
DPO Reproducibility Challenge Report

Jiuyang Bai
Brown University

jiuyang_bai@brown.edu

Gregory Cho
Brown University

gregory_cho@brown.edu

Linlin Liu
Brown University

linlin_liu@brown.edu

Xingchi (Miles) Yan
Brown University

miles_yan@brown.edu

Liu Yang
Brown University

liu_yang@brown.edu

Abstract

This project attempted to reproduce some of the experimental findings presented
by Tessler et al. (2019). In the paper, the authors present a novel reinforcement
learning algorithm called the Generative Actor Critic (GAC), an implementation of
distributional policy optimization (DPO), for continuous control problems. The
authors evaluate GAC on several MuJoCo environments and obtain competitive
results when compared to state of the art policy gradient baselines. The replicated
GAC algorithm was ultimately successful in reproducing the learning curves for
GAC on the MuJoCo Humanoid task, using an autoregressive implicit quantity
network (AIQN) and implicit quantile network (IQN) as the actor. These findings,
when compared with other algorithms, support the author’s claim that GAC could
be an alternative approach for continuous control. In addition to reproducing
the original experiments, this report also elucidates on diagnostic investigations
conducted throughout this project with the objective of presenting a better under-
standing of certain critical details in the algorithm. The replicated implementation
of GAC used in this report can be found in the following public git repository:
https://github.com/gwbcho/dpo-replication.

1 Introduction and Objective

The original paper describes a method to represent arbitrary quantile distribution functions over
a continuous action space allowing for the construction of an optimal stationary stochastic policy.
Without making assumptions about the underlying distribution, their generative algorithm, called the
Generative Actor Critic, can overcome some limitations of more traditional policy gradient methods.
The paper both proves the efficacy of their approach formally and through empirical evidence in
the form of experimental results which show competitive cumulative rewards in numerous complex
continuous control tasks.

In order to validate the paper’s claims on the algorithm’s efficacy, this project initially aimed to
reproduce Figure 4 which plots the training curves of 6 different methods on 6 DeepMind MuJoCo
control suites. Unfortunately, due to limited computational resources and time available, the project’s
scope was restricted to reproducing a single graph. Specifically, this project reproduced the graph of
the algorithm’s performance on the Humanoid challenge using a Boltzmann AIQN and IQN. The
primary reason for this graph’s selection was simply because the paper indicated that their approach
resulted in a significant boost to performance when compared to traditional policy gradient methods.
One thing to note is that GAC is computationally more expensive than current policy gradient methods
resulting in slow rates of completion.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://github.com/gwbcho/dpo-replication

2 Background

2.1 Quantile Regression

Given a one dimensional probability measure µ with cumulative distribution function Fµ(x) =
µ((−∞, x]), the quantile function Qµ of µ is the inverse of Fµ, formally

Qµ(τ) = inf{x ∈ R : τ ≤ Fµ(x)} ∀τ ∈ [0, 1] (1)

One valuable property of the quantile function is that it can act as a generator that takes uniform
random noise as input and outputs the samples from µ.

Quantile regression aims to learn the quantile function Qµ with samples of µ as training data. It is
easy to verify that

Qµ(τ) ∈ argmin
x

Eξ∼µ[(ξ − x)(τ − 1ξ−x<0)], ∀τ ∈ [0, 1] (2)

Thus the quantile regression function can be represented as
Lτ (x) = Eξ∼µ[(ξ − x)(τ − 1ξ−x<0)] (3)

To smooth gradients, in practice, it is common to use the Huber quantile loss function:
Lτh = Eξ∼µ[Lκ(ξ − x)|τ − 1ξ−x<0|] (4)

where Lκ is the Huber loss function defined as

Lκ(θ) =

{
θ2

2 if |θ| ≤ κ
κ(|θ| − κ

2) otherwise
(5)

2.2 Actor Critic Framework

The Actor Critic framework is widely used in model-free reinforcement learning algorithms. In
the GAC framework, the value, critic and actor networks aim to approximate the value function,
critic function, and the policy function respectively. To resolve issues with numerical and gradient
instability, in practice, two copies of these networks are created and identically initialized for each
function, usually referred to as the delayed network and the target network. During each training
iteration, the delayed actor network is trained using values determined by the target network with the
target network being updated by the trained values of the delayed actor using a set update rate. In
addition, as suggested by Fujimoto et al. (2018), two critic networks are used to address the usual
issues of variance with network gradients.

3 Model Implementation

The model that this project attempted to reproduce was the Generative Actor Critic (GAC) which
uses either an AIQN or IQN (specified by the experimenter) to sample from some implied quantile
network, learned via an actor critic approach. This section presents the implementation details of this
project’s replicated GAC algorithm. This reproduced version of the GAC algorithm was written in
Tensorflow 2.0 as opposed to the original framework, PyTorch.

3.1 Main Loop

The main loop utilizes the agent and corresponding actor critic networks to iterate through the game
environment, collect samples for the replay buffer, train network parameters, and evaluate the current
performance of the learned stochastic policy. For the sake of consistency with the original experiment
environment, all action selected during the replay buffer population phase were perturbed by random
noise to allow for local exploration. This is a necessary component to avoid the algorithm being
stuck in a local optimum. In order to ensure that sufficiently new transitions are stored in the buffer
before training, the authors of the original paper implemented a “roll out” period where the agent
would sample states and actions without updating the network parameters to populate the buffer.
This process provides more information for the network to train on, ideally decreasing the time
necessary till an optimal policy is determined. It should be noted that GAC is still theoretically correct
without “roll out” periods and, while it was a convenient component to use while reconstructing
the original experiment results, there were also signs during runs in simpler environments (i.e.
LunarLanderContinuous, Pendulum, etc.) that indicated the GAC agent was learning without it.

2

3.2 Value Network Training

Given the state s and K actions ã sampled from the delayed actor, the minimum value of two critics
were used to update the value network.

yv ← min
i=1,2

1

K

K∑
j=1

Qθ′i(s, ãj)

φ← φ− 1

N
∇φ

∑
(yv − vφ(s))2

An iteration of training ends with a soft update on the respective target network. Formally represented
below.

φ′ ← τφ+ (1− τ)φ′

Note that a soft update in this context is when the value of τ has the property 0 < τ < 1.

3.3 Critic Network Training

The value network produces the expected value for the critics given the transitions made by the target
actor network.

yQ ← r + γvφ′(s′)

Although only the minimum value between two critics are used for policy and value updates, both
critic networks are updated based on the expected value produced by the value network.

θ ← θ − 1

N
∇θi

∑
(yQ −Qθi(s, a))2

An iteration of training ends with a soft update on the respective target network. Formally represented
below.

θ′i ← τθi + (1− τ)θ′i
Note that, as before, a soft update in this context is when the value of τ has the property 0 < τ < 1.

3.4 Actor Network Training

The target distribution of the generative actions conditioned on input state is induced from the set
of advantage values evaluated via the critic and value networks. In general, the training of the
actor network consists of three steps. The first step consists of sampling actions as candidates for
each state in the training batch. In this step, randomly sampled actions and policy sampled actions
are concatenated as candidates. The second step involves picking out the state and action pairs
with positive advantage from the previously collected candidates. The advantage is evaluated using
the target critic networks and the target value network. Finally, the last step is to determine the
gradient for the the parameters of the actor network using the Huber quantile loss function so that the
distribution of the generated actions approaches the target distribution.

4 Efforts

The efforts of this project were primarily focused on implementing Algorithm 2 from Tessler et al.
(2019) which comprehensively details the GAC process. The core components of the algorithm
were sufficiently documented to make a relatively faithful replica from scratch, though, there were
several components that were helpful in this challenge yet were mentioned neither implicitly nor
explicitly in the authors paper. One such detail was the regularization of critic networks which aided
significantly in speeding up the training process, which was surmised through investigation of their
code. Regularization in this context being the process of perturbing the actions sampled from the
buffer during the training of the critic networks such that similar actions were forcibly assigned
similar state action values. It is recognized by the members of this project that this practice is similar
to the critic regularization used in the TD3 algorithm and is likely common knowledge in the field.
Furthermore, for numerical stability, when running the algorithm on certain complex tasks it was
useful to implement the normalization of rewards, states, and actions.

3

In addition to missing information regarding regularization and normalization, this project encoun-
tered several minor issues while implementing the reproduced algorithm in Tensorflow 2.0. Most of
the issues encountered were due to features in Tensorflow 2.0 that group members were unaware of.
One issue was with the initialization of trainable variables for the actor, critic, and value networks.
In the algorithm, the target networks should be initialized with the same initialization values as the
followers, as indicated in line 3 of Algorithm 2. In the replicated implementation, the actor, critic, and
value functions are all Tensorflow modules, allowing for easy access to trainable variables during the
training procedure. Unfortunately, Tensorflow 2.0 does not initialize the trainable_variables list until
they are actually used, resulting in the update function being unable to forcibly set the parameters of
the target networks to those of the followers. A solution was found by simply feeding dummy inputs
into the networks thereby populating the trainable_variables list before updating them to be the same
value. The final issue encountered during our implementation was with the Huber Loss Function
which automatically reduced the loss values into a singleton as opposed to a vector of losses. This
issue was easily rectified by setting the reduction variable to tf.keras.losses.Reduction.NONE.

5 Results

Figure 1: Results from the Humanoid experiment (left) and the LunarLanderContinuous experiment
(right) run on this project’s replicated GAC algorithm with the number of environment interactions
on the x axis and cumulative reward on the y axis. The AIQN data for the Humanoid experiment
is only partially complete due to limitations on time and resources. In addition, the AIQN GAC
method used a smaller batch size than the IQN version (64 as opposed to 128) simply to reduce the
time necessary till sufficient data for a graph was collected. The exploration noise for the Humanoid
experiment is drawn from an i.i.d Gaussian distribution and an Ornstein–Uhlenbeck process for
LunarLanderContinuous.

The replicated code was tested on two OpenAI Gym (Brockman et al., 2016) environments,
LunarLanderContinuous-v2 and MuJoCo’s Humanoid-v2. The selection of the Humanoid task
out of the six other original experiments was done simply due to the dramatic increase in performance
achieved by the author’s IQN approach when compared to other baseline methods. To test other
state of the art RL methods and acquire data for a baseline comparison, this project utilized the code
from https://github.com/openai/spinningup to run DDPG, PPO, SAC, and TD3 algorithms and plot
their performance. The results of both experiments are illustrated in Figure 1. To provide a greater
understanding of critical algorithm components, the figures also illustrate the results of an IQN actor
without the exploratory noise in line 6 of Algorithm 2 and the regularization of critic networks.

As seen in the resulting data, this project was successfully able to reproduce the core findings of
the original paper’s experiment. Indeed, compared with the original results, the experiments run on
the replicated algorithm actually achieved higher rewards than they did originally. This success in
reproducing the results of an IQN agent on the Humainoid-v2 problem, in particular, supports the
empirical findings and claims made by the original paper; indicating that GAC could be considered a
legitimate alternative approach to solving continuous control tasks. However, while competitive, the
results garnered by the GAC algorithm were not significantly better than the state of the art policy
gradient methods (at least not to the same degree seen in the paper) with many of the alternative

4

https://github.com/openai/spinningup

methods achieving similar cumulative rewards compared to the IQN GAC approach. Specifically, the
TD3 algorithm used in this experiment achieved substantially greater rewards than was seen in the
original paper. It is likely that this deviation from the original paper’s findings is due to differences in
hyperparameter values for both GAC and other policy gradient methods.

It should be noted that initial trials using an IQN actor on the Humanoid environment, run without
certain components, were unsuccessful at reproducing the results seen in the original paper’s ex-
periments. As mentioned before, one necessary component for replicating the success of the GAC
algorithm was the regularization of the critic function. As a result of adding regularization, the
algorithm was not forced to learn new values for similar states and actions, allowing for GAC to more
quickly converge to an optimal policy. In addition, our original replicated implementation neglected
to use perturbed actions for exploration under the assumption that there was implicit noise in the
model. After implementing Gaussian noise with standard deviation 0.2 during the training phase
consistent with line 6 in Algorithm 2, though, the model trained significantly faster in both problems.
Intuitively, this action is akin to the model being more exploratory during the training phase. Note
that the noise used in this project’s experiment was sampled from a Gaussian distribution with greater
standard deviation than the original (0.2 as opposed to 0.1), despite this, it appears the results are still
consistent with those of the paper.

6 Reflection

The novelty of the GAC algorithm mainly lies in the introduction of a generative actor to sample
policies, and training said actor so that the distribution of generated actions approaches a target
distribution with support over a set of advantageous actions. The resulting stochastic policy from
GAC is thus more flexible than deterministic policies or policies of parametric distributions. This
approach clearly represents a step in an interesting and promising direction towards the use of
distributional policy optimization for complex reinforcement learning tasks. That being said, there
were points in the algorithm description which were slightly confusing to this group as a whole
which, while not a significant issue, could likely be clarified or improved on in some fashion. It
appears that there was a mistake on line 14 in Algorithm 2 as, despite representing the mean, 1

K
is missing. Furthermore, In the algorithm, the authors introduced both value networks and critic
networks for use in policy optimization. However, only advantage, i.e. the difference between critic
and value networks, is used to train the actor. It is therefore likely possible to replace the value and
critic networks with a single value network, similar to traditional A2C algorithms, thereby reducing
the computational cost of training. In addition to these minor issues within the algorithm description,
the utilization of random noise for exploration was slightly confusing as such randomness should, in
theory, be inherent to a generative actor. This difficulty with regards to mathematical interpretation
extends to the concatenation of uniformly sampled actions with those that are policy sampled while
acquiring states and actions of positive advantage.

7 Conclusion

DPO provides an interesting alternative approach to continuous control methods. Using a generative
actor as a stochastic policy, DPO – and GAC by extension – is more flexible in action sampling than
traditional policy gradient approaches, allowing it to perform as well as if not better than state of the
art RL solutions. This project, by reproducing the key results of the author’s experiment, is in support
of the empirical findings and claims made by the original paper. Despite this, there are still some
observed limitations to this method. Primarily, the computational cost associated with this algorithm
is notably higher than baseline methods, potentially limiting its application scope.

5

References
Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and

Wojciech Zaremba. 2016. Openai gym. arXiv preprint arXiv:1606.01540.

Scott Fujimoto, Herke van Hoof, and David Meger. 2018. Addressing function approximation error
in actor-critic methods. arXiv preprint arXiv:1802.09477.

Chen Tessler, Guy Tennenholtz, and Shie Mannor. 2019. Distributional policy optimization: An
alternative approach for continuous control. arXiv preprint arXiv:1905.09855.

6

	Introduction and Objective
	Background
	Quantile Regression
	Actor Critic Framework

	Model Implementation
	Main Loop
	Value Network Training
	Critic Network Training
	Actor Network Training

	Efforts
	Results
	Reflection
	Conclusion

