
Spectral Analysis of Kernel and Neural Embeddings:
Optimization and Generalization

Abstract
We extend the recent results of (Arora et al., 2019)
by a spectral analysis of representations corre-
sponding to kernel and neural embeddings. They
showed that in a simple single layer network, the
alignment of the labels to the eigenvectors of the
corresponding Gram matrix determines both the
convergence of the optimization during training as
well as the generalization properties. We general-
ize their result to kernel and neural representations
and show that these extensions improve both op-
timization and generalization of the basic setup
studied in (Arora et al., 2019).

1. Introduction
The well-known work of (Zhang et al., 2017) highlighted
intriguing experimental phenomena about deep net training –
specifically, optimization and generalization – and called for
a rethinking of generalization in statistical learning theory.
In particular, two fundamental questions that need under-
standing are:
Optimization. Why do true labels give faster convergence
rate than random labels for gradient descent?
Generalization. What property of properly labeled data
controls generalization?
(Arora et al., 2019) have recently tried to answer this ques-
tion in a simple model by conducting a spectral analysis of
the associated Gram matrix. They show that both training
and generalization are better if the label vector aligns with
the top eigenvectors.

However, their analysis applies only to a simple two layer
network. How could their insights be extended to deeper
networks?

A widely held intuitive view is that deep layers generate
expressive representations of the raw input data. Adopting
this view, one may consider a model where a representation
generated by successive neural network layers is viewed as
a kernel embedding which is then fed into the two–layer
model of (Arora et al., 2019). The connection between neu-
ral networks and kernel machines has long been studied;
(Cho & Saul, 2009) introduced kernels that mimic deep net-
works and (Tsuchida et al., 2018) showed kernels equivalent

to certain feed–forward neural networks. Recently, (Belkin
et al., 2018) also make the case that progress on understand-
ing deep learning is unlikely to move forward until similar
phenomena in classical kernel machines are recognized and
understood. Very recently, (Jacot et al., 2018) showed that
the evolution of a neural network during training can be
related to a new kernel, the Neural Tangent Kernel (NTK)
which is central to describe the generalization properties of
the network.

Here we pursue this approach by studying the effect of in-
corporating embeddings in the simple two layer model and
we perform a spectral analysis of these embeddings along
the lines of (Arora et al., 2019). We can obtain embeddings
in several ways:
i. We can use an unbiased kernel such as Gaussian kernel.
This choice is consistent with the maximum entropy princi-
ple and makes no prior assumption about the data. Or use a
kernel which mimics or approximates deep networks
ii. We could use data driven embeddings explicitly produced
by the hidden layers in neural networks: either use a subset
of the same training data to compute such an embedding, or
transfer the inferred embedding from a different (but similar)
domain.

While a general transformation g(x) of the input data may
have arbitrary effects, one would expect kernel and neural
representations to improve performance. The interplay of
kernels and data labellings has been addressed before, for
example in the work of kernel–target alignment (Cristianini
et al., 2001).

We do indeed observe a significant beneficial effect:
Optimization. Using kernel methods such as random
Fourier features (RFF) to approximate the Gaussian kernel
embedding (Rahimi & Recht, 2007) and neural embeddings,
we obtain substantially better convergence in training.
Generalization. We also achieve significantly lower test er-
ror and we confirm that the data dependent spectral measure
introduced in (Arora et al., 2019) significantly improves
with kernel and neural embeddings.

Thus this work shows empirically that kernel and neural
embeddings improve the alignment of target labels to the
eigenvectors of the Gram matrix and thus help training and
generalization. This suggests a way to extend the insights
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of (Arora et al., 2019) to deeper networks, and possible
theoretical results in this direction.

2. Spectral Theory
Network model. In (Arora et al., 2019), the authors con-
sider a simple two layer network model:

fW ,a(x) =
1√
m

m∑
r=1

ar max(0,wT
r xi), (1)

with x ∈ Rd, w1, .. wm ∈ Rd×m and (a1, .. am)T ∈
Rm. These can be written jointly as a = (a1, .., am)T and
W = (w1, ..,wm). This network is trained on dataset of
datapoints {xi} and their targets {yi}.

They provide a fine grained analysis of training and general-
ization error by a spectral analysis of the Gram matrix:

H∞i,j := EW∼N (0,I)

[
xT
i xj1[wTxi ≥ 0,wTxj ≥ 0]

]
If H∞ =

∑
i λiviv

T
i is the orthonormal decomposition

of H∞, (Arora et al., 2019) show that both training and
generalization are better if the label vector y aligns with the
eigenvectors corresponding to the top eigvalues of H∞.

The two-layer ReLU network in this work follows the gen-
eral structure as in (Arora et al., 2019) with the difference
being the addition of an embedding φ at the input layer
corresponding to a kernel K. The corresponding model is:

fW,a(x) =
1√
m

m∑
r=1

ar max(0,wT
r φ(xi)). (2)

For a representation (φ(xi), i ∈ [n]) corresponding to a
kernel K, define the Gram Matrix

H(K)∞i,j := EW

[
K(xi,xj)1[wTφ(xi) ≥ 0,wTφ(xj) ≥ 0]

]
and let its eigenvalues be ordered as λ0(K) ≥ λ1(K) ≥
· · · ≥ λn−1(K) and let v0(K), · · · ,vn−1(K) be the corre-
sponding eigenvectors.

A kernel K such that the corresponding eigenvectors align
well with the labels would be expected to perform well both
for training optimization as well as generalization. This is
related to kernel target alignment (Cristianini et al., 2001).
Optimization. For the simple two layer network, (Arora
et al., 2019) show that the convergence of gradient descent
is controlled by √∑

i

(1− ηλi)2k(vT
i y)2 (3)

For our kernelized network, the corresponding convergence
is controlled by√∑

i

(1− ηλi(K))2k(v(K)Ti y)2 (4)

Generalization. For the simple two layer network, (Arora
et al., 2019) show that the generalization performance is
controlled by

yT (H∞)−1y (5)

For our kernelized two layer network, the corresponding
data and representation dependent measure is:

yT (H(K)∞)−1y (6)

3. Experiments
We perform our experiments on two commonly-used
datasets for validating deep neural models, i.e., MNIST
and CIFAIR-10. These datasets are used for the experi-
ments in (Arora et al., 2019). As in their work we only
look at the first two classes and set the label yi = +1 if
image i belongs to the first class and yi = −1 if it belongs
to the second class. The images are normalized such that
||xi||2 = 1. This is also done for kernel embeddings such
that ||φ(xi)||2 = 1.
The weights in equation (2) are initialized as follows:

wi ∼ N (0, k2I), ar ∼ Unif({−1, 1}),∀r ∈ m. (7)

We then use the following loss function to train the model
to predict the image labels.

Φ(W,a) = 1/2

n∑
(i=1)

(yi − fW,a(x))2 (8)

For optimization, we use (full batch) gradient descent
with the learning rate η. In our experiments we set k =
10−2, η = 2 · 10−4 similar to (Arora et al., 2019).

3.1. Gaussian kernel method

We first use the Gaussian kernel K(xi,xj) :=
exp

(
−γ‖xi − xj‖2

)
. The corresponding embedding is

infinite dimensional, hence we consider the fast approxima-
tions to the kernel given by random Fourier features (RFF)
(Rahimi & Recht, 2007). The idea of random Fourier fea-
tures is to construct an explicit feature map which is of a
dimension much lower than the number of observations, but
the resulting inner product approximates the desired kernel
function. We use γ = 1 in all our experiments.
Optimization. We first investigate the use of Gaussian
kernel for a more efficient optimization of the loss func-
tion on the training data. Figures 1(a) and 1(b) show the
training loss at different steps respectively on MNIST and
CIFAR-10 datasets. We consistently observe that the differ-
ent Gaussian kernels (specified by various dimensions of the
kernel) yields faster convergence of the optimization pro-
cedure on both datasets. MNIST is a simple dataset which
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(a) MNIST training loss
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(b) CIFAR-10 training loss
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Figure 1. Performance on MNIST and CIFAR-10 training datasets. We observe that the different kernels yield faster convergence of the
loss function on training data compared to non-kernel variant. Figure 1(c) demonstrates alignment of top eigenvalues and the projections
of true labels on corresponding eigenvectors.

gives incredibly high score almost immediately, as shown
by the train loss (Figure 1(a)) and by the accuracy on the
test data (the table in Figure 2(c)) thus we will focus our
analysis on the CIFAR-10 dataset. Similar to the setup in
(Arora et al., 2019), in Figure 1(c), for different methods,
we plot the eigenvalues of H(K)∞ and the projections of
the true class labels on the eigenvectors (i.e., the projections
{(vT

i y)2}n−1i=0 ). For better visualization, we plot the cu-
mulative forms

∑i
j=0(vT

j y)2’s which are normalized such
that

∑n−1
i=0 (vT

i y)2 = 1. The results show that using ker-
nels yield a better alignment of the projections with the top
eigenvalues, leading to faster convergences. In other words,
with kernels, we attain larger (vT

i y)2’s for top eigenvalues.
Generalization. We next investigate the generalization per-
formance of the Gaussian kernel method by analyzing the
values of equations (5) and (6). Table 1 shows this quantity
for different settings and kernels respectively on MNIST
and CIFAR-10 datasets. We observe that in both datasets
with several kernels we obtain a lower theoretical upper
bound on the generalization error. It is clear that the bound
improves as the dimension of the representations increases
but also that the generalization bound seems quite sensitive
to values of γ.

In addition to the theoretical upper bound, we measure the
test error for the studied datasets. Figures 2(a) and 2(b) show
respectively the test error and the test accuracy at different
steps of the optimization by Gradient Descent for CIFAR-
10. We observe that the kernel methods yield significant
improvements of both the test error and the accuracy on
the test dataset. We observe that the larger the kernel, the
larger the improvement. Additionally, we can see a sharper
reduction in test error compared to the no-kernel case. This
sharp transition (after a small number of steps) is particularly
interesting. Because, along such a transition, we observe
a significant improvement in the accuracy on test dataset.
Thus early-stopping that is commonly used in deep learning

Table 1. Quantification of yT (H∞)−1y (or yT (H(K)∞)−1y for
kernels) for different experimental settings. For both datasets, most
kernels yield smaller upper bounds on generalization error.

γ Dimension MNIST CIFAR-10

0.1 ∞ 1519 71066
1 ∞ 442 16680
10 ∞ 9841 1236

1 500 790 55501
1 1000 679 51487
1 3072 534 47471
1 10000 478 44630
No kernel 789 74670

can be even more efficient when using kernel methods.
Finally, similar to the no-kernel case in (Arora et al., 2019),
by comparing the plots in Figures 1(b), 1(c) and 2(a) we
find tight connections between, i) (training) optimization, ii)
projection on the top eigenvalues, and iii) generalization. We
can therefore improve both training and generalization with
kernels since we can get better alignment of the eigenvectors
belonging the largest eigenvalues and the target labels.

3.2. Neural embedding

Choosing a proper kernel and its parameters can be chal-
lenging (von Luxburg, 2007), as also seen in Table 1. Thus,
we investigate a data-dependent neural kernel and embed-
ding. For this purpose, we add a second hidden layer to the
neural network with m = 10000 hidden units and ReLU
activation. We pre-train this embedding using two different
approaches. The first layer is then kept fix as an embedding
where the rest of the network is reinitialized and trained.
The first approach is to split the training data in half. We use
the first subset to pre-train this three-layer network and the
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(a) Test error on CIFAR-10 data.
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(b) Test accuracy on CIFAR-10 data. (c) Test accuracy on MNIST data.

Figure 2. Experimental test errors and accuracy on the test set at the different steps of the Gradient Descent optimization algorithm for
CIFAR-10 dataset. For MNIST, we report the accuracy at the different steps of the Gradient Descent optimization where performance is
very good with different steps and parameters.
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(a) Training loss.
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Figure 3. Experimental train and test errors at the different steps of Gradient Descent as well as eigenvector projections for the CIFAR-10
dataset. For the model pre-trained with the same labels, the training loss and projections are calculated based on the unseen subset of
training data. We observe that neural embeddings improve the convergence, generalization and the alignment of eigenvector projections.

second subset to use for our optimization experiments. In
this approach we double η to keep the step length the same.
The other approach is to use data from a different domain
for pre-training. For instance, we use the last two classes
of the CIFAR-10 dataset for pre-training the embedding.
We compare our results with not using any kernel and with
using a RFF kernel with embedding of size 10000.
Optimization. Figure 3(a) shows the training loss for the
CIFAR-10 dataset. We observe the neural embeddings
achieve faster convergence compared to the previous meth-
ods. We report the training loss for neural embedding (same
label) on the second (unused) subset of the data, whereas
in the other cases we report the results on the full training
data. If we use only the second subset for the other methods,
we observe very consistent results to Figure 3. Figure 3(c)
demonstrates the top eigenvalues as well as their eigenvec-
tor projections on the target labels. This shows that both
variants of neural embeddings improve alignment of the
labels to eigenvectors corresponding to larger eigenvalues
(compared to the best RFF kernel). While the effect is un-

surprisingly larger when pre-training on the same labels, it
is still significantly better when pre-trained on other labels.
Generalization. In Figure 3(b) we report the test error on
the CIFAR-10. This shows that the neural embeddings per-
form at least comparable with the best studied RFF kernel.
If the pre-training is done on the same labels we obtain a
clear improvement, even if the actual training is only done
on a dataset with half the size.

4. Conclusions
We extended the recent results of (Arora et al., 2019) by
a spectral analysis of the representations corresponding to
kernel and neural embeddings and showed that such repre-
sentations benefit both optimization and generalization. By
combining recent results connecting kernel embeddings to
neural networks such as (Tsuchida et al., 2018; Jacot et al.,
2018), one may be able to extend the fine–grained theoreti-
cal results of (Arora et al., 2019) for two layer networks to
deeper networks.
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