated
images. Thus a given Inception Score can be achieved by a GAN which generates very
diverse but poor quality images, and also by a GAN which generates similarly looking
but high quality images. Different Inception Scores can also be achieved by the same
GAN, when sampling latent vectors with different parameters of the source probability
distribution (e.g. o), as illustrated in Figure 6.
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Figure 9: Unsupervised clustering with the info-GAN model (Chen et al., 2016) trained on the
fashion-MNIST dataset. We evaluated the original model with uniform and Gaussian latent space
distribution. In addition, we incorporated multi-modal Gaussian distribution of the latent space into
the model with 3, 5 and 10 mixture components. The results of the GM-info-GAN variants are
clearly better than vanilla, with best results obtained for 5 Gaussian components.
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Figure 10: Samples taken from two unsupervised GM-GAN models trained on the MNIST (top
panels), Fashion-MNIST (middle panels) and CIFAR-10 (bottom panels) datasets. In (a) the Gaus-
sian mixture contains K = 10 Gaussians; in each panel, each row contains images sampled from
a different Gaussian. In (b) the Gaussian mixture contains K = 20 Gaussians; in each panel, each
half row contains images sampled from a different Gaussian.
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