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ABSTRACT

Human world knowledge is both structured and flexible. When people see an
object, they represent it not as a pixel array but as a meaningful arrangement
of semantic parts. Moreover, when people refer to an object, they provide
descriptions that are not merely true but also relevant in the current context. Here,
we combine these two observations in order to learn fine-grained correspondences
between language and contextually relevant geometric properties of 3D objects.
To do this, we employed an interactive communication task with human
participants to construct a large dataset containing natural utterances referring
to 3D objects from ShapeNet in a wide variety of contexts. Using this dataset,
we developed neural listener and speaker models with strong capacity for
generalization. By performing targeted lesions of visual and linguistic input,
we discovered that the neural listener depends heavily on part-related words and
associates these words correctly with the corresponding geometric properties of
objects, suggesting that it has learned task-relevant structure linking the two input
modalities. We further show that a neural speaker that is ‘listener-aware’ —
that plans its utterances according to how an imagined listener would interpret
its words in context — produces more discriminative referring expressions than
an ‘listener-unaware’ speaker, as measured by human performance in identifying
the correct object.

1 INTRODUCTION

Human world knowledge is both structured and flexible. For example, when people see a chair,
they represent it not as a pixel array but as a semantically meaningful combination of parts, such
as arms, legs, seat, and back. How to obtain and flexibly deploy such structured knowledge
remains an outstanding problem in machine learning (Lake et al., 2017). One promising approach
is to harness the rich conceptual and relational structure latent in language (Andreas et al., 2017).
Natural languages have been optimized across human history to solve the problem of efficiently
communicating those aspects of the world most relevant to current goals (Kirby et al., 2015; Gibson
et al., 2017). Consequently, language reflects the structured nature of our world knowledge: we not
only conceive of a chair in terms of its semantic parts, but can combine multiple words to refer to its
‘curved back’ or ‘cushioned seat’, and provide more informative descriptions if the context requires
it, e.g., refer to a different distinguishing part if all the chairs have a cushioned seat.

Our goal is to leverage these insights to develop systems that can make fine-grained distinctions
between complex object geometries across a wide variety of contexts. Our approach is to leverage
natural language produced by people in an interactive communication task to develop neural network
models of the speaker and listener roles in this task. We find that the resulting representations learned
by these models exhibit structure that is crucial for robust communication: first, they capture task-
relevant correspondences between individual parts of objects and individual tokens of language, and
second, they have strong capacity to generalize to novel contexts, objects, utterances, and other
related object classes.

We make the following contributions:
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close context far context
Figure 1: Constructing “close” and
“far” contexts by exploiting the
latent neighborhood structure of
3D chairs. Orange is a high in-
degree seed chair, dark gray its
selected distractors in each context.

• We introduce a new multimodal dataset (Chairs In Context) comprised of 4,511 chairs from
ShapeNet, organized into 4,054 sets of size 3 (called communication contexts), with 78,789
natural utterances, each utterance intended to distinguish a chair in context.1

• By training on this dataset we develop neural listeners and speakers with strong
generalization capacity even in out-of-training classes, such as tables.

• We demonstrate that the neural listener learns to prioritize the same geometric information
in objects (i.e., properties of individual chair parts) that humans do in solving the
communication task, despite never being provided with an explicit decomposition of these
objects into parts.

• We show how our listeners can be used to search large collections of unseen objects to
retrieve models based on natural language queries, e.g., curved back and fat legs.

• Lastly, we find that a neural speaker that is ‘listener-aware’ — that plans its utterances
according to how an imagined listener would interpret its words in context — produces
more discriminative utterances than an ‘listener-unaware’ speaker, as measured by human
performance in identifying the correct object.

2 DATASET AND TASK

Our dataset consists of triplets of 3D objects coupled with referential utterances that aim to
distinguish one object (the “target”) from the remaining two (the “distractors”). To obtain such
utterances, we paired participants from Amazon Mechanical Turk to play an online, reference game
(Hawkins, 2015). On each round of the game, the two players were shown a triplet of objects. The
designated target object was privately highlighted for one player (the “speaker”) who was asked
to send a message through a chat box such that their partner (the “listener”) could successfully
select it from the context (see Appendix Fig. 16). To ensure speakers used geometric information
rather than color, texture, orientation, or position on the screen, we scrambled the positions of the
objects for each participant and used textureless, colorless renders of 3D objects taken from the
same viewpoint. Additionally, to ensure communicative interaction was natural, no constraints
were placed on the chat box: referring expressions from the speaker were occasionally followed
by clarification questions from the listener or other discourse.

A crucial decision in building our dataset concerned the construction of useful contexts that
would reliably elicit fine-grained contrastive language. Perceptually identical objects cannot be
distinguished with language at all, while wildly different objects (a chair and a car) can be easily
distinguished with a single word (“it’s a chair”). To solve this problem, we considered three
objectives. First, the set of objects must be familiar so we can tap existing visual and linguistic
representations. Second, the objects should be complex and variable to provide wide coverage of
interesting geometries. Third, different contexts must contain diverse combinations of objects to
ensure variation in the relevant distinctions required.

To satisfy the first two objectives, we utilize the collection of about 7,000 chairs from ShapeNet
(Chang et al., 2015). This class is geometrically complex, densely sampled, highly diverse, and
abundant in the real world. To satisfy the third objective in a scalable and unsupervised manner, we
estimated object similarity between different chairs using the Point Cloud-AutoEncoder (PC-AE)
from Achlioptas et al. (2018). This representation allowed us to leverage the fact that point-clouds
extracted from a 3D surface provide an intrinsic 3D representation of an object, oblique to color or
texture. To deal with the inhomogeneity of data in repositories like ShapeNet we used a sampling

1The dataset and our code will be publicly available upon acceptance.
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Figure 2: Proposed listener architecture.

strategy to construct our triplets. First, we computed the 2-nearest-neighbor graph of all ShapeNet
chairs based on their PC-AE embedding distances. On this graph, we selected chairs of highest in-
degree as seeds and for each seed chair we generated two kinds of triplets. Close contexts sampled
nearby chairs while Far contexts sampled highly dissimilar chairs (see Fig. 1). Additional details of
triplet construction are provided in the Appendix (Section 9.1).

In total, we collected a corpus containing 78,789 referring expressions for 4,054 triplets, containing
4,511 unique chairs. In doing so we recruited 2,124 unique participants. Human performance on the
reference game was high in general, but listeners made significantly more errors in the close triplets
(94.2% vs. 97.2%, z = 13.54, p < 0.001). Also, significantly longer utterances were used on
average to describe targets in close triplets (approximately 8.4 words vs. 6.1, t = −35, p < 0.001).
A wide spectrum of descriptions was elicited, ranging from the more holistic/categorical common
for far triplets (e.g., “the rocking chair”) to more complex, geometric language common for close
triplets (e.g., “thinner legs but without armrests”). 78% of utterances used at least one part word:
“back”, “legs”, “seat,” “arms”, or closely related synonyms (e.g., “armrests”).

3 NEURAL LISTENERS

Constructing neural listeners that reason about geometric relationships is a key contribution of our
work. It lays the foundation for creating speakers that utter discriminative utterances and enables
the creation of an object retrieval system that operates with linguistic queries. Given its importance,
below we conduct a detailed comparison between three distinct architectures, highlight the effect
of different regularization techniques, and investigate the merits of two different representations of
3D objects for the listening task, namely, images and point clouds. In what follows, we denote the
three objects of a communication context as O = {o1, o2, o3}, the corresponding word-tokenized
utterance, which has at most K tokens , as U = u1, u2, . . . and as t ∈ O the referential target.

Our proposed listener is inspired by Monroe et al. (2017). It takes as input a (latent code) vector
for each of the three objects in O and a (latent code) vector for each token of U , and outputs an
object–utterance compatibility score L(oi, U) ∈ [0, 1] for each of the three objects. At its core lies
a multi-modal LSTM (Hochreiter & Schmidhuber, 1997) that takes as input (“is grounded” with)
the vector of a single object, processes the word-sequence U , and is read out by a final MLP to
yield a single number (the compatibility score). This is repeated for each oi, sharing all network
parameters across the objects. We then apply a soft-max to the three compatibility scores to yield
a distribution over the three objects, and compute a cross-entropy loss between this distribution and
the ground-truth indicator vector of the target.

Object encoders We experimented with three object representations to capture the underlying
geometries: (a) the bottleneck representation of a pretrained Point Cloud-AutoEncoder (PC-AE),
(b) the embedding provided by a convolutional network operating on single-view images of non-
textured 3D objects, or (c) a combination of (a) and (b). Specifically, for (a) we use the PC-AE
architecture of Achlioptas et al. (2018) trained with single-class point clouds extracted from the
surfaces of 3D CAD models, while for (b) we use the activations of the penultimate layer of a VGG-
16 (Simonyan & Zisserman, 2014) neural network, pre-trained on ImageNet (Deng et al., 2009),
and fine-tuned on an 8-way classification task with images of objects from ShapeNet. For each
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representation we project the corresponding code vector to the input space of the LSTM using a
fully connected (FC) layer with L2-norm weight regularization. The addition of these projection-
like layers improves the training and convergence of our system.

While there are many ways to simultaneously incorporate the two modalities in the LSTM, we found
that the best performance resulted when we ground the LSTM with the image code, concatenate the
LSTM’s final output (after processing U ) with the point cloud code, and finally feed this result into
a shallow MLP to produce the final compatibility (see Figure 2 for an overview of this architecture).
We note that grounding the LSTM with point clouds and using images towards the end of the
pipeline, resulted in a significant performance drop (∼ 4.8% on average). Also, adding dropout
at the input layer of the LSTM and L2 weight regularization and dropout at and before the FC
projecting layers was crucial (giving improvements of more that 10%). The token codes of each
sentence where initialized with the GloVe embedding (Pennington et al., 2014) and fine-tuned for
the listening task.

Incorporating context information Critically, our proposed listener architecture first scores
each object separately then applies softmax normalization to yield a score distribution over the
three objects. In order to evaluate the importance of this design choice, we consider two alternative
architectures that incorporate context earlier, at encoding. The first alternative (Separate-Augment),
is identical to the proposed architecture, except for it uses a convolutional layer to augment each
object’s grounding vector with information about the other two objects in context before yielding its
score. Specifically, if vi is the image code vector of the i-th object (oi ∈ O), to produce the grounding
vector for oi, the convolutional layer receives f(vj , vk)||g(vj , vk)||vi, where f, g are order invariant
functions, such as the average or max-pooling and || denotes feature-wise concatenation. The second
alternative architecture (At-Once) first feeds the image vectors for all three objects sequentially to
the LSTM and then proceeds to process the tokens of U once, to yield the entire score distribution.
Similarly to the proposed architecture, point clouds are incorporated in both alternatives via a
separate MLP after the LSTM.

Attention mechanism over words We hypothesize that a listener forced to prioritize a few words
in each utterance would learn to prioritize words that express properties that distinguish the target
from the distractors (and, thus, perform better). To test this hypothesis, we augment the listener
models with a bilinear attention mechanism over words. Specifically, to estimate the “importance”
of each text-token ui we compare the output of the LSTM for ui (denoted as ri) with the hidden state
after the entire utterance has been processed (denoted as h). The ideas is that the hidden state acts
as a summary of the grounded sentence (Shen & Lee, 2016), that can be used to assess the relative
importance of each word as ai =

∆ rTi ×Watt × h, where Watt is a trainable diagonal matrix. With
the attention mechanism in place, the final output of the LSTM is defined as

∑|U |
i=1 ri � âi, where

âi =
exp(ai)∑|U|
j exp(aj)

and � is the point-wise product.

The optimal parameters of each listener (and speaker), the hyper-parameter search strategy, and the
exact details of training are provided in the Appendix 9.2 and 9.3.

4 NEURAL SPEAKERS

Architecture Our speaker models are inspired by the show-and-tell model (Vinyals et al., 2015)
developed for image captioning. Specifically, a speaker is a neural network that receives an image-
based code vector per object in O and learns to generate an utterance U that refers to the target and
which distinguishes it from the distractors. Similarly to the listener model, the main components
of the speaker’s architecture are an LSTM and a convolutional image network (we do not include
point clouds when speaking to allow for a more easily deployable model). During the first three time
steps, the speaker receives sequentially the three image code vectors of a context (projected via an
L2-norm weight regularized FC) and outputs a vector which is transformed into a logit prediction
over our vocabulary via an FC.

The soft-normalized version of the output is compared against the first ground-truth token (u1)
under the cross-entropy loss. For each remaining token ui ∈ u2, . . ., the LSTM is conditioned
on the previous (ui−1) ground-truth token and the cross-entropy comparison is repeated (i.e., we
do teacher-forcing (Williams & Zipser, 1989)). In all speakers the target vector is fed third,
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Table 1: Performance of variants of proposed listener architecture (image-modality, attention, and
context-incorporation alternatives) on different generalization tasks and subpopulations of the test
set (chance is 33%; mean accuracy ±1 standard error). Bottom table uses best-performing model
from top table. Averages taken over five random seeds that controlled the data splits and neural-net
initializations.

Input-Modality Language-Task Object-Task

No
Attention

Point Cloud 67.6± 0.3% 66.4± 0.7%
Image 81.2± 0.5% 77.4± 0.7%
Image & Point Cloud 83.1± 0.2% 78.9± 1.0%

With
Word-level
Attention

Point Cloud 67.4± 0.3% 65.6± 1.4%
Image 81.7± 0.5% 77.6± 0.8%
Image & Point Cloud 83.7± 0.2% 79.6± 0.8%

Architecture Subpopulations
Overall Close Far Sup-Comp

At-Once 75.9± 0.5% 67.4± 1.0% 83.8± 0.6% 74.4± 1.3%
Separate-Augment 79.4± 0.8% 70.1± 1.3% 88.1± 0.6% 75.2± 2.1%

Separate (proposed) 79.6± 0.8% 69.9± 1.3% 88.1± 0.4% 76.0± 1.6%

thereby minimizing the length of dependence between the most important input object and the
output (Sutskever et al., 2014) and eliminating the need to represent the index of the target separately.
To find the best hyper-parameters (L2 weights, dropout-rate and # of LSTM neurons) and the
optimal (per validation) epoch, during training we sample synthetic utterances of each model and
use a pretrained listener to select the combination with the highest listener accuracy. We found this
approach to produce model parameters with stronger correlation between the training ‘progress’ and
the quality of produced utterances, than using listening-unaware metrics like BLEU (Papineni et al.,
2002).

Variations In principle, the above speaker can learn to generate language that follows the
discriminative characteristics of the referential ground truth. To test the degree to which the
distractors are taken into account for this purpose, we experiment with a speaker that is “context-
unaware” by construction. This speaker at both training and test time uses the image encoding
of the target object only, and is otherwise identical to the above model. Then, motivated by the
recursive social reasoning formalized in the Rational Speech Act framework (Goodman & Frank,
2016), we create a listener-aware speaker that plans synthetic utterances according to their capacity
to be discriminative, as judged by an “internal” listener. In this case, a speaker’s sampled utterance
U is scored as:

score(U) = β log(PL(t|U)) + (1− β)
i=|U |∑
i=1

log(PS(ui|O))

|U |α , (1)

where PL is the listener’s probability to predict the target (t) given U , uk is a token of U and PS
is the likelihood of the speaker for generating U given the objects in O. The parameter α controls
a length-penalty term to discourage short sentences (Wu et al., 2016), while β controls the relative
importance of the speaker’s vs. the listener’s opinions.

5 LISTENER EXPERIMENTS

We evaluated our listener’s generalization performance using two tasks based on different data splits.
In the language generalization task, we test on target objects that were seen as targets in at least one
context during training but ensured that all utterances in the test split are from unseen speakers. In
the more challenging object generalization task, we restricted the set of objects that appeared as
targets in the test set to be disjoint from those in training such that all objects and utterances in
the test split are unseen. For each of these tasks, we evaluated choices of input modality and word
attention, using [80%, 10%, 10%] of the data, for training, validation and test for all experiments.
Listener accuracies are shown in Table 1 (top).
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Figure 3: (A) The listener places more
attention on adjectives in close (orange)
triplets than far (blue) ones. (B)
Lesioning highest attention words to
lowest worsens performance more than
lesioning random words or lesioning
lowest attention words.

First, as expected, all architectures have higher accuracy on the language generalization task (3.2%
on average). Second, the attention mechanism on words yields a mild performance boost, as long
as images are part of the input. Third, images provide a much better input than point-clouds when
only one modality is used. In other words, despite being an intrinsic 3D representation, point-clouds
alone seem to provide a weaker input signal, perhaps due to their relative lack of high-frequency
details. Finally, we find large gains in accuracy (4.1% on average) from exploiting the two modalities
simultaneously, potentially implying a complementarity between the two representations that the
network can exploit.

Next, we evaluate how the different approaches to incorporating context information described in
Section 3 affect listener performance. We focus on the more challenging object generalization task,
using models that include attention and both object modalities. See Table 1 (bottom) for results.
We find that the At-Once architecture, which consumes the entire context with a single (non-weight
shared replica) LSTM, performs significantly worse than both the Separate and Separate-Augment
architectures (which use an explicit shared-weighting mechanism) and achieve similar performance
to each other. It is plausible that our alternative strategies for incorporating context information
however, would yield an advantage in close contexts, where finer distinctions must be made.
However, we did not observe differences between the Separate and Separate-Augment variants in
either the far or the close subpopulations; we do find that far contexts were easier for all models than
close contexts. Surprisingly, we found that the Separate architecture remains competitive against the
Separate-Augment architecture even in the subpopulation that includes utterances with superlatives
and/or comparatives (“skinnier”/“skinniest”) which made up∼16% of the test set and make explicit
reference to context. Since the Separate architecture is the most flexible (see Section 5.2 for a
demonstration of this), and is also simpler than Separate-Augment while performing equally well,
we focus on this in the following sections.

5.1 EXPLORING LEARNED REPRESENTATIONS

Which aspects of a sentence are more critical for our listener’s performance? To inspect the
properties of words receiving the most attention, we ran a part-of-speech tagger on our corpus. We
found that the highest attention weight is placed on nouns, controlling for the length of the utterance.
However, adjectives that modify nouns received more attention in close contexts (controlling for the
average occurrence in each context), where nouns are often not sufficient to disambiguate (see Fig.
3A). To more systematically evaluate the role of higher-attention tokens in listener performance, we
conducted an utterance lesioning experiment. For each utterance in our dataset, we successively
replaced words with the <UNK> token according to three schemes: (1) from highest attention to
lowest, (2) from lowest attention to highest, and (3) in random order. We then fed these through an
equivalent listener trained without attention. We found large differential performance from random
in both directions (see Fig. 3B). This ablation result was found across a wide range of utterance
lengths. Our word-attentive listener thus appears to rely on context-appropriate content words to
successfully disambiguate the referent. Examples demonstrating where the attention is being placed
on utterances produced by humans are given in Appendix Fig. 7.

To test the extent to which our listener is relying on the same semantic parts of the object as humans,
we conducted a lesion experiment on the visual input rather than the linguistic one. We took the
subset of our test set where (1) all chairs had complete part annotations available (Yi et al., 2016) and
(2) the corresponding utterance mentioned a single part (17.5% of our test set). We then rendered
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Table 2: Testing the part-awareness of neural listener by lesioning different parts of the objects.
Reported is the average accuracy of a listener under different lesions.

Intact Object Single Part Lesioned Single Part Present
Mentioned Part 78.5% 41.8%± 0.1 66.6%± 0.1
Random Part 67.0%± 0.2 37.4%± 0.1

Figure 4: Top-scoring retrieved results in collections of unseen objects with natural-language
queries. Bottom two rows include out-of-class examples from collections of lamps, sofas and tables.

lesioned versions of all three objects on each trial by removing pixels corresponding to parts 2

according to two schemes: removing a single part or keeping a single part. We did this either for the
mentioned one, or another part, chosen at random. We report listener accuracies on these lesioned
contexts in Table 2. We found that removing random parts hurts the accuracy by 11% on average,
but removing the mentioned part dropped accuracy more than three times as much, nearly to chance.
Conversely, keeping only the mentioned part while lesioning the rest of the image merely drops
accuracy by 11.9% while keeping a non-mentioned (random) part alone brings accuracy down to
37.4% on average. In other words, on trials when participants depended on information about a part
to communicate the object to their partner, we found that localized information about that part was
both necessary and sufficient for the performance of our listener model.

5.2 USING LISTENER FOR RETRIEVAL IN NOVEL OBJECT COLLECTIONS

Finally, as a demonstration the broader applicability of our listener, we consider the problem of
searching a large database of 3D objects using natural language queries. A key advantage of the
proposed listener is its flexibility to be applied on arbitrary sized contexts. We exploit this flexibility
by using a pre-trained listener to measure the compatibility L(oi, U) between every object of a
test collection O = {o1, . . . oN} and the query U . In Figure 4 (top) we show the chairs of the
held-out splits (a set of 900 chairs) with the highest compatibility for a range of utterance queries.
Additionally, we show the results of applying this model (trained on chairs) in the entire out-of-
training classes of (ShapeNet) sofas, tables and lamps (object sets of size 3.2K, 8.5K, and 2.3K,
respectively). We see surprisingly good results on searching these transfer categories. This further
supports the part-awareness of the learned embedding, since the commonality between a chair and
a table can be primarily expressed trough their shared parts. In the Appendix we include additional
queries for chairs (Fig. 10) and non-chairs (Fig. 11).

6 SPEAKER EXPERIMENTS

Having established that our neural listener learns useful representations with surprisingly structured
properties, we now proceed to evaluate our neural speakers (see Fig. 5 for examples). 3

We evaluate them by measuring their success in referential games with two different kinds of
partners: with an independently trained listener model and with human listeners on Amazon

2Due to the added difficulty of annotating and lesioning point-clouds, we conducted this experiment with
the image-only variant of our listener

3Appendix Fig. 12 illustrates how the speakers refer to the same targets in far vs. close contexts. Appendix
Figs 9 and 8 showcase listener’s and speaker’s failure modes.

7



Under review as a conference paper at ICLR 2019

the one with the most square back

no gap

the one with the thickest legs

knobby legs

thinnest legs

biggest hole in backlistener-aware

distractors

0.60 0.02 0.38

0.30 0.06 0.64

0.32 0.32 0.36

0.03 0.02 0.95

0.54 0.15 0.31

0.17 0.30 0.53

target

context-aware

listener scores

listener scores

Figure 5: Top-scoring synthetic utterances generated from listener-aware and context-aware
speakers for unseen targets. Proportions correspond classification scores of our independent
evaluating listener.
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generated utterance

Figure 6: Our listener-aware speaker can produce informative referring expressions for out-of-class
objects in context. Here, we apply our search technique in the collection of ShapeNet Tables, to
produce triplets of well-separated objects. We use the queries: ’no legs’ (left), ’modern’ (center), and
’x’ (right), to construct each triplet. Notice that the target of each triplet (selected from the highest-
ranked matches) reflects the semantics of the used query, as opposed to the distractors (selected from
the lowest-ranked matches).

Mechanical Turk (see Table 3). Critically, to conduct a fair evaluation using a neural listener, we
split our training data in half. The evaluating listener was trained using one half while the scoring
(or “internal”) listener used by the speaker to choose utterances was trained on the remaining half.
For our human evaluation, we used the context- and listener-aware speakers to generate synthetic
referring expressions on the test set. To avoid data-spillage we use all training data to train the
internal listeners here. We then showed these referring expressions to participants and asked them
to select the object from context that the speaker was referring to. We collected approximately 2.58
responses for each triplet. For all speaking experiments, we used the same object-generalization
splits used in the listening experiments. The synthetic utterances were the best scoring sentence
according to each model with optimal α and a subset of β values (See Appendix Section 12 for the
effect of these hyper-parameters in a wider range).

We found that our listener-aware speaker, which uses an internal listener model to produce
informative utterances, performs significantly better in reference games. While its success with
the evaluating listener model may be unsurprising, given the architectural similarity of the internal
listener and the evaluating listener, human listeners were 10.4 percentage points better at picking
out the target on utterances produced by the listener-aware speaker. While for listeners we found
it was sufficient to bring context into the model only at the final stage, the soft-max over objects,
we found that for speakers it was helpful to bring context into play earlier: the context-unaware
speaker does significantly worse than context-aware one (64.0% vs. 76.6%). Qualitatively, we note
that both context/listener aware speakers produce succinct descriptions (average sentence length

Table 3: Speaker evaluations. For the neural listeners, five random seeds controlling the weight
initialization and speaker-listener data splits were used.

Speaker-Architecture Listener Model Human Listeners
Context-unaware 64.0± 1.7% -

Context-aware (β = 0.0) 76.6± 1.0% 68.3
Listener-aware (β = 0.5) 85.9± 0.4% -
Listener-aware (β = 1.0) 92.2± 0.5% 78.7
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4.21 vs. 4.97) but the listener-aware speaker uses a much richer vocabulary (14% more unique
nouns and 33% more unique adjectives, after controlling for average length discrepancy). As a
final qualitative examination of our speakers’ generalization ability, we ran a simple out-of-class
speaking experiment. We constructed well-separated contexts from the search results presented in
Section 5.2, taking as the target the highest-ranked exemplar and choosing distractors from among
the lowest-ranked. Our best speaker model produced promising results (see Fig. 6).

7 RELATED WORK

Image labeling and captioning Our work builds on recent progress in the development of vision
models that involve some amount of language data, including object categorization (Simonyan &
Zisserman, 2014; Zhang et al., 2014) and image captioning (Karpathy & Fei-Fei, 2015; Vinyals
et al., 2015; Xu et al., 2016). Unlike object categorization, which pre-specifies a fixed set of class
labels to which all images must project, our system uses open-ended, natural language. Similarly to
other recent works in image captioning (Luo & Shakhnarovich, 2017; Monroe et al., 2017; Vedanta
et al., 2017) instead of captioning a single image in isolation, our systems learn how to communicate
across diverse semantic contexts. More importantly, using ’clean’ images of separate articulated
objects enables the generation of very fine-grained, part-based descriptions.

Reference games In our work we use reference games in order to operationalize the demand to be
relevant in context. The basic arrangement of such games can be traced back to the language games
explored by Wittgenstein (Wittgenstein, 1953) and Lewis (Lewis, 1969). For decades, such games
have been a valuable tool in cognitive science to quantitatively measure inferences about language
use and the behavioral consequences of those inferences (Rosenberg & Cohen, 1964; Krauss &
Weinheimer, 1964; Clark & Wilkes-Gibbs, 1986; van Deemter, 2016). Recently, these approaches
have also been adopted as a benchmark for discriminative or context-aware NLP (Paetzel et al.,
2014; Andreas & Klein, 2016; Cohn-Gordon et al., 2018; Vedantam et al., 2017; Su et al., 2017;
Lazaridou et al., 2018).

Rational Speech Acts framework Rational Speech Act (RSA) models provide a probabilistic
framework for deriving linguistic behavior from general principles of social cognition (Goodman &
Frank, 2016). At the core of the RSA framework is the Gricean proposal (Grice, 1975) that speakers
are decision-theoretic agents who select utterances u that are parsimonious yet informative about the
state of the world w. RSA formalizes this notion of informativity as the expected reduction in the
uncertainty of an (internally simulated) listenerL: S(u|w) ∝ exp{logL(w|u)}, L(w|u) ∝ L(u,w).
This speaker S is pragmatic because it considers informativity in terms of a rational listener agent
(L) who updates their beliefs about the world according to the literal semantics of the language
(L). Previous work has shown that RSA models account for context sensitivity in human speakers
(Graf et al., 2016; Monroe et al., 2017; Yu et al., 2017; Fried et al., 2017). Our speaking results add
evidence in the effectiveness of this approach.

8 CONCLUSION AND FUTURE DIRECTIONS

Taken together, our results show that natural language, derived from communication in context,
provides a strong objective for learning to make fine-grained distinctions between objects with an
emphasis on their shared part-structure. An exciting future application of this work would be to
leverage these techniques for improving unsupervised part segmentation and 3D shape retrieval, as
well as context-aware shape synthesis, providing an advance over existing context-unaware synthesis
techniques (Chen et al., 2018).
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9 APPENDIX

9.1 DETAILS ON BUILDING THE CONTEXTS

To build our contrastive triplets, we first compute the 2-nearest-neighbor graph of all ShapeNet
chairs based on their Euclidean latent distances and use a subset of 1K chairs, those with the highest
in-degree on this graph to “seed” the triplet generation. Given a node of this graph, we select its
two nearest neighbors from the entire shape collection to form a triplet of highly similar (”close”)
objects and also select the two objects that are closest to it but which also are more distant from it
than the median of all pairwise distances, to form a triplet of relatively ”far” objects. Having two
types of contexts (close and far) allowed us to collect contrastive language with various degrees of
specificity. To counterbalance the dataset we ensured that each object of a triplet alternated roles
(with the remaining two) as a distractor or target, and that each resulting combination was annotated
by at least 4 humans. The AE used to make the embedding was of a relative small size (64D)
to promote meaningful Euclidean comparisons. Also, for the close triplets we applied a manually
tuned threshold, to semi-automatically reject triplets that contained two indistinguishable geometric
objects, e.g., two that were listed in ShapeNet but only varied on their texture.

9.2 LISTENERS DETAILS

Param/Architecture Proposed At-Once Separate-Augment
Learning-rate 0.0005 0.001 0.001

Label-smoothing 0.9 0.9 0.9
L2-reg. 0.3 0.05 0.09

RNN-dropout 0.5 0.7 0.45

Table 4: Optimal hyper parameters for neural listener architectures using both images and point
clouds and word attention.

The optimal values for the hyper-parameters used by each listener model (using both point clouds
and images and word-attention) are given in Table 4. All listeners use an MLP with [100, 50] hidden
neurons (FC-ReLU (Maas et al., 2013)) with batch normalization after each layer and an LSTM with
100 hidden units. The GloVe embedding was also 100-dimensional and it was fine-tuned during
training. For the point-cloud latent bottleneck codes (128D) and the VGG image features (4096D)
we use a dropout with 0.5 keep probability to zero half their entries before using the FC-projecting
layers. The same drop-out mask was applied on the codes of a given triplet. The ground-truth
indicator vectors were label-smoothed (Szegedy et al., 2015). Assigning a probability of 0.933 to
the ground-truth target and 0.0333 to the distractors (smoothing of 0.9, second row of Table 4)
yielded a performance boost of ∼ 2%. Label-smoothing has been found also in previous work to
improve the generalization (Szegedy et al., 2015) or reducing mode-collapse in GANs (Salimans
et al., 2016). We note that we didn’t manage to to improve the best attained accuracies by applying
layer normalization (Ba et al., 2016) in the LSTM, or adversarial regularization (Miyato et al., 2017)
on the word embeddings. Dropout (Srivastava et al., 2014) was by far the most effective form of
regularization for the listener (∼[8-9]%), following by L2 weight-regularization on the projected
layers (∼[2-3]%).

Hyper-parameter Search We did a grid search over the space of hyper-parameters associated
with each listener type separately. To circumvent the exponential growth of this space, we search
it into two phases. First, we optimized the learning rate (in the regime of [0.0001, 0.0005, 0.001,
0.002, 0.004, 0.005]) in conjunction with the drop-out (keep probability) applied at the RNN’s input,
in the range [0.4-0.7] with increments of 0.05. Given the acquired optimal values, we conducted the
second stage of search over the L2 weight-regularization (in the range of [0.005, 0.01, 0.05, 0.1, 0.3,
0.9]), label-smoothing ([0.8, 0.9, 1.0]) and drop-out after vgg/pc-AE projected vectors ([0.4, 0.5,
0.7, 1.0]). In this search, we used a single random seed to control for the data-split which was based
on at the object-generalization task.

Details on the ablated listeners For the “Separate-Augment”, a convolutional layer for
aggregating the three encodings showed better performance than an FC. Also, the order-invariant
max/mean poolings (f, g) produced better results than other alternatives (e.g. using the identity
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function in their place). Using a separate MLP to process the point cloud data (via concatenation
with the output of the RNN), was slightly better than feeding them directly in the recurrent net (after
the tokens of each utterance were processed). However, conditioning the recurrent net with point-
clouds and using the images in the end of the pipeline deteriorate significantly all attained results.
We hypothesize that the gradient flow is better when processing (the inferior in quality) point cloud
data, closer to the loss.

Training details We trained the “Proposed” and the “At-Once” for 500 epochs and the ‘’Separate-
Augment” for 350. This was sufficient, as more training only resulted in more overfitting without
improving the achieved test/val accuracies. We halved the learning every 50 epochs, if the validation
error was not improved during them. Every 5 epochs we evaluated the model on the validation split
in order to select the epoch/parameters with the highest attained accuracy. Because the ”At-Once”
is sensitive in the input order of the geometric codes, we randomly permute them during training.
We use the ADAM (Kingma & Ba, 2014) (β1 = 0.9) optimizer for all experiments.

9.3 SPEAKER DETAILS

LSTM Size Learning-rate L2-reg. Word-dropout Image-dropout RNN-out dropout
200 0.003 0.005 0.8 0.5 0.9

Table 5: Optimal hyper parameters for the context-aware neural-speaker.

Hyper-parameter Search To optimize for the hyper-parameters of a speaker we conducted a two-
state grid search as for we did for the listeners. First, we optimized (a context-aware speaker with one
seed under the object generalization task) with respect to: the hidden neurons of the LSTM (100 and
200), the learning rate ([0.0005, 0.001, 0.003]), the drop-out keep probability for the word-vectors
([0.8, 0.9, 1.0]) and the dropout applied at the RNN’s output, before the linear transformation/word-
to-logits matrix (with keep probabilities of [0.8, 0.9, 1.0]). The two best models were further
optimized by introducing a drop-out layer after the image-projection layer (with keep probabilities
in [0.8, 0.9, 1.0]) and L2-weight regularization applied at the same projection layer (with values in
[0, 0.005, 0.01]). The optimal parameters of this search are reported in Table 5.

Model Selection To do model selection for a speaker, we used a pre-trained listener (with the
same train/test/val splits) which evaluated the synthetic utterances produced by the speaker. To this
purpose the speaker generated 1 utterance for each validation triplet via greedy (arg-max) sampling
every 10 epochs of training and the listener reported the accuracy of predicting the target given the
synthetic utterance. In the end of training (300 epochs), the epoch/model with the highest accuracy
was selected.

Other details We initially used GloVe to provide our speaker pretrained word embeddings, as
in the listener, but found that it was sufficient to train the word embedding from uniformly random
initialized weights (in range [-0.1, 0.1]). We initialized the bias terms of the linear word-encoding
layer with the log probability of the frequency of each word in the training data (Karpathy & Fei-Fei,
2015), which provided faster convergence. We train with SGD and ADAM (β1 = 0.9) and apply
norm-wise gradient clipping with a cut-off threshold of 5.0. The sampled and training utterances
have a maximal length of 33 tokens (99th percentile of the dataset) and for each speaker we sample
and score 50 utterances per triplet at test time (via Eq. 1). The optimal length penalty (α) for the
context-unaware speaker is 0.7, and set to 0.6 for the rest.

10 PRE-TRAINED IMAGES AND POINT CLOUDS

We train the PC-AE under the Chamfer loss with a bottleneck of 128 dimensions with point clouds
of 2048 points extracted from a 3D CAD model, uniformly area-wise. For the VGG-16 encoding,
we use the 4096-dimensional output activations of its second fully-connected layer (fc7). To fine-
tune the VGG-16 we optimized it under the cross-entropy loss for an 8-way classification, which
included photo-realistic rendered images of textureless meshes in the 8 largest object classes of
Shape-Net (cars, chairs, aeroplanes, ...). The total number of shapes was 36,632. The fine-tuning
took 30 epochs of training. The first 15 we optimized only the weights of the last (fc8) layer and
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the last 15 the weights of all layers. On the test split of a [90%, 5%, 5%] (train/test/val) the network
achieves a 96.9 classification accuracy.

11 FURTHER QUALITATIVE RESULTS

11.1 SPLIT UTTERANCES

While taking entire triplets as input to the listener LSTM did not improve listener performance
utterances containing comparatives and superlatives (which in theory should be difficult to evaluate
for isolated objects), we also anecdotally considered another subpopulation of utterances that
perhaps even more strongly rely on context. These utterances distinguish the target by associating it
explicitly with one distractor (e.g. ”from the two that have thin legs, the one...”). We used an ad hoc
set of search queries to find such utterances among the test set (≈ 1.5% of utterances) and found that
both context-aware architectures do perform noticeably better on these utterances (67.4± 3.0% for
‘’Separate-Augment” and 65.8±5.2% for ‘’At-Once” compared to only 62.5±3.7% for the proposed
model). However, given the low occurrence of such cases, these effects were not significant and we
decided that the negligible gains of the ”Separate-Augment” architecture were not worth the increase
in model complexity and rigidity with respect to context size (see Section 5.2 for a demonstration of
this shortcoming).
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Figure 7: Examples of attention weights on human utterances. The listener LSTM learns
attention weights that emphasize more informative words when forming its linguistic representation.
For these speaker utterances drawn from our corpus, we colored each word according to the weight
assigned by the attention mechanism, with low attention words in blue and high attention words in
red.
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Figure 8: Examples of errors in listener model. Our top-performing listener model appeared to
struggle to interpret referential language that relied on metaphors, negations, precisely counting
parts, ambiguous modifiers, or descriptions of the object’s texture or material. All examples are
drawn from the test set and were correctly classified by human listeners in the original task.
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Figure 9: Examples of errors in speaker models. Sometimes even the pragmatic (listener-
aware) speaker produces insufficiently specific utterances that mention only undiagnostic features,
or produces utterances that are literally false of the targert (e.g. there technically is a hole in the
back) while still succeeding in distinguishing the objects.

not specific enough

the one with the thicker cushion

pragmatic
0.32 0.21 0.47

0.22 0.48 0.30

literal

listener scores

listener scores

the one with the square base

literally inaccurate 
but relatively true

solid

0.05 0.09 0.86

0.02 0.06 0.92

no holes in back

18



Under review as a conference paper at ICLR 2019

Figure 10: Search results for chairs Gallery of retrieved exemplars of held out chairs for different
queries. Only the top five are shown.
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Figure 11: Search results for out-of-class objects. Gallery of retrieved exemplars from other ShapeNet furniture categories for different queries. Top five and
bottom five are shown, demonstrating intuitive contrasts from the highest ones. Note that there are some mislabeled objects in ShapeNet.

LampsTables

bulky

circular

tall and skinny

boxy with hole

circular base

exotic

thin bars

smooth

Top ranked Bottom rankedTop ranked 

sphere

flat and simple

tall legs

circular top

x

antique, old looking

skinny legs

modern

has slats

very wide

with metalic wire

no legs

Bottom ranked 

Sofas
Top ranked Bottom ranked 

curved armrest

has a pillow

very long

has slats

no legs

antique old

three seater

circular back

vertical bars

no armrests

20



U
nderreview

as
a

conference
paperatIC

L
R

2019

Figure 12: Effect of context on production: Synthetic utterances generated by a literal (context-aware) and pragmatic (listener-aware) speaker. The top and bottom
rows show utterances produced for the same target in a far and close context, respectively. The best-performing listener’s prediction confidence for each object is
displayed above: while both speaker models produce similarly effective utterances in far contexts, the literal speaker fails to produce effective utterances in close
contexts.
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12 LENGTH PENALTY AND SPEAKER-AWARENESS

Figure 13: Measuring the effect of using different α, β values to select the top-1 scoring sentence
for context-aware and unaware speakers when creating utterances for the objects/contexts of the
validation split. The y-axis in each subplot denotes the performance of a listener who is used to rank
and evaluate the sentences. Averages are with respect to 5 random seeds controlling the data splits
and the initializations of the neural-networks.
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Figure 14: Effect of using a different fraction of the training data for the evaluating listener when
using two separate listeners (for evaluating and scoring a speaker’s results.). On the x-axis is the
fraction f of the entire training data (80% of the dataset) that is used by the evaluator. 1− f is used
by the utterance-scoring listener. Averages are with respect to 5 random seeds controlling the data
splits and the initializations of the neural-networks.
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It is interesting to see that even a context-unaware speaker can generate sentences that a listener can
re-rank and then to find the top one as very discriminative. The context-unaware (listener aware)
examples in our website demonstrate this improvement.

12.1 MORE ABLATIONS

12.2 GAME INTERFACE AND CORPUS

Each game consisted of 69 rounds and participants swapped speaker and listener roles after each
round. The game’s interface is depicted in Figure 16. Participants were allowed to play multiple
games, but most participants in our dataset played exactly one game (81% of participants). The most
distinctive words in each triplet type (as measured by point-wise mutual information) are shown in
Table 7).
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Table 6: Performance of different listeners in specific subpopulations in the earlier language
generalization task. Averages over five random seeds that controlled the data splits and the neural-net
initializations.

Architecture Subpopulations
Overall Close Far Sup-Comp Split

Separate (Proposed) 83.7± 0.2% 77.0± 0.8% 90.3± 0.3% 80.7± 0.3% 64.6± 3.7%
Separate-Augment 84.4± 0.5% 78.5± 0.8% 90.2± 0.7% 80.9± 0.4% 68.9± 2.3%

Aggregate 78.4± 0.2% 71.5± 0.6% 85.2± 0.3% 76.0± 0.8% 61.8± 3.0%

Figure 15: Listener’s accuracy for different sizes of training data, under the object generalization
task. The original split includes [80%, 10%, 10%] for training/test/val purposes, thus the maximum
size of training data is 0.8 of the entire dataset when the fraction is 1.0 (x-axis). The listener model
uses the main architecture with using attention, images and point-clouds and its accuracy is always
measured on the original (10%) test split. Results with five random seeds controlling the original
data split and the neural-net’s initialization.
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Table 7: Most distinctive words in each triplet type according to point-wise mutual information
(excluding tokens that appeared fewer than 30 times in the dataset). Lower numbers are more
distinctive of far and higher numbers are more distinctive of close .

far word office sofa regular folding wooden stool wheels metal normal rocking
pmi -1.70 -0.94 -0.88 -0.84 -0.83 -0.79 -0.78 -0.71 -0.67 -0.66

close word alike identical thickness texture darker skinnier thicker perfect similar larger
pmi 0.69 0.67 0.67 0.66 0.65 0.64 0.63 0.62 0.62 0.61
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Figure 16: Reference game interface.

You are the speaker.

You the back rest and the bottom parts look the same

You wider at the top than when they start

Partner ok, got it

send
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