
Under review as a conference paper at ICLR 2020

PARAMETERIZED ACTION REINFORCEMENT LEARN-
ING FOR INVERTED INDEX MATCH PLAN GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Match plan generation in the inverted index at Microsoft Bing is used to be based
on hand-crafted rules. We formulate the generation process as a Parameterized
Action MDP with sharing parameters and purpose a reinforcement learning algo-
rithm on such formulation. We combine deterministic policy learning on discrete
and continuous action spaces and several recent advances in deep reinforcement
learning. For exploring in the parameterized action space, the agent outputs soft-
max values for discrete actions and applies Parameter Space Noise on policy net-
work to unify the exploration direction in both spaces. We apply prioritized re-
current replay on match plan sequences and pad short match plans. We also use
invertible value function rescaling and n-step return to stabilize the training. The
agent is evaluated on our environment and some benchmarks. It outperforms the
well-designed production match plan and beats the baselines on the benchmarks.

1 INTRODUCTION

Using machine learning to optimize and accelerate software and hardware systems is an emerging
field in the past few years (Mirhoseini et al. (2017); Rosset et al. (2018)). The process of decision-
making in those systems is usually hand-crafted by human engineers, which is less explored to be
automatically done by learning algorithms. A promising direction is to formulate such sequential
decision-making problems as Reinforcement Learning (RL) problems, such as search plan genera-
tion problem in inverted indexes (Rosset et al. (2018)).

The inverted index is a specialized data structure that is commonly used in search engines, including
Microsoft Bing1. An inverted index provides an inverted mapping from term to documents. Each
term has a posting list which contains all the (document, location) pairs that the term appears. By
combining the posting lists of the terms in a user query, the initial document candidates are generated
(Witten et al. (1999); Zobel & Moffat (2006)).

In Bing, documents are scanned with specified match plans, either predefined or generated in real-
time. A match plan has a sequence of rewrites (match rules, e.g., it treats the query as a phrase
which should appear in the document exactly as it is), where each rewrite can be controlled by
several quotas (stopping criteria). There are several types of rewrites, and all these types share
the same continuous quotas. A pair of a rewrite type and the quotas forms a single action which
determines if a document will be a ranking candidate.

We formulate the generation problem as a RL problem. The state consists of system runtime sig-
nals and semantic embeddings of queries. The action space is called parameterized or discrete-
continuous hybrid, where an action has a discrete action and continuous action-parameters. The
reward is weighted by result quality and query latency. It is similar to Parameterized Action RL
(Masson et al. (2016)) (PARL), while our setting requires all actions to share same parameters.

Previously, the match plans are predefined manually for each query. It hardly utilizes the rich infor-
mation in the state to dynamically adjust the rewrites and quotas for specific query online. Rosset
et al. (2018) tries to automatically generate match plans using tabular Q-learning with discretized
state space and predefined action-parameters. They learn the generation policy for a specific query
class each time and solve it only in discretized spaces with tabular methods. We extend the genera-

1https://www.bing.com

1

Under review as a conference paper at ICLR 2020

doc2 doc3

…

doc8 …“Reinforcement”

rw1(q11, …,
qm1)

rw2(q12, …,
qm2)

stop
match plan

doc3matched documents doc8 docn-2

…

doc1 doc3 docn-3doc6 …“Learning”
query

docn-2

doc9 docn-3

doc6

docn-6 docn

docn-1doc8

Figure 1: Match plan example: for the query “Reinforcement Learning”, the search engine firstly gets a
document posting list for each term from the inverted index, and then scans the document candidates following
a serial of rewrites (match rules) according to the match plan.

tion process to the general case, such that the match plans are fully parameterized and learned from
scratch without any predefined knowledge (e.g., limited match rules).

In this paper, we purpose a parameterized action RL algorithm that learns to act on parameterized
action space environments, such as the match plan generation process. We introduce normalized
softmax values of discrete actions to form a categorical distributions to enable gradients backprop-
agation. We also combine several recent advances in RL to accelerate and stabilize the training.
We investigate parameter space noise (Plappert et al. (2017)) on parameters of the policy for unify-
ing directions in exploring the structured action space. We explore recurrent deterministic policies
(Heess et al. (2015)) with prioritized replay buffer (Schaul et al. (2015)) on sequence, due to the
inherent nature of partial observability and sparse feedback in our setting. We also use n-step return
and invertible value function rescaling (Kapturowski et al. (2018)) for further stability.

We present an agent to integrate these techniques and evaluate on offline training on a query dataset
collected from Bing search. When training on the dataset with uniformly sampling, the agent out-
performs the currently deployed production match plan, which is generated based on well-designed
hand-crafted rules. We study the performance of training on the dataset or only with several selected
complicated queries individually, as well as ablation studies for the various components. We test
on a few existing PARL benchmarks, where our agent beats our baseline methods and performs the
state-of-the-art results.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

We address the problem using reinforcement learning (RL) framework with a parameterized action
space. An agent interacts with an environment to maximize the accumulated reward with discount
factor γ ∈ [0, 1). We model the environment with a discrete-time Partially Observable Markov
Decision Process (POMDP). A POMDP is given by a tuple (S,A, T,R,Ω,O), and the underlying
Markov Decision Process (MDP) is defined by (S,A, T,R), where S is the state space, A the
parameterized action space, T the transition function T : S × S ×A → R+, and R : S × A → R
is the reward function. The set of observations is given by Ω and the the observation function
mapping underlying states to probability distributions over observations is given by O.

Specifically, the environment in the match plan generation has a parameterized action space. In
Masson et al. (2016); Bester et al. (2019), such formulation in fully observable settings is referred
as Parameterized Action MDP (PAMDP), where the action space is denoted as

A =
⋃
k∈Ad

{(k, xk)|xk ∈ Xk} ,

where each discrete action a ∈ Ad = [K] has a corresponding continuous action-parameter space
Xa. However, our setting requires a slightly different formulation:

A = {(k, x)|k ∈ Ad, x ∈ X} = Ad ×X ,
where the discrete action space (rewrite) Ad share the action-parameter space X . Such formulation
results in a disentangled action space between discrete and continuous actions which a class of
parameterized action (P-DQN (Xiong et al. (2018)) and MP-DQN (Bester et al. (2019))) may not
be trivially applicable to. Considering the notational simplicity in partially observable environment
(POMDP), we do not explicitly denote it when there is no ambiguity in action settings.

2

Under review as a conference paper at ICLR 2020

2.2 FORMULATION OF MATCH PLAN GENERATION

In Rosset et al. (2018), the action-parameters are predefined for the match plan generation, where
the action space is then a set of discrete rewrites (actions). We fully parameterize a match plan to
allow the agent to generate any valid plans.

State. At each time step, the agent receives a state with two parts. First part has selected run-time
system signals from the inverted index system. Since the query is uniformly sampled in different
episode, we include some statistical features and semantic embeddings of queries to allow the agent
to identify different queries and then generate corresponding match plans. Such statistical features
are used in the current production system, such as the length of a query. All signals and embeddings
are normalized to a reasonable range around [−1, 1] based on empirical estimations.

Action. The agent selects a parameterized action at including a rewrite id and its allocated quotas
at each step. There are 29 types of rewrites in Ad and also a 5-dimensional quota parameter space
X for each rewrite in int64 type. However, the range of each quota is empirically set to valid values
and then normalized to [−1, 1]. All outputted quotas are effective for the current step.

There is also a special action to note: stop (by agent). Normally, the environment will return a
terminal signal, but it happens in extreme cases, such as low system resources. To allow a better
balance of latency and performance, we allow the agent to choose stop or not as another type of
discrete action, which is the same level as other 29 rewrites.

Reward. We use two criterions in the design: latency and performance. For latency consideration,
we use a signal Seek Count that is constant for a same query in different runs with same match plan,
instead of executed time. We weight the Ranking Scores of top five returned documents as an indi-
cator of performance with weights [0.4, 0.2, 0.2, 0.1, 0.1]. When there are less than five documents
returned, the scores of missing documents are treated as a minimum possible ranking score. The
final scalar reward is weighted by these two objectives to balance them. We do not use the division
in Rosset et al. (2018), since the loss surfaces may become more non-convex for optimizing.

We also have punishments (negative rewards) for some special cases. One is to assign a punish-
ment when the agent selects to illegally stop at the first step or some unsupported rewrites (for some
special queries). However, unsupported rewrites do not necessarily cause a terminal state, since the
production system has same hand-crafted match plans for a class of queries, in which the unsup-
ported rewrites are simply omitted.

3 METHOD

For generating match plans, we introduce a method that works on the aforementioned formulation
with slightly different parameterized action space than standard PAMDPs in the literature. We start
from the intuition with deterministic policy learning (Silver et al. (2014)) and how it relates to pa-
rameterized actions. PAMDP often refers to the formulation that each individual discrete action
k ∈ Ad = [K] has a corresponding continuous action-parameter space. Thus, there are K con-
tinuous action-parameter spaces corresponding to K discrete action (Xiong et al. (2018)). In our
shared-parameter PAMDP, the Bellman equation incorporated both discrete action k and continuous
action-parameters x is given by:

Q (s, k, x) = E
r,s′

[
r + γmax

k′
sup
x′∈X

Q (s′, k′, x′) |s, k, x
]
. (1)

P-DQN (Xiong et al. (2018)) tackles PAMDP by incorporating multiple action-parameter policies
xk (s; θx) : S → Xk for each action k and update them with maxk′ supxk′∈Xk′ Q (s′, k′, xk′)
simultaneously. However, since all parameters x are shared for actions k in our case, we do not
require multiple policies. The policy loss in P-DQN (Xiong et al. (2018)) given by

Lx (θx) = E
s∼D

[
−

K∑
k=1

Q (s, k, xk (s; θx) ; θQ)

]
(2)

3

Under review as a conference paper at ICLR 2020

Env Recurrent
Head

Policy
Network

Value
Network

Param
Noise

observation
state action with softmax perturbed max action

Q-value

Env

Figure 2: The diagram of the process.

naturally degenerates to a single policy in next case, where the gradient ∇Lx (θx) exactly is the
deterministic policy gradient (DPG, Silver et al. (2014)). MP-DQN (Bester et al. (2019)) states a
problem regarding to the erroneous gradients of Q-network ∇LQ in P-DQN caused by multiple
action-parameter policies backpropagating gradients at the same time. However, it does not exist
in such single network situation. This is a desired architecture since separating multiple action-
parameter policies loses the knowledge that they share same potential meanings.

Following this intuition, we directly parameterize the policy with two heads µ : S → RK ×X with
θµ as : ksoftt , xt = asoftt = µ(st; θµ), where ksoftt and asoftt refers to action-parameters or actions
with softmax values. One head outputs the softmax values for all discrete actions. For another
head, it outputs normalized action-parameter values with hyperbolic tangent (tanh) activation after
the continuous head. The environment will denormalize it to a valid range. This corresponds to the
Squashing Gradients method for bounded-continuous action spaces in Hausknecht & Stone (2015).

Exploration with Parameter Space Noise and action sampling. In DQN (Mnih et al. (2015)),
the behavioral policy is given by ε-greedy strategy for exploration purpose, where an agent randomly
selects a discrete action with probability ε < 1. In DDPG (Lillicrap et al. (2015)), although the
policy learned is deterministic, to explore the action space, the behavioral policy needs to be different
because of the off-policy nature. It uses action space noise such as uncorrelated Gaussian noise or
correlated Ornstein-Uhlenbeck process (Lillicrap et al. (2015)).

Directly combining such two exploration strategies is straightforward. However, it may induce a
problem that the exploration in two action spaces A = Ad × X in different paces. For example,
the match plan may need another rewrite with larger quotas in a step. However, if the exploration
strategy is to use ε-greedy for a rewrite k and Gaussian noise for its quotas x, the agent may require
more samples to discover the potential rewards (positive documents). We instead use parameter
space noise (Plappert et al. (2017)) on parameterized action space to tackle such issue.

We denote the discrete and continuous action heads as (πsoftk (s), πx(s)) = µ(s; θµ). To compute
the distance d(π, π̃) = DKL(π‖π̃) of non-perturbed and perturbed policies µ(s; θµ), µ̃(s; θµ), we
use weighted sum of the distance of discrete and continuous actions. For the continuous actions
π̃x(s), the distance is given by Es

[
(πx(s)i − π̃x(s)i)

2
]

to estimate KL-divergence empirically. For

the discrete actions, we use outputted softmax probabilities to compute DKL(πsoftk (s)‖π̃softk (s)).
The state and action pairs are sampled from a replay memory. The variance σ of the noise is updated
after a policy update based on the distance and threhold δ (Plappert et al. (2017)). The policy and
target networks with layer normalization (Ba et al. (2016)) are perturbed per episode.

Prioritized replay and recurrent policies. We use recurrent architecture to obtain the underlying
system state of the POMDP for both value and policy networks (Heess et al. (2015)). To avoid re-
current state staleness (Kapturowski et al. (2018)), we store and replay a sequence of (s, ksoft, x, r)
with softmax values into a replay memory. Since a match plan is usually short, we set a maximum
length and pad shorter episodes with zero or randomly sampled states and actions.

The sampling from a replay memory can be prioritized with a probability pi proportional to TD-
errors (Schaul et al. (2015)) to increase the sample efficiency in such structured action space. To
prioritize the transitions with well-matched documents, we slightly modify the sampling strategy.
With a half probability, the agent uses regular prioritization, otherwise partitions the memory to
multiple bins and retrieve a transition (sequence) with max reward from each bin. Our strategy
provides a more efficient and balanced exploration strategy of the evaluation.

4

Under review as a conference paper at ICLR 2020

Policy update. In the update, we use clipped double Q-learning and delayed policy update (Fu-
jimoto et al. (2018)) to stabilizing the training. After the agent samples a batch of (sequences), it
perturbs the target policy network and computes the perturbed actions for target policy smoothing.
The parameter space noise variance σ is then updated with the sampled states and actions.

The policy is still deterministic since it is learned in off-policy and only the exploration involves
stochasticity. The update is given by deterministic policy gradients theorem (Silver et al. (2014)):

∇Lµ (θµ) = ∇ E
s∼D

[Q (s, µ(s; θµ); θQ)] = ∇ 1

|D|
∑
s∈D

Q
(
s, ksoft, x; θQ

)
, (3)

where D is a replay memory. We found this policy architecture is similar to PA-DDPG (Hausknecht
& Stone (2015)), while it does not including softmax activation for discrete actions and other
advanced techniques. We also build upon other useful techniques such as invertible value function
rescaling h(x) = sign(x)(

√
|x|+ 1− 1) + εx (Kapturowski et al. (2018)):

y = h

(
n−1∑
k=0

rt+kγ
k + γnh−1

(
Q
(
st+n, a

∗; θ−Q

)))
, (4)

where a∗ = (max ksoftt , xt) = (kt, xt) is the greedy action, y the target for updating Q-network,
and θ−Q denotes the target Q-network. The policy network outputs differentiable softmax values and
is updated by the gradients backpropagated from the Q-network:

∇LQ (θQ) = ∇E
[

1

2

(
y −Q

(
s, ksoft, x; θQ

))2]
, (5)

where the expectation is took over samples from a memory.

The pseudocode for the algorithm with more details can be found in the Appendix.

4 EXPERIMENTS

In this section, we apply the purposed agent on the inverted index match plan generation problem.
We create a dataset which contains a set of queries and corresponding query embeddings. We
perform various ablation study on how each component interacts and the benefits of them. We also
test on other Paramterized Action RL benchmarking baselines.

4.1 EXPERIMENT SETTINGS

For match plan generation, we experiment on a dataset that has about 100,000 queries sampled from
Bing search log. In the current production system, each query is classified to a predefined query
classes online based on a set of rules which are related to statistical features of the query. Each
query class has some hand-crafted rules which outputs a match plan for the classified query. We use
each query’s production match plan as baseline. The match plan for each query is generated by the
hand-crafted rules and does not change over each running. We only skip a few special queries that
do not have embeddings or need additional operations beyond match plans.

The generated match plan is evaluated by the delta values of both Ranking Score and Seek Count
and overall reward. We provide learning curves of delta values of evaluation rewards. Note that the
reward are not symmetrical around 0, since the ranking scores has a minimum value and is sparse
since a few queries are hard to find good documents and will be assigned a very low score. It may
significantly pull down the average rewards shown in the curves, thus we present histograms for fair
comparison. For the benchmarks, we report the results on evaluation reward curves during tuning.

4.2 MATCH PLAN GENERATION PERFORMANCE EVALUATION

We first visualize the query embeddings in Figure 3 using UMAP (McInnes et al. (2018)) to demon-
strate our learned models. We evaluate 6,000 queries and draw the colormap based on the difference
between evaluation reward and production baseline reward. Although most queries perform similar
to the well-designed production rules, there are some clusters of queries and some patterns exist. We

5

Under review as a conference paper at ICLR 2020

Figure 3: Visualization of query embeddings.

(a) MLP vs. RNN.

(b) Different Prioritization.

Figure 4: Different techniques.

(a) Delta Reward. (b) Delta Ranking Score. (c) Delta Seek Count.

Figure 5: Delta Reward Distribution in Evaluation Phrase.

notice that there is a main cluster at the center (about (−7,−1)) that gathers most queries on which
our agent does not perform well. That cluster contains some random inputs from the users, which
may have some typos. For the queries that the agent outperforms the baseline, we find they are quite
scattered. We guess the reason is that the baseline with hand-crafted rules do not consider the em-
beddings, thus it is less affected by embeddings. This may suggest us to look for more informative
embeddings of queries to better distinguish some clustered queries.

In the plots shown in Figure 6, we visualize the distribution of delta rewards, ranking scores and
seek count values comparing to the well-designed production rules. For most of the queries the
agent learns promising match plan without any prior knowledge just based on the reward signals.
There are also some hard queries to find a pattern that have poor reward (about −100) and usually
lies in the main cluster and around a few more small clusters. Other than some meaningless queries
around the center, they also include some non-English queries, such as French and Chinese, which
are possibly clustered around their centroid and are challenging to learn the policy for all of them.

Reward design. We consider different weights to trade-off between the query latency from the
input and the quality of the returned documents. The quality is evaluated by Ranking Scores of top
five documents. We found that it is sparse since the good documents are hard to match. When we
weight more on ranking score, the agent tends to stop the search early.

We also investigate a few punishments and try to use less of them to avoid manual design. We found
the agent learns some common patterns guided by the reward and punishments. It tries to avoid
”stop” at the first step because we set a huge punishment on such invalid stop. This punishment is
necessary since it prevents the agent stops at first step for better value than trying more steps but
get no documents matched. In other words, the agent is encouraged to explore different rewrites
instead of using empty match plans. Without such punishment, the performance significantly drops

6

Under review as a conference paper at ICLR 2020

Overall Ranking Score (Quality) Seek Count (Efficiency)

OU Noise +1.00 +1.20 -0.20
Param Noise +1.69 +0.82 -0.87

Table 1: Improved Scores of Different Noise Compared to RNN Gaussian Noise. Ranking Score
and Seek Count are scaled to matchOverall = RankingScore−SeekCount for easy comparison.

Overall Ranking Score (Quality) Seek Count (Efficiency)

MLP + Prioritized +14.54 +8.56 -5.98
RNN + Prioritized +32.63 +14.44 -18.19
RNN + Prioritized Sample +32.67 +15.29 -17.38

Table 2: Improved Scores of Different Model Compared to MLP

since it is hard to explore good documents at first. We also punish the agent to avoid unsupported
rewrites, since the production system uses designed rules for each class of the queries and simply
omits a rewrite without any useful feedback. We test punishing repeated rewrites, however, it helps
seek count (more efficient) but may harm ranking scores.

4.3 ABLATION STUDY

We compare different exploration noise, including action space noise and parameter space noise.
For the action space noise, the noise on discrete and continuous actions are applied separately. We
test Gaussian and OrnsteinUhlenbeck noise on continuous actions, while the discrete actions only
use ε-greedy. To keep the comparison fair, we also test ε-greedy strategy on continuous actions by
uniformly sampling a point with probability ε. The parameter noise is directly applied on policy
network µ̃(s; θµ). We found the parameter space noise performs more stable than all types of action
space noise. The uniform sampling on both discrete and continous action with ε-greedy failed for
sometimes, thus we did not include it in comparison. We give the relative improvement in Table
1 compared to RNN with Gaussian Noise. The results show that parameter space noise has best
performance overall.

The results in Figure 6(a) and Table 2 show that RNN got significantly better performance than MLP
with or without parameterization on our environment. It indicates that the environment is highly
non-Markov. We guess one obvious possibility is that the system signals of the state space cannot
include all the information, while recurrent networks try to extract latent state from the history. Note
that each episode will sample one query, thus the query embedding is constant for all steps in one
episode. Another possible reason is that some rewrites may not be supported by special queries or
have too small change for the state signals.

We compare different parameterization methods on recurrent networks. The results are shown in
Figure 4(b) and Table 2. We empirically found that our modified strategy using reward bin is more
stable from the beginning. It is possible that the agent repeatedly replays not only good experience
on matching documents, but also learns to avoid punishment we set, as we expect. In general
prioritized replay, the sampling probability is just based on TD-error and may be biased to worse
samples since value function may not update towards possible results.

4.4 BENCHMARKING GAMES

We experiment on Platform-v0 and Goal-v0 from Bester et al. (2019). Note that, in all these games,
each discrete action has a separate continuous action-parameter space. Our algorithm is designed for
shared action-parameters and does not utilize such prior, thus we do not compare with P-DQN-style
algorithms. We apply n-step return since the episode in these games is much longer. We assume the
environment is fully observable and do not use recurrent networks in comparison.

7

Under review as a conference paper at ICLR 2020

Hyperparameters. We examine the games with different combinations of hyperparameters, since
they are easy to parallize on each training nodes without the need to connect to an production envi-
ronment emulator. With NNI, the learning rates for value and policy network are set to log-uniform
in [3×10−4, 3×10−3] and [1×10−4, 1×10−3]. The α in parameterized replay is set to log-uniform
in [0.2, 1.0]. The action noise threshold δ in parameter space noise is set to log-uniform between
[0.05, 0.8]. Tn soft parameter update, the τ is set to log-uniform in [1× 10−3, 1× 10−2].

In Platform-v0 and Goal-v0, we found the agent is not very sensitive to the range we set, such
as α, δ and τ . The δ values of top 20% trials vary between [0.05, 0.3], while α and τ values are
evenly scattered in the defined range. In these settings, usually the agent prefers slightly larger value
learning rate than policy learning rate.

Average Eval Return Our PA-DDPG

Platform-v0 0.9573 0.3113
Goal-v0 34.20 -6.208

Table 3: Average evaluation results (the average of all training rewards and final evaluation reward)
on benchmarks Platform-v0 and Goal-v0 with PA-DDPG (Hausknecht & Stone (2015)), MP-DQN
(Bester et al. (2019)) and P-DQN (Xiong et al. (2018)). We use reported number from the papers,
while last two methods report another metric on Goal-v0.

5 RELATED WORK

While the aforementioned algorithms and techniques work on discrete or continuous action spaces,
it is not trivial to apply them on parameterized action space, since such discrete-continuous hybrid
action space is hard to parameterized by a single distribution. A related series of work is to combine
DDPG and DQN to optimize Q-value function on parameter actions. There are two classes of
methods that belong to them: PA-DDPG (Hausknecht & Stone (2015)) based on DDPG and P-
DQN (Xiong et al. (2018)) based on DQN. They are Q-Learning-based methods which select the
best action by maximizing the Q-value function on discrete action space or learning a deterministic
policy outputting best continuous action. However, they use different strategies to combine discrete
and continuous actions. Bester et al. (2019) (MP-DQN) extends P-DQN to tackle the problem
that Q-value is a function of the joint action-parameter vector Q(s′, k′,xQ(s′)) in normal PAMDP,
which may results in fault gradients. However, such problem does not exist in our slightly modified
setting, since the action-parameter space X in the match plan generation is inherently defined to
be shared for each k ∈ Ad. Masson et al. (2016) purposes a method to iteratively optimizing
discrete and continuous actions by alternating between them. Another perspective (Klimek et al.
(2017); Wei et al. (2018); Fu et al. (2019)) for a parameterized action space is to regard it as a two-
hierarchy action space, where an agent selects discrete action first and continuous parameter later.
However, we do not consider this direction in current scheme because we share the same parameters
for all discrete action in not very large scale. Therefore, the hierarchical methods may not bring a
significant performance gain.

6 DISCUSSIONS

In this paper, we present a parameterized action RL match plan generation method which extends the
plan generation to the general case without any predefined knowledge. Key to address the problem
are normalized softmax values of discrete actions to enable gradients backpropagation, parameter
space noise on parameters of the policy for unifying the exploration direction in both discrete and
continuous spaces, and recurrent deterministic policies with prioritized replay buffer to accelerate
and stabilize the training. Our algorithm can be applied to not only the match plan generation envi-
ronment, but also other similar parameteried action environments. The experiment results demon-
strate our method outperforms the well-designed hand-crafted rules in Bing and serveral baseline
results in some existing PARL benchmarks. In this paper, we mainly discuss about offline training
procedure. In the future, we plan to apply learned policy to the production environment.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Craig J Bester, Steven D James, and George D Konidaris. Multi-pass q-networks for deep reinforce-
ment learning with parameterised action spaces. arXiv preprint arXiv:1905.04388, 2019.

Haotian Fu, Hongyao Tang, Jianye Hao, Zihan Lei, Yingfeng Chen, and Changjie Fan. Deep
multi-agent reinforcement learning with discrete-continuous hybrid action spaces. arXiv preprint
arXiv:1903.04959, 2019.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

Matthew Hausknecht and Peter Stone. Deep reinforcement learning in parameterized action space.
arXiv preprint arXiv:1511.04143, 2015.

Nicolas Heess, Jonathan J Hunt, Timothy P Lillicrap, and David Silver. Memory-based control with
recurrent neural networks. arXiv preprint arXiv:1512.04455, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent expe-
rience replay in distributed reinforcement learning. 2018.

Maciej Klimek, Henryk Michalewski, Piotr Mi, et al. Hierarchical reinforcement learning with
parameters. In Conference on Robot Learning, pp. 301–313, 2017.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Warwick Masson, Pravesh Ranchod, and George Konidaris. Reinforcement learning with parame-
terized actions. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen
Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device placement optimization
with reinforcement learning. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 2430–2439. JMLR. org, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
arXiv preprint arXiv:1706.01905, 2017.

Corby Rosset, Damien Jose, Gargi Ghosh, Bhaskar Mitra, and Saurabh Tiwary. Optimizing query
evaluations using reinforcement learning for web search. In The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval, pp. 1193–1196. ACM, 2018.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. 2014.

Ermo Wei, Drew Wicke, and Sean Luke. Hierarchical approaches for reinforcement learning in
parameterized action space. In 2018 AAAI Spring Symposium Series, 2018.

9

Under review as a conference paper at ICLR 2020

Ian H Witten, Ian H Witten, Alistair Moffat, Timothy C Bell, Timothy C Bell, and Timothy C Bell.
Managing gigabytes: compressing and indexing documents and images. Morgan Kaufmann,
1999.

Jiechao Xiong, Qing Wang, Zhuoran Yang, Peng Sun, Lei Han, Yang Zheng, Haobo Fu, Tong
Zhang, Ji Liu, and Han Liu. Parametrized deep q-networks learning: Reinforcement learning
with discrete-continuous hybrid action space. arXiv preprint arXiv:1810.06394, 2018.

Justin Zobel and Alistair Moffat. Inverted files for text search engines. ACM computing surveys
(CSUR), 38(2):6, 2006.

10

Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 PSEUDOCODE

Algorithm pseudocode for the algorithm is provided in Algorithm 1 which includes all aforemen-
tioned details.

Algorithm 1
Input: Empty replay buffer D, init parameter noise std σparam, action noise threshold δ
Initialize policy parameters θ, value parameters φ
Set target networks’ parameters to original parameters θtarget

µ ← θµ, θtarget
Q ← θQ

for each episode do
Perturb policy parameters θ̃ ← θ +N (0, σparam) and target policy parameters θ̃target

Observe state st, output a disturbed action embedding ksoftt = µ̃θ(st; θ̃)
Compute executing action at by taking max over k
Execute parameterized action at in the environment server
Observe next state st+1, reward rt, done signal dt denoting if st+1 is terminal
Store transition tuple (including action embedding) (st, a

soft
t , rt, st+1, dt) to the buffer D

If st+1 is terminal, reset to an initial state s0
for each update if update-condition do

Sample a minibatch from prioritized replay buffer D with specific priorities
Compute and transform target actions with disturbed target policy network
Update parameter noise std σparam using empirical distance d(µ, µ̃)
Compute targets for TD-error with min Q-value in the twin Q-networks
Update Q-network parameters φ using gradient descent
if policy update frequency then

Update policy network parameters θ with
Update target parameters with polyak averaging

end if
end for

end for

A.2 FURTHER EXPERIMENTAL DETAILS

Hyperparameter search. We use Microsoft NNI2 and OpenPAI3 to search hyperparameters. The
final metric to report to NNI is set to the sum of average training reward and final evaluation reward
(repeated 1,000 times) final_metric=(avg_reward+eval_reward)/2. The intermediate
metric is set to evaluation reward per 1,000 episodes. We also use the early stop assessor. Each GPU
server node connects to a production environment emulator with ethernet.

Model architecture. Both policy and value networks use two fully connected layers with 512
hidden units and a LSTM layer (Hochreiter & Schmidhuber (1997)). Each layer also uses a layer
normalization (LayerNorm, Ba et al. (2016)) as suggested by Plappert et al. (2017) in consideration
of stability for noise applied on parameters, and follows a ReLU activation. Both output heads of
the policy network has a hidden layer with softmax or tanh activations.

A.3 FURTHER ENVIRONMENTAL DETAILS

Accumulated values. Note that, for accumulated values in received states, rewards and outputted
action-parameters, we use the difference (delta values) from the last step. For states and rewards, it
is st = s′t − st−1, rt = r′t − rt−1, where where s′ and r′ denote raw state and reward. For actions,
the agent outputs raw action-parameter output a′, and the emulator converts it to accumulated value
at = a′t + at−1.

2https://github.com/microsoft/nni
3https://github.com/microsoft/pai

11

Under review as a conference paper at ICLR 2020

(a) Goal-v0. (b) Platform-v0.

Figure 6: Best evaluation learning curves on both environments during tuning. The agent achieves maximum
possible reward on both environments (50 and 1).

Inverted index in Bing. In the inverted index system in Bing, there are two key steps: (i) the
system rewrites the query to enlarge candidate set with specified match plan (or search plan), (ii) it
returns candidates with top ranking scores. We just refer to the math plan part regarding to gener-
ation, but not user-input content. In the match plan generation, the goal is to generate the optimal
search plan (policy) for each query.

Closed-loop and open-loop control. The production match plan is generated online in open-loop
(feedforward) without taking runtime system signals into consideration for the latency and imple-
mentation consideration. However, RL is closed-loop which takes feedback from system signals
to make decisions. This may increase the online overhead, but it can be tackled by converting the
reflective policy to a shooting-style action sequence by predicting with learned transition dynamics.
In the implementation, the environment emulator receives an action sequence a0, ..., at and return
st+1 to simulate the open-loop style.

A.4 MORE TRAINING FOR BENCHMARKS

We provide the best evaluation learning curves on both environments during tuning.

12

	Introduction
	Background
	Reinforcement Learning
	Formulation of Match Plan Generation

	Method
	Experiments
	Experiment Settings
	Match Plan Generation Performance Evaluation
	Ablation Study
	Benchmarking Games

	Related Work
	Discussions
	Appendix
	Pseudocode
	Further Experimental Details
	Further Environmental Details
	More Training for Benchmarks

