A Nonstationary Designer Space-Time Kernel

Michael McCourt Gregory Fasshauer, David Kozak
SigOpt Colorado School of Mines
San Francisco, CA, USA Golden, CO, USA
mccourt@sigopt.com {fasshauer, dkozakl}@mines.edu
Abstract

In spatial statistics, kriging models are often designed using a stationary covariance
structure; this translation-invariance produces models which have numerous favor-
able properties. This assumption can be limiting, though, in circumstances where
the dynamics of the model have a fundamental asymmetry, such as in modeling
phenomena that evolve over time from a fixed initial profile. We propose a new
nonstationary kernel which is only defined over the half-line to incorporate time
more naturally in the modeling process.

1 Introduction

Covariance kernels for Gaussian random fields can be defined in a number of ways—see, e.g., [16] or
[9]. In spatial statistics applications in R, kernels are often radial: the covariance between random
field values at two points x, z € R is defined through a sense of distance between x and z [21]].

Radial covariance kernels (sometimes referred to as radial basis functions) have numerous advanta-
geous properties, such as computational efficiency and Bochner’s theorem of positive definiteness
[7,119]]. However, they also yield stationary kriging models, which is not always ideal. Some work
has been done to try to build nonstationary models from stationary kernels (see, e.g., [15]] or [L3]).

Another strategy to permit nonstationary models is to use nonstationary kernels, e.g., polynomial
kernels [20]. Strategies such as power series kernels [23], Green’s kernels [10], and kernels derived
from weighted Sobolev spaces [5] can frequently (though not necessarily) yield nonstationary kernels.
Additionally, complicated (possibly nonstationary) kernels can be constructed from simpler (possibly
stationary) kernels through addition or multiplication (see [2] for a thorough discussion and [14] for
recent applications) or through transforms [18]].

One of the benefits of designing special kernels through strategies such as weighted/generalized
Sobolev spaces is to create kernels which satisfy certain properties such as smoothness, locality or
boundary behavior. In this paper, we adapt a strategy for designing kernels in a bounded domain to
design a kernel on the half-line. We explore the properties of this kernel as well as its viability for
contributing to modeling space-time phenomena.

2 Mercer series kernels

Given a compact domain Q C R%, Mercer’s theorem says that all positive definite kernels (i.e.,
covariance kernels) K : £ x 0 — R have the series representation

K(x,z) = Z/\nsan(x)@n(z)a (1)
n=1
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where \,, ¢, are the eigenvalues and eigenfunctions of the integral eigenvalue problem with the
associated orthonormality condition
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for a weight function p : 2 — R such that fQ p(x)dx = 1. If A, > 0, K will be positive definite.

This kernel decomposition is often used theoretically to invoke the “kernel trick” for support vector
machines [[19]. In [16], eigenfunctions for the popular squared exponential (Gaussian) kernel were
discussed. Later, in [3] and [9, Chapter 3.9], new nonstationary kernels were designed using eigen-
functions defined through a differential equation and desired orthogonality properties, respectively.

3 A kernel defined on the half-line

In this section, we design a kernel for which Q = [0, 00); this will match the structure of most
modeling problems in time, where there is a distinct starting time for observing data, but no distinct
end. Note the use of ¢ in place of x because we will primarily apply this kernel to problems in time.

3.1 Eigenfunctions from the Laguerre polynomials

We revisit the concept from [9, Chapter 3.9], but we replace the Chebyshev with the Laguerre
polynomials and their associated orthogonality condition (for a > —1)
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Analogously to the Gaussian eigenfunctions from [J8], we choose the eigenfunctions to have the form

on(t) = Vne_&Ln (t),

for0 <4 < % and a normalization constant 7,,. We seek to enforce the orthogonality in (2)) utilizing
the Laguerre polynomial orthogonality identity in (3)); this suggests the weight function
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which satisfies fooc p(t) dt = 1. Using this we can enforce orthonormality to identify -,
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Laguerre polynomials are a natural choice for the eigenfunctions because they are orthogonal on
the domain [0, o). This yields a kernel which is inherently defined only on [0, co) which is a more
logical choice than simply restricting a kernel defined on R (such as the Matérn) into [0, co). Other
functions which form an orthonormal basis over [0, o0), such as the Bessel functions J, could also
potentially be used to create different ¢,,.

3.2 Forming a kernel from the eigenfunctions

The Mercer series (II]) requires both eigenfunctions ¢,, and eigenvalues \,,. As was the case in [9}
Chapter 3.9], we have freedom in how we choose the eigenvalues; these choices will affect the
smoothness of the resulting kernel. Here, we choose the eigenvalues

A= (1 —w)wh, 0<w<1,

which satisfies the positive definite criteria that A, > 0 and .~ ;A\, = 1 < co. Because these
eigenvalues decay geometrically, we expect K (-, s) € C>(Q) [L7].



At this point, the kernel is fully specified by (I)); however, it is possible to define a closed form for
these specific eigenvalues, so that the infinite series need not be approximated. We can utilize the
generating function of the Laguerre polynomials to write the Hardy—Hille formula [22]]
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where I, is a modified Bessel function of the first kind [6, Chapter 10.25]. The Mercer series is

K(t,s) = Aagn()pn(s) = (1 - w)meams) 3 wnr(ll(il_}r)m Ln(t)Ln(s)
n=0 1=0

so substituting in (@) gives the kernel in its closed form
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3.3 Computing the kernel safely

The computation of the kernel in (3) may be complicated by indeterminate forms and competing terms
of exponential magnitude. The latter complication can be alleviated by computing exp(log(K (¢, s)));
log(K (t, s)) can be safely computed by using Stirling’s approximation [6| Chapter 5.11.1] to compute
log(T'(av + 1)) and leveraging the decomposition I, (u) = e“1, (u) where I,,(u) is bounded and can
be computed safely [1]].

We can resolve indeterminate forms by utilizing the asymptotic forms of 7,
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from [6, Chapter 10.30.1] and [6} Chapter 10.40.1], respectively. This gives the behavior of K (-, s)
for a fixed s € [0, 00) as
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3.4 Free parameters and their interpretations/implications

As is the case with all positive definite kernels, this new kernel has free parameters which characterize
its behavior: a > —1,0 < 0 < 1/2,and 0 < w < 1. The interplay between these parameters is
nontrivial. We state here some initial analyses which we hope lay the foundation for future work.

The behavior is easiest to analyze when the argument of I, is large and (6b)) is appropriate. This can
be true for both ¢ — oo or for any ¢ with large enough s, i.e., when observed data is sufficiently far
from the origin. Some insights follow below (encapsulated somewhat in Figure|T).

e The exponential term guides the long-distance behavior. Its impact varies based on the
relationship between ¢ and \/w/(1 + y/w). Regardless of the value of 4, the first term in the
exponential dominates the second for any fixed s as ¢ — oo, implying that the kernel always
goes to 0 at co.

e Similarly, the behavior of the tsw component depends on « being greater than/less than/equal
to -1/2. For 6 # \/w/(1 4+ \/w), the t — oo behavior of the kernel is dominated by the
exponential term and « plays only a scaling role.

e Setting @ = —1/2 and § = \/w/(1 + \/w) yields a kernel which has only a v/t — /s
contribution; this implies that lim_, o, max;>o K (¢, s) = (1 + yw)/2.

e The w term acts as a sort of inverse length scale (or shape parameter) for the kernel. The
interpretation of it as a length scale is complicated for s near the origin, but more obvious as
s grows (for observed results far from the origin).
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Figure 1: left: a = —.5, 0 = .455, w = .7; center: a« = —.7, § = .389, w = .3; right: o = .2,
0 =.439, w = .95.

4 Example: Modeling western North America temperature data

The kernel in (B) must be supplemented by components meant to model spatial phenomena. One
natural mechanism for facilitating this is with a product kernel, consisting of separate time and space
components (discussed in [4] and [T1]). Here, we consider a tensor product between a Gaussian K g
in space and the kernel (5), denoted here as Ky, in time: K ((x t), (z s)) = K,(x,2z) K(t, s).

Our example comes from the GEFS Reforecast dataset [12]]; in particular, we use daily measurements
for eight days of surface temperature data across the western United States with 1° x 1° resolution.
After training on seven days, we compute the Gaussian random field posterior mean on the eighth
day. We use this as a prediction at each of the 28 x 29 grid points and assess the root mean squared
error (RMSE) of that prediction. This amounts to 5684 training points and 812 test points.

We explore the implications of varying the free parameters «, w and ¢ in Figure[2] To simplify the
analysis, the Gaussian kernel component has a single fixed length scale in both dimensions of .01.
We also use a fixed noise variance term (Tikhonov regularization parameter) of 10~8, primarily to
avoid ill-conditioning. In principle, these quantities should be determined from the data.
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Figure 2: left: predictions made using one week’s worth of history; center: analysis of « and w for
§ = Vw/(1 4 \/w); right: analysis of ¢ and w for fixed & = 0. For w too small, ill-conditioning
plays a confounding role that requires further consideration.

Figure 2] suggests that for many values of w the predictive power is unaffected by a wide range of «
values. Similarly, though to a lesser extent, J appears to have a limited and somewhat predictable
effect on performance provided w is reasonably large.

5 Future Work

This initial analysis suggests that there is an opportunity for this new kernel to help in fitting and
predicting space-time data. The free parameters provide interpretable flexibility in modeling, but this
comes at the cost of choosing them appropriately. Doing so will be a fundamental component of
future research on the viability of this tool.

Of particular interest will be understanding how the nonstationarity and asymmetry of the kernel
manifests itself in predictions at future times. Initial experimentation, including some omitted for
space considerations, suggests a nontrivial interplay between § and w; furthermore, this relationship
seems to vary as observed data (and, thus, the desired region of prediction) advances from s = 0. One
future goal is to identify how existing prediction strategies, including cross-validation and maximum
likelihood estimation, can be effectively adapted for this kernel.
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