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ABSTRACT

This paper presents an unbiased exploration framework for the belief state p(s)
in non-cooperative, multi-agent, partially-observable environments through dif-
ferentiable recurrent functions. As well as single-agent exploration via intrinsic
reward and generative RNNs, several researchers have proposed differentiable
multi-agent communication models such as CommNet and IC3Net for scalable
exploration through multiple agents. However, none of the existing frameworks so
far capture the unbiased belief state in non-cooperative settings as with the nature
due to biased examples reported from adersarial agents. Generative integration
networks (GINs) is the first unbiased exploration framework insipired by honest
reporting mechanisms in economics. The key idea is synchrony, an inter-agent re-
ward to discriminate the honest reporting and the adversarial reporting without
real examples, which is the different point from the GANs. Experimental results
obtained using two non-cooperative multi-agent environments up to 20 agents de-
note that GINs show state-of-the-art performance in the exploration frameworks.

1 INTRODUCTION

Learning rich generative models for belief state p(s) is a common objective of reinforcement learn-
ing in partially-observed environments (e.g., robot agents in the real world). Generative recurrent
neural networks such as dynamic Boltzmann machines (Osogami and Otsuka, 2015), world mod-
els (Ha and Schmidhuber, 2018) and generative query networks (Eslami et al., 2018) have been
introduced to capture the hidden Markov process by updating low-dimensional beliefs using high-
dimensional observations. Intrinsic rewards such as cusiosity (Houthooft et al., 2016) encourage the
agent exploration to find the optimal path by maximizing information gain. In multi-agent settings,
communication such as CommNet (Sukhbaatar, Fergus, and others, 2016) and IC3Net (Singh, Jain,
and Sukhbaatar, 2018) can also be combined for exploration in which agents cooperatively reduce
uncertainty by integrating information such as observation and the beliefs.

However, in non-cooperative (i.e., competitive and mixed) multi-agent settings, the existing frame-
works can barely achieve task-invariant belief states due to adversarial reporting. For instance, in an
imperfect-information two-player zero-sum game as a pathologic case, an agent fools the opponent
to take another action to “minimize” her return by reporting her fake information in the Bayesian
Nash equilibriums, and vice versa. Namely, multi-layer perceptrons are vulnerable to adversarial
examples (Goodfellow, Shlens, and Szegedy, 2014), which have perturbations combined to the real
information. Hence, naive optimizations in multi-agent deep reinforcement learning fails to extract
true knowledge, i.e., the belief state, from the environment. Furthermore, constructing discrimina-
tors as with generative adversarial networks (Radford, Metz, and Chintala, 2015) is impossible since
we cannot directly draw samples from p(s).

This paper proposes unbiased communication framework in non-cooperative settings inspired by
honest reporting mechanisms in game theory. The first contribution is synchrony, a competitive
intrinsic reward formulated by errors between individual reports and the integrated belief sent to
each agent in every time-step. Intuitively, it encourages agents to predict other agents’ beliefs. As
we show in the paper, synchrony is a quasi-discriminator. That is, if the model is a fully-learned
state, synchrony can discriminate the true distribution p(s). As we show in the paper, the optimal
policy to maximize synchrony is to report the information obtained from the environment without
any perturbation. Although synchrony is also known as a proper scoring rule (Miller, Resnick, and
Zeckhauser, 2005) in honest reporting mechanisms, our contribution is to apply it to the problem of
adversarial reporting. As synchrony is zero-sum, it does not affect the total returns of the agents.
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As the second contribution, we construct a muti-agent generative framework, the generative integra-
tion network (GIN) using synchrony. The exploration scenario in GIN is achieved by communication
among n non-cooperative agents made of the controller and two additional modules, a differen-
tiable generator Gi to send adversarial reporting and a shared validator V to receive differentiable
reports and distribute synchrony to the other agents. At convergence, synchrony approaches zero
and all generators draw samples from p(s). This paper shows an implementation of GIN utilizing
IC3Net (Singh, Jain, and Sukhbaatar, 2018), which is the state-of-the-art model for communication
frameworks in non-cooperative environments. To confirm GINs learning belief states, we demon-
strate numerical experiments with two non-cooperative, partially-observed environments up to 20
agents. We demonstrate that GINs records the state-of-the-art performance by outperforming exist-
ing frameworks for control under uncertainty such as recurrent neural networks and communication
in non-cooperative multi-agent settings.

2 RELATED WORK

Belief state p(s) is a typical target of control under uncertainty. Generative recurrent neural networks
can be used to abstract high-dimensional observation of low-dimensional belief. DyBM (Osogami
and Otsuka, 2015) is a bio-inspired generative RNN that captures beliefs with seven neurons us-
ing the Boltzmann machine inpired by STDP mechanisms. World models (Ha and Schmidhuber,
2018) and GQN (Eslami et al., 2018) use variational autoencoders to capture a belief. Conscious-
ness prior (Bengio, 2017) is a discrete hierarchical recurrent model to capture the symbols from the
environment. There are several variations in terms of curiosity for exploration, such as prediction
error for observation (Pathak et al., 2017) and information gain (Houthooft et al., 2016). Prediction
error of observation has a noisy TV problem (Azar et al., 2019), which yields positive rewards for
non-useful information. Information gain is vulnerable to adversarial reporting since false reports
have more information gain than true information.

Typical utility of multi-agent reinforcement learning (MARL) is a variation reduction. MADDPG
(Celikyilmaz et al., 2018) employs actor-critic to control multiple agents in a policy gradient man-
ner and aggregates TD-error to the centralized critic. MADDPG-GCPN (Ryu, Shin, and Park, 2018)
is an agent-communication model to estimate state with centralized training. RIAL (Foerster et
al., 2016) uses discrete variables and Q-learning to control which to send other agents. Zhang uses
graph structure to constraint who can receive the report (Zhang et al., 2018). CommNet (Sukhbaatar,
Fergus, and others, 2016) uses differentiable continuous vectors and optimizes reports with back-
propagation.

The closest work to this paper is IC3Net (Singh, Jain, and Sukhbaatar, 2018), which extends Comm-
Net for non-cooperative environments. IC3Net controls when to communicate through binary action
of each agent, and stops the agent from sending information to reduce their expected returns. As both
CommNet and IC3Net do not guarantee sending of task-invariant beliefs, the agent learns adversarial
attacks to fool other agents. The first introduced adversarial example is the fast gradient sign method
(Goodfellow, Shlens, and Szegedy, 2014), which adds perturbation to the true samples. There are
at least two directions to improve robustness against adversarial examples. One is to change either
network topology or the optimizer (Carlini and Wagner, 2017; Cisse et al., 2017; Fawzi, Fawzi,
and Frossard, 2018). The other is to create discriminators to classify adversarial examples and true
samples (Goodfellow et al., 2014). As the discriminator should assume that the optimizer can draw
samples from the true distribution, it cannot be applied to latent beliefs.

Counterfactual reward (Agogino and Tumer, 2006) is an intrinsic reward used to deal with credit
assignment problems in multi-agent settings. COMA (Foerster et al., 2018) extends counterfactual
rewards with an actor-critic optimizer. NaaA (Ohsawa et al., 2018) proposes counterfactual returns
that take summation over times. The constraint of counterfactual reward is only applied to discrete
actions, which prevent us from applying it to continuous communication.

In the field of security and distributed computing, the algorithm to treat adversarial reporting is called
Byzantine Fault Tolerance (BFT). Paxos (Lamport and others, 2001) and practical BFT (Castro,
Liskov, and others, 1999) employ consensus mechanisms with multi-step communication to make
the agent converge on the true information. Prediction market (Barbu and Lay, 2012) is used for
aggregating reports for uncertain information such as future observation. Our mechanism brings the
truthful mechanism to multi-agent control problems.
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3 PROBLEM DEFINITION

Before introducing adversarial reporting and synchrony, we formulate multi-agent communication
in partially-observed environments from the perspective of exploration as the problem setting.

3.1 PARTIALLY OBSERVABLE MDP

The definition starts with a single-agent model in a partially observable MDP (POMDP). An envi-
ronment is a seven-tuple 〈S,A, r, γ, T,Ω, O〉 where S is a discrete state space,A is a descrete action
space, r : S ×A→ R is a reward function, T : S ×A× S → [0, 1] is a state-transition probability,
Ω is a high-dimensional continuous observation space (e.g., images) and O : S × Ω → [0, 1] is an
observation probability. An agent is a two-tuple 〈π, ξt〉 where π(at|ξt−1) is a probabilistic policy
and ξt := 〈o1, a1, r1, . . . , ot, at, rt〉 is a history. At each time step t, an agent receives an observation
ot ∼ O(o|st), sends action at ∼ π(a|ξt), gets rewarded rt := r(st, at), and integrate to a history
ξt = 〈ξt−1, ot, at, rt〉. An environment transition state st+1 ∼ T (s|st, at).

In contrast to MDP, an agent in POMDP cannot observe the true state st. Instead, the agent update
belief of the state p(st|ξt) under the situation ξt. Hence, an agent maximizes its expected return

Jπθ (ξt) :=

∫
S

V π(s)dpθ(s|ξt) (1)

where V π(s) is a value function and pθ(s) is a belief state model with a prior θ. As there is the
optimal policy π∗ to maximize V π

∗
(s) in MDP if both S and A is descrete, our target is obtain-

ing belief p(s). inferring p(s|ξt). As the observation ot is high dimensional variable, the exisisting
probabilistic recurrent neural networks such as dynamic Boltzman machines are intractable.

3.2 FROM EXPLORATION TO COMMUNICATION

Our goal is to obtain the generative model for the belief state pθ(s|ξt) through rich deteraministic
functions (e.g., neural networks). What is different from the existing deteraministic generative mod-
els (Radford, Metz, and Chintala, 2015) is that the error with the real sample s is not observable,
and there are multiple solutions for p(s) because s has |dimS|! freedoms for permutation . Hence,
we employ an entropy minimization framework minξ H [s|ξ] = H [s] for exploration (Houthooft
et al., 2016). A finite-horizon entropy minimization framework maximizes total information gain∑τ
t=1[H [s|ξt]−H [s|ξt−1]] after τ -steps. As the path-finding problem is intractable, reinforcement

learning is used for control. Typically, it employs curiosity (Houthooft et al., 2016) as the intrinsic
reward,

r′(st, at, ot+1) = r(st, at) + ηI(ot+1; ξt), (2)

where I(ot+1; ξt) := H [s|ξt+1] − H [s|ξt] is the curiosity in each time step, and η > 0 is a hyper-
parameter to control the exploration-exploitation tradeoffs. We can naturally enhance the curiosity-
driven exploration of the n-agent environments,

r′(st,at,ot+1) = r(st,at) + ηI(ot+1; ξt), (3)

where bold symbols are n-dimensional vectors for joint variables. We denote i ∈ {1, . . . , n} as the
index of an agent. For instance, ξit is an i-th agent’s history.

Communication is a sequential process of reporting zit ∼ p(z|ξit) and integration p(s|zt). For in-
stance, CommNet (Sukhbaatar, Fergus, and others, 2016) uses an LSTM cell for reporting and uses
a mean field approximation as an integrator p(s|zt) = (1/n)

∑n
i=1 p(s|zit). As all the agent observe

the environment through the reporting zt, we can define curiosity in terms of comunication. The
relationship between exploration and communication can be written as follows,

I(zt+1; ξt) = H [s|ξt]−H [s|zt+1, ξt] . (4)

3.3 ADVERSARIAL REPORTING

If the environment is non-cooperative, i.e., r is non-monotonic, the Bayesian Nash equilib-
rium in multi-agent communication cannot maximize the total return. Considering an imperfect-
information, zero-sum, two-player game, the greedy optimization problem can be written as the
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following mini-max problem:

min
a1t ,z

1
t

max
a2t ,z

2
t

: J(at, zt; ξt−1) :=

∫
S

Q(s,at)dp(s|zt, ξt−1). (5)

where Q(st,at) is a joint state-action value function. Note that agent 1 can control agent 2’s action
by sending information z1t . In this case, agent 1 can draw false information from reporting policy
ρ(z1t |ξ) =

∫
ρ(z1t |z)dp(z|ξ1t ) instead of honest reporting p(s|ξ1t ). An instance of adversarial report-

ing is an adversarial example with a fast gradient sign method (Goodfellow, Shlens, and Szegedy,
2014) that adds perturbation ν = sign(∇zJ) to the true information: ρ(ẑ|z) = z + εν where ε > 0
is the size of the perturbation. Reporting bias H [s|εν] prevented us from obtaining true information
H [s].

In this case, curiosity could not be used since it also encourages the reporting bias H [s|ρ]−H [s].

I(zt+1; ξt, ρ)− I(zt+1; ξt) = H [s|zt+1, ξt, ρ]−H [s|zt+1, ξt] (6)

4 PROPOSED METHOD

4.1 SYNCHRONY

Our approach is to distribute an intrinsic reward to the agents to encourage honest reporting. In
addition to the reward from the environemnt, the validator destributes each agent a desined reward,
synchrony, inspired by honest reporting mechanisms in economics. Synchrony uses the characteristic
condition H

[
z|ξit

]
−H [s|ξt] = 0 at the optimally H

[
z|ξit

]
= H [s] for all i’s. Synchrony is defined

as the following equation:

ui(z
i
t|zt) = −DKL

(
p(zit|ξit) || p(s|zt)

)
+

1

n
DKL (p(zt|ξt) || p(s|zt)) , (7)

where the first term is the variance of i’s reporting from the integrated report p(s|zt), and the second
term is the bias between the joint distribution and the integrated report. Synchrony is a zero-sum
reward because

n∑
i=1

DKL

(
p(zit|ξit) || p(s|zt)

)
=

n∑
i=1

∫
log

p(zit|ξit)
p(s|zt)

dp(s|zt)

=

∫
log

p(zt|ξt)
p(s|zt)

dp(s|zt) = DKL (p(zt|ξt) || p(s|zt)) . (8)

Intuitively, it encourages agents to report more unbiased beliefs by predicting other agents’ beliefs.
This is also known as a proper scoring rule (Miller, Resnick, and Zeckhauser, 2005) in the honest
reporting mechanism. Fig. 1 illustrates synchrony in a binary state S = {0, 1}.

4.2 GENERATIVE INTEGRATION NETWORKS

The intrinsic reward naturally leads us to construct a game-theoric generative framework for con-
trolling problems. generative integration network (GIN). We utilize IC3Net (Singh, Jain, and
Sukhbaatar, 2018), which is the state-of-the-art model for communication frameworks in non-
cooperative environments. Fig. 2 shows a network structure. The network repeats k sampling it-
erations in a step until it obtains the final belief p(s|ξt) on the basis of MCMC. In every j-th phase,
each generator Gi forwarded the following maps:

mi
t,j = σ(W i(pst,j−1 + εν) +Hi(hit,j)),

git,j = f i(mi
t,j), h

i
t,j = Hi(hit,j−1),

zit,j = mi
t,jg

i
t,j +

1

2
(1− git,j), (9)

where ν ∼ B(1/2)m is a binary noise and fi is a binary action to decide whether to send a true re-
port p(s|ξt, ν) or a fully false report p(s|ν). The action is trained by REINFORCE (Williams, 1992).
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Figure 1: synchrony in a binary state s ∈ {0, 1}. We can confirm that the optimal policy for maxi-
mizing synchrony is to report the information obtained from the environment without any perturba-
tion. The characteristics can be extended to m-bit tapes S = {0, 1}m with the naive Bayes model
p(s) =

∏
i p(si), a practical model representing word distribution (McCallum, Nigam, and others,

1998). In this case, each bit can be represented as events, words or symbols. Namely, the optimal
policy for the uninformed agent (blue) is to report z = 1/2, which maximizes entropy H [s] = log 2.

Figure 2: The generative integration networks. The exploration scenario in GIN is achieved by com-
munication among n non-cooperative agents made of the controller and two additional modules, a
differentiable generator Gi to send adversarial reporting, and a shared validator V to receive the
differentiable reports and distribute synchrony to the other agents. At convergence, synchrony be-
came zero and all the generators drew samples from p(s). The exploration mechanism works without
any other intrinsic reward such as curiosity, which has negative relation to synchrony.

The shared validator V receives reports zit,j , estimated integrated distribution, and distributed syn-
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Figure 3: An illustration of the predator prey (PP) tasks in three difficulties. Each agent continuously
receives a reward signal -0.05 in each timestep until the arrival on the prey. After the predators
reaches their goals, they receive a competitive reward 1/m that m is the number of predators who
reached the prey. Every episode ends in fixed steps. Although communication is used to tell the
position of prey, predators could fool other predators to corner the prey.

chrony.

pst,j =
1

n

n∑
i=1

zit,j , b
s
t,j = 1(psi,j ≥ 1/2),

rit,j = −[bst,j log pst,j + (1− bst,j) log(1− pst,j)],

uit,j = rit,j −
1

n

n∑
i=1

rit,j , (10)

After k iterations, the final belief is a consensus to pst = pst,k, and each agent drew actions from the
controllers.

ait ∼ π(·|pst ) = softmaxW i(pst ). (11)

5 EXPERIMENTS

To confirm that GIN learns belief states, we demonstrate numerical experiments with two non-
cooperative, partially-observed environments, each with three difficulties up to 20 agents. We
demonstrate that GINs outperform existing methods such as VIME, CommNet, and IC3Net by learn-
ing states.

5.1 EXPERIMENTAL SETTINGS

In the experiment, we use two environments, Predator-Prey (PP) and Traffic-Junction (TP). We train
the model in 2,000 epochs with 500 steps. The details of every tasks are show in Figure 3 and 4.

5.1.1 PREDATOR-PREY (PP)

Predator-prey (PP) is a multi-agent limited-sight task in which predators explores for prey at the
randomly initialized point in the grid world. PP is a widely used benchmark of MARL (Barrett,
Stone, and Kraus, 2011; Sukhbaatar, Fergus, and others, 2016; Singh, Jain, and Sukhbaatar, 2018)
The state space is a gridworld (Sutton, Barto, and others, 1998), and the prey is at the goal. The
sight of the predators is limited so that they could only observe around a few blocks. Hence, the
predators should have communicated to other predators so they would know the position of the prey
and visited areas.

5.1.2 TRAFFIC-JUNCTION (TJ)

Traffic-junction (TJ) is a simplified traffic junction in which n cars with limited-sight exchange
their positions to avoid collision. We also vary the difficulty of TJ with three modes. In the easy
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Figure 4: An illustration of the traffic junction (TJ) tasks in three difficulties. Each car had two
actions, ”accelerate” to proceed 1 step and ”brake” to stop. At the initial state, each car is given the
starting point and destination point, and is instructed to run the path as fast as possible by avoiding
collisions. To incentivize running faster, they receives a negative reward -0.05 in each time step.
After reaching their destination, the agent receives 0. If two cars would collide, both receives a
negative reward -1.To avoid collision, it is important to check if the other cars are reaching each
other by multi-agent communication. This is similar to sending a winker and brake pump in the
real world. The difficulty is that the setting is not monotonically cooperative. Hence, the agents sent
stop-signals to other agents to go as fast as possible.

mode, they solve the task for interchanging two orthogonal one-way roads. In the second difficulty
(medium), there is two-way traffic, and each car could go straight as well as turning left or right. In
the most difficult mode (hard), there are two parallel two-way traffic streams with four junctions.

5.2 BASELINES

We compare GINs to the existing exploration method such as recurrent neural networks, intrinsic
models, and multi-agent communication through learning states.

• LSTM: the individually controlled agents that had a recurrent neural network to obtain
the state. We confirme that multi-agent communication enhanced exploration ability by
exchanging information.

• CommNet (Sukhbaatar, Fergus, and others, 2016): A multi-agent communication method
assumed cooperative settings. The baseline is used for the cooperative since the model fails
to obtain true belief due to adversarial communication.

• IC3Net (Singh, Jain, and Sukhbaatar, 2018): State-of-the-art communication method in
non-cooperative settings. It had a gate to control “when to communicate” to deal with non-
cooperative rewards.

We use GIN as well as Curious GIN, which use negative hyperparamter η = −10.0.

5.3 EXPERIMENTAL RESULT

Table 1 shows the experimental results in five tasks, PP-easy, -hard, TJ-easy, -medium, and -hard. We
can confirm that GIN and the its variation record the stat-of-the-art performance in all the five tasks.
The reason why Curious GIN records the best result in cooperative task is there are few adversarial
attacks because the taks is not competitive but mixed task. The improvement becomes higher in the
harder tasks. We also show the learning curves for the harder tasks in Figure 5.

The learning curves of synchrony and fractions of true reporting are show in Figure 6. Notice that
synchrony is a zero-sum intrinsic reward, the mean value is always zero, and the deviation varies. We
can confirm that synchrony validaete the adversarial attacks to send negative reward. 6 (c) shows the
fractions of true reporting. We can see that synchrony make agents to sending the true infomration.
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Table 1: Comparison of return in each baselines. The experiment repeats 3 times, and mean value and
standard deviations are written. The bold texts indicates the best score, and the italic text indicates
the second best.

PP (competitive) TJ (mixed)
easy hard easy medium hard

LSTM -4.97 ± 1.33 -1.92 ± 0.35 -22.32 ± 1.04 -47.91 ± 41.2 -819.97 ± 438.7
CommNet -4.30 ± 1.14 -1.54 ± 0.33 -6.86 ± 6.43 -26.63 ± 4.56 -463.91 ± 460.8
IC3Net -2.44 ± 0.18 -1.03 ± 0.06 -4.35 ± 0.72 -17.54 ± 6.44 -216.31 ± 131.7
GIN -2.34 ± 0.21 -0.69 ± 0.14 -5.39 ± 4.14 -13.30 ± 4.98 -195.29 ± 58.46
Curious GIN -2.61 ± 0.24 -1.04 ± 0.06 -3.93 ± 1.46 -12.83 ± 2.50 -132.60 ± 17.91

Figure 5: Comparison in three methods for learning curves in the three harder tasks (PP-hard, TJ-
medium, TJ-hard) .

Figure 6: Details of the intrinsic reward and truthful reporting. Note that synchrony is relatively
lower than the external reward.

Figure 7: A learning curve in a zero-sum predator-prey task (n=3).

We show a comparison of IC3Net and GIN in fully-adversarial PP with f opponents in Fig. 7. In the
game, the maximum return is 1.5 in f = 0. From the perspective of the frequency of communica-
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tion, all the agents communicated at the convergence. In the setting of f = 1, although the expected
reward is expected to be 1.0, the reward of IC3Net decreases to 0.2. To confirm the frequency, the
opponent f = 1 sending fake reports and the other two agents learn that the channel is not infor-
mative, and decide not to communicate with each other. After that, the opponent had no incentive
to send information; at this point, the two agents began to communicate. On the other hand, the
maximum reward of GIN is 1.0.

To see frequency, the channel is used by the two honest agents. Seeing the synchrony in Fig. 7, the
honest agents gained the positive reward, and the opponent, the negative reward. As fake information
is detected by the validators, the opponent learned to not send information to the other agents.
Interestingly, the opponent finally learned to send information about the prey. To see the behavior
at this point, the success rate at which all the agents reached their prey is in the range of 5%-10%.
This indicated that the opponent also reached the prey, and reported the informative belief p(s) to
increase synchrony. Thus, we confirmed that GIN learns belief state through interaction between the
generators and the validator.

6 FUTURE DIRECTIONS

Before concluding, we discuss the limitations to showing the future direction. As far as we know,
there are several extensions of GIN to complement the drawbacks.

• Discrete-reporting GIN Although GIN assumes a continuous vector, the method cannot
be applied to the case wherein the system allows discrete reporting for some reason. For
instance, Pommerman (Resnick et al., 2018) uses NeurIPS’19 competition, provided by
Facebook AI, allowing only discrete reporting. In real-world traffic, communication be-
tween cars is achieved by bits such as the winker and brake pump. In these cases, the net-
work structure should have changed into one that optimized by Q-learning such as RIAL
(Foerster et al., 2016).

• Continuous-state GIN As the implementation in synchrony assumes a discrete state space, it
should enhance continuous state space as in normal distributions. Furthermore, the reader
can refer to other proper scoring rules (Miller, Resnick, and Zeckhauser, 2005) such as
quadratic and spherical rules.

• No-reward GIN GIN has a pathologic solution to exchanging constants with each other
without assuming an external reward. To deal with the problem, one can use error prediction
for observation.

• Conditional GIN As synchrony assumes all messages are obtained independently, it en-
hances the report that shares weights. It means the validator is vulnerable to civil attack
where the adversary attacks with majorities. To defend the civil attack, Bayesian consen-
sus models (Morris, 1974; Winkler, 1981) can be introduced. There are several methods to
estimate reliability of agents (Morris, 1974) and calculate the correlation between reports
(Winkler, 1981).

• Exploration over multiple Nash equilibriums Our work assumed there is one Nash equi-
librium that maximizes total return of the agents. Although in a single-agent finite discrete
state MDP the agent has one optimal policy π∗ = argmaxπ(Qπ(s0, ·)), in multi-agent
settings, the characteristics do not generally hold. The policy profile π = (π1, · · · , πn)
converges on several Bayesian Nash equilibria depending on the initial value, and there is
no guarantee that any equilibrium maximizes total returns.

• Asynchronous GIN GIN assumes that all agents repeat k-iterations in a step. This assump-
tion constrains the protocols in the case where a time-step is very short, such as 60 fps in TV
games. In such cases, asynchronous mechanisms are needed in which the belief is shared
if several agents cannot respond within a time-out. Several asynchronous policy gradients
such as A3C (Mnih et al., 2016) can be applied in such situations.

7 CONCLUSION

What has not been achieved in prior models of multi-agent reinforcement learning is task-invariance
in non-cooperative settings. This paper points out adversarial reporting in non-cooperative com-
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munication. Learning the belief state p(s) is a common objective for exploring partially observed
spaces. However, the existing frameworks can barely achieve belief states in non-cooperative set-
tings due to adversarial reporting. Our goal was to introduce a game-theoric intrinsic reward and
synchrony, inspired by honest reporting mechanisms in economics. The intrinsic reward naturally
led us to construct a game-theoric generative framework for reinforcement learning, the generative
integration network (GIN). We demonstrated that GINs outperform existing frameworks for con-
trol under uncertainty such as recurrent neural networks, intrinsic reward, and communication in
non-cooperative multi-agent settings.
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