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ABSTRACT

It has been argued that current machine learning models do not have common
sense, and therefore must be hard-coded with prior knowledge (Marcus, 2018).
Here we show surprising evidence that language models can already learn to
capture certain common sense knowledge. Our key observation is that a language
model can compute the probability of any statement, and this probability can be
used to evaluate the truthfulness of that statement. On the Winograd Schema
Challenge (Levesque et al., 2011), language models are 11% higher in accuracy
than previous state-of-the-art supervised methods. Language models can also
be fine-tuned for the task of Mining Commonsense Knowledge on ConceptNet
to achieve an F1 score of 0.912 and 0.824, outperforming previous best results
(Jastrzebski et al., 2018). Further analysis demonstrates that language models can
discover unique features of Winograd Schema contexts that decide the correct
answers without explicit supervision.

1 INTRODUCTION

It has been argued that current machine learning models do not have common sense (Davis &
Marcus, 2015; Marcus, 2018). For example, even best machine learning models perform poorly on
commonsense reasoning tasks such as Winograd Schema Challenge (Levesque et al., 2011; Liu et al.,
2016). This argument is often combined with another important criticism of supervised learning that it
only works well on problems that have a lot of labeled data. The Winograd Schema Challenge (WSC)
is an opposite of such problems because its labeled set size is only on the order of a few hundreds
examples, with no official training data. Based on this argument, it is suggested that machine learning
models must be integrated with prior knowledge (Marcus, 2018; Lenat, 1995).

As an example, consider the following question from the WSC dataset:

"The trophy doesn’t fit in the suitcase because it is too big."
What is "it"? Answer 0: the trophy. Answer 1: the suitcase.

The main point of this dataset is that no machine learning model today can do a good job at answering
this type of questions.

In this paper, we present surprising evidence that language models do capture certain common sense
knowledge and this knowledge can be easily extracted. Key to our method is the use of language
models (LMs), trained on a large amount of unlabeled data, to score multiple choice questions posed
by the challenge and similar datasets. In the above example, we will first substitute the pronoun ("it")
with the candidates ("the trophy" and "the suitcase"), and then use an LM to compute the probability
of the two resulting sentences ("The trophy doesn’t fit in the suitcase because the trophy is too big."
and "The trophy doesn’t fit in the suitcase because the suitcase is too big."). The substitution that
results in a more probable sentence will be the chosen answer. Using this simple method, we are able
to achieve 63.7% accuracy, 11% above that of the previous state-of-the-art result1.

To demonstrate a practical impact of this work, we show that the trained LMs can be used to enrich
human-annotated knowledge bases, which are known to be low in coverage and expensive to expand.
For example, "Suitcase is a type of container", a relevant knowledge to the above Winograd Schema
example, does not present in the ConceptNet knowledge base (Liu & Singh, 2004). The goal of this

1We open-sourced all language models used in this work. Links are excluded for anynomity.
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task is to add such new facts to the knowledge base at a cheaper cost than human annotation, in
our case using LM scoring. We followed the Commonsense Knowledge Mining task formulation
from (Angeli & Manning, 2014; Li et al., 2016; Jastrzebski et al., 2018), which posed the task as
a classification problem of unseen facts and non-facts. Without an additional classification layer,
LMs are fine-tuned to give different scores to facts and non-facts tuples from ConceptNet. Results
obtained by this method outperform all previous results, despite the small training data size (100K
instances). On the full test set, LMs can identify commonsense facts with 0.912 F1 score, which is
0.02 better than supervised trained networks (Jastrzebski et al., 2018).

2 RELATED WORK

Previous attempts at solving Winograd Schema Challenge usually involve heavy utilization of
annotated knowledge bases, rule-based reasoning, or hand-crafted features (Peng et al., 2015; Bailey
et al., 2015; Schüller, 2014). Sharma et al. (2015) rely on a semantic parser to understand the
question, query Google Search, and perform rule-based reasoning. Schüller (2014) formalizes the
knowledge-graph data structure and a reasoning process based on cognitive linguistics theories.
Bailey et al. (2015) introduce a mathematical reasoning framework with knowledge bases as axioms.

Rahman & Ng (2012) is an early empirical work towards WSC making use of learning. Their SVM,
however, utilizes nearly 70K hand-crafted features and additional supervised training data, while
being tested on a less restricted version of WSC. Concurrent work from Radford et al. (2018) attempts
WSC by fine-tuning pretrained Transformer LMs on supervised training data, but did not produce
better results than previous methods. In contrast, we make use of LSTMs, which are shown to be
qualitatively different (Tang et al., 2018) and obtain significant improvements without fine-tuning.

The previous best method on WSC makes use of the skip-gram model to learn word representations
(Liu et al., 2016). Their model, however, also includes supervised neural networks and three
knowledge bases. Our work uses the same intuition that unsupervised learning from texts such as a
skip-gram model can capture some aspect of commonsense. For example, Mikolov et al. (2013a;b)
show that by learning to predict adjacent words in a sentence, word vectors can be used to answer
analogy questions such as Man:King::Woman:?. The difference is that WSC requires more contextual
information, and hence we use LMs instead of just word vectors. By training LMs on very large text
corpora, we obtain good results without any supervised learning nor the aid of knowledge bases.

Closely related to our substitution method on Winograd Schema Challenge are Cloze type reading
comprehension tasks such as LAMBADA (Paperno et al., 2016) or Store Cloze Test (Mostafazadeh
et al., 2016), where LM scoring also reported great successes (Chu et al., 2016; Schwartz et al., 2017).
On a broader impact, neural LMs have been applied to improve downstream applications (Dai & Le,
2015; Ramachandran et al., 2017; Peters et al., 2018; Howard & Ruder, 2018; Radford et al., 2018)
by providing better sentence or paragraph vector representations.

Knowledge bases constructed by human are high in precision, but low in coverage. Since increasing
the coverage by more human annotation is expensive, automated methods have been proposed.
Previous attempts using deep neural networks are known to produce limited success on the ConceptNet
knowledge base, where training data is limited. Li et al. (2016) shows that a supervised LSTM is
outperformed by a simpler model in scoring unseen facts from ConceptNet. Furthermore, Jastrzebski
et al. (2018) find Deep Neural Network’s performance degrades significantly on a selected subset
of most novel test instances in comparison to training data. In Section 5.2, we demonstrate that our
trained LMs do not suffer from this phenomenon and outperform all previous methods on both test
criteria.

3 METHODS

3.1 SUBSTITUTION FOR LM SCORING

In this section, we introduce a simple and straightforward application of pretrained language models
on Winograd Schema Challenge. Our method is based on the observation that a language model can
compute the probability of any given statement. We use this probability to judge the truthfulness of
the statement.
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We first substitute the pronoun in the original sentence with each of the candidate choices. The
problem of coreference resolution then reduces to identifying which substitution results in a more
probable sentence. Language modeling subsequently becomes a natural solution by its definition.
Namely, language models are trained on text corpora, which encodes human knowledge in the form
of natural language. During inference, LMs are able to assign probability to any given text based on
what they have learned from training data. An overview of our method is shown in Figure 1.

Figure 1: Overview of our method and analysis. We consider the test "The trophy doesn’t fit in the
suitcase because it is too big." Our method first substitutes two candidate references trophy and
suitcase into the pronoun position. We then use an LM to score the resulting two substitutions.
By looking at the probability ratio at every word position, we are able to detect "big" as the main
contributor to trophy being the chosen answer. When "big" is switched to "small", the answer changes
to suitcase. This switching behaviour is an important feature characterizing the Winograd Schema
Challenge.

Consider a sentence S consisting of n consecutive words has its pronoun to be resolved specified
at the kth position:2 S = {w1, .., wk−1, wk ≡ p, wk+1, .., wn}. We make use of a trained language
model Pθ(wt|w1, w2, .., wt−1), which defines the probability of word wt conditioned on the previous
words w1, ..., wt−1. The substitution of a candidate reference c in to the pronoun position k results in
a new sentence Swk←c (we use notation wk ← c to mean that word wk is substituted by candidate c).
We consider two different ways of scoring the substitution:

• Scorefull(wk ← c) = Pθ(w1, w2, ..., wk−1, c, wk+1, ..., wn)

which scores how probable the resulting full sentence is, and

• Scorepartial(wk ← c) = Pθ(wk+1, ..., wn|w1, ..., wk−1, c)

which scores how probable the part of the resulting sentence following c is, given its antecedent. In
other words, it only scores a part of Swk←c conditioned on the rest of the substituted sentence. An
example of these two scores is shown in Table 1. In our experiments, we find that the partial scoring
strategy is generally better than the naive full scoring strategy. More comparison and analysis on
scoring type is done in Section 6.3.

Table 1: Example of full and partial scoring for the test "The trophy doesn’t fit in the suitcase because
it is too big." with two reference choices "the suitcase" and "the trophy".

c = the suitcase Scorefull(wk ← ”the suitcase”) = P (The trophy doesn’t fit in the suitcase because the suitcase is too big)
Scorepartial(wk ← ”the suitcase”) = P (is too big| The trophy doesn’t fit in the suitcase because the suitcase)

c = the trophy Scorefull(wk ← ”the trophy”) = P (The trophy doesn’t fit in the suitcase because the trophy is too big)
Scorepartial(wk ← ”the trophy”) = P (is too big| The trophy doesn’t fit in suitcase because the trophy)

3.2 RECURRENT LANGUAGE MODEL

We consider two types of Recurrent language models, one processes word inputs and the other
processes character inputs. All output layers are constructed to only produce word outputs, allowing

2In Winograd Schema Challenge, k is provided to avoid posing the question "Who is him/her?" or "What is
it?", exposing certain aspects of the correct answer.
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both types of input processing to join in ensembles where the conditional probability at each word
position is averaged over all ensemble members.

To handle human names in Winograd Schema Challenge, we simply make use of a very large
vocabulary (approximately 800K tokens). We follow architectural design and training scheme in
Józefowicz et al. (2016), with additional modifications to create more LM variants. More details
about our LMs can be found in Appendix A.

4 EXPERIMENTAL SETTINGS

In this section we describe training text corpora used in our experiments. We also detail tests for
commonsense reasoning and commonsense knowledge mining.

Training text corpora. We perform experiments on several different text corpora to examine the
effect of training data type on test accuracy. Namely, we consider LM-1-Billion, CommonCrawl,3
SQuAD and Gutenberg Books. For SQuAD, we collect context passages from the Stanford Question-
Answering Dataset (Rajpurkar et al., 2016) to form its training and validation set accordingly.

Commonsense Reasoning Tests. We consider two tests: Pronoun Disambiguation Problems and
Winograd Schema Challenge. The first consists of 60 pronoun disambiguation questions (PDP-60).4
The latter consists of 273 questions and is designed to work against techniques such as traditional
linguistic restrictions, common heuristics or simple statistical tests (Levesque et al., 2011).5

Rahman & Ng (2012) also built a Winograd Schema-like dataset but relaxed some criteria, allowing
the context wording to reveal information about the correct answer.6 We also found instances of
incorrect annotation and ambiguous tests in their training and test sets (see Appendix C). In this work,
therefore, we focus on the official Winograd Schema Challenge test set.

Commonsense Knowledge Mining test. Following (Angeli & Manning, 2014; Li et al., 2016), we
use the same data split on the ConceptNet knowledge base, which results in training, validation and
test sets having sizes of 100K, 1200, and 2400 respectively. With one half of the validation and test
sets being non-facts, the commonsense knowledge mining task is posed as performing classification
between facts and non-facts on these sets. Another test set in included which consists of 800 instances
with highest novelty measurement computed against the training set (Jastrzebski et al., 2018).

5 MAIN RESULTS

We first train our LMs on all text corpora and test them on the two Commonsense Reasoning tests.
The LMs are then finetuned for mining novel commonsense knowledge on ConceptNet.

5.1 COMMONSENSE REASONING TESTS

We first examine PDP-60 with unsupervised single-model resolvers by training one word-level LM
on the Gutenberg corpus. In Table 2, this resolver outperforms the previous best result by more
than 11% in accuracy. Next, we compare against systems that make use of both supervised and
unsupervised training data. As can be seen in Table 2, the single-model LM can still produce better
results when its competing system includes either supervised deep neural network or knowledge
bases. By training more LMs for ensembling, we are able to reach 70% accuracy, outperforming the
previous state-of-the-art result of 66.7%. For this task, we found full scoring gives better results than
partial scoring. In Section 6.3, we provide more comparison between these two types of scoring.

3We evaluate all models trained on CommonCrawl after approximately 10 billion words are consumed.
4https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/PDPChallenge2016.xml
5https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html
6For example, in the schema "The birds ate the seeds because they were hungry.", "hungry" is only applicable

to the correct answer "the birds" regardless of the context. In our WSC example, "big" is not particularly linked
to either suitcase or trophy, requiring the system to make use of the context.
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Table 2: Accuracy on PDP-60

Method Accuracy

Unsupervised Semantic Similarity Method (USSM) 48.3 %
Single-model LM-full (ours) 60.0 %

USSM + Cause-Effect + WordNet (Miller, 1995) + ConceptNet (Liu & Singh, 2004) 56.7 %
USSM + Supervised Deepnet 53.3 %
USSM + Supervised Deepnet + 3 Knowledge Bases 66.7 %
Ensemble of 5 Unsupervised LMs-full (ours) 70.0 %

On the harder task WSC-273 where questions are designed to exclude relevant knowledge in their
wording, incorporating supervised learning and knowledge base to USSM (Liu et al., 2016) provides
insignificant gain this time (+3%), compared to the large gain on PDP-60 (+19%). On the other
hand, our single-model resolver can still outperform the other methods by a large margin as shown in
Table 3. By ensembling predictions from multiple LMs, we obtain nearly 10% of absolute accuracy
improvement compared to the previous state-of-the-art. We note that Sharma et al. (2015) also
attempted WSC but their approach is only applicable to 53 out of 273 test cases, therefore not
comparable to our results.

Table 3: Accuracy on Winograd Schema Challenge

Method Accuracy

USSM + Knowledge Base 52.0 %
USSM + Supervised DeepNet + Knowledge Base 52.8 %

Single-model LM-partial 56.4%
Ensemble of 10 Unsupervised LMs-partial 61.5 %

Customizing training data for Winograd Schema Challenge As previous systems collect rele-
vant data from knowledge bases after observing questions during evaluation (Rahman & Ng, 2012;
Sharma et al., 2015), we also explored using this option. Namely, we build a customized text corpus
based on questions in commonsense reasoning tasks. It is important to note that this does not include
the answers and therefore does not provide supervision to our resolvers. In particular, we aggregate
documents from the CommonCrawl dataset that have the most overlapping n-grams with the questions.
The score for each document is a weighted sum of F1(n) scores when counting overlapping n-grams:

Similarity_Scoredocument =
4∑

n=1

nF1(n)

The top 0.1% highest ranked documents are chosen as our new training corpus. This procedure
resulted in nearly 1,000,000 documents, with the highest ranking document having a score of 8×10−2,
still relatively small compared to a perfect score of 1.0. We name this dataset Stories since most of
the constituent documents take the form of a story with long chain of coherent events. More statistics
on Stories can be found in Appendix B.

We train four different LMs on Stories and add them to the previous ensemble of 10 LMs, resulting
in an accuracy of 63.7% in the final system. Remarkably, single models trained on this corpus are
already extremely strong, with one word-level LM achieving 62.6% accuracy.

5.2 MINING COMMONSENSE KNOWLEDGE WITH LM SCORING

In the previous sections, we show that unsupervised LMs can outperform other methods equipped with
additional knowledge bases on two Commonsense Reasoning tests. In this section, we demonstrate
how these trained LMs can help expand the coverage of these human-annotated knowledge bases.

To make LM scoring applicable, knowledge tuples of the form Relation(head, tail) from ConceptNet
are first converted to a form that resembles natural language sentences. For example, UsedFor(post
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office, mail letter) is converted to "Post office is used for mail letter." by simply concatenating its
head, relation, and tail phrases in order. Although this simple procedure results in ungrammatical
sentences,7 we find our LMs can still adapt to this new data distribution and generalize extremely
well to test instances.

For fine tuning, each commonsense fact in the training set is accompanied by a negative example,
generated by replacing its tail phrase by another random phrase (for example "Post office is used for
dance."). Instead of adding a classification layer, we add to the original LM objective a term that
encourages perplexity discrepancy between the pair of positive and negative examples.

Lossnew = LossLM + max(0, log(Perppositive)− log(Perpnegative) + α),

where α indicates how much of a discrepancy is needed beyond which no loss is added. Perp is the
perplexity evaluated on the tail phrase, given the corresponding head and relation phrases. During
evaluation, a threshold is used to classify low-perplexity and high-perlexity instances as fact and
non-fact. We found a word-level LM with α = 0.5 perform best on the validation set.

Table 4: F1 scores on full test set proposed by Li et al. (2016) and novelty-based test set proposed by
Jastrzebski et al. (2018).

Method Full test set Novelty-based test set

DNN (Li et al., 2016) 0.892 0.720
Factorized (Jastrzebski et al., 2018) 0.890 0.821
Prototypical (Jastrzebski et al., 2018) 0.794 0.574

Single LM (ours) 0.912 0.824

As shown in Table 4, our fine-tuned LM outperforms other methods on both tests. Unlike DNN (Li
et al., 2016), LM ranking is robust to the novelty-based test instances, while supervised DNN
performance degrades significantly on this test despite good performance on the full test. We suggest
that this happened because supervised trained DNNs tend to overfit easily when training data is
limited. On the other hand, by leveraging a massive amount of unsupervised training data, LM
does not overfit to the limited training data for this task (100K instances) despite its large size of
approximately 2 billion parameters.

6 ANALYSIS

In this section, we perform analysis on both correct and incorrect predictions made by LM scoring on
the Winograd Schema, and the influence of training data types on test performance.

6.1 DISCOVERY OF WSC SPECIAL WORDS IN CORRECT PREDICTIONS

We introduce a method to detect keywords from the context at which our proposed resolvers make the
decision between the two candidates ccorrect and cincorrect. We then demonstrate that these detected
keywords surprisingly match the annotated features in each Winograd Schema question that play the
role of identifying the correct answer. Namely, we look at the following ratio:

qt =
Pθ(wt|w1, w2, ..., wt−1;wk ← ccorrect)

Pθ(wt|w1, w2, ..., wt−1;wk ← cincorrect)
,

where 1 ≤ t ≤ n for full scoring, and k + 1 ≤ t ≤ n for partial scoring. It follows that the choice
between ccorrect or cincorrect is made by whether the value of Q =

∏
t qt is bigger than 1.0 or not.

By looking at the value of each individual qt, it is possible to retrieve words with the largest values of
qt and hence most responsible for the final value of Q.

We visualize the probability ratios qt to have more insights into the decisions of our resolvers. Figure 2
displays a sample of incorrect decisions made by full scoring which are corrected by partial scoring.

7A grammatical conversion should be "The post office is used for mailing letters."
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Figure 2: A sample of questions from WSC-273 predicted incorrectly by full scoring, but corrected
by partial scoring. Here we mark the correct prediction by an asterisk and display the normalized
probability ratio q̂t by coloring its corresponding word. It can be seen that the wrong predictions are
made mainly due to qt at the pronoun position, where the LM has not observed the full sentence.
Partial scoring shifts the attention to later words and places highest q values on the special keywords,
marked by a squared bracket. These keywords characterize the Winograd Schema Challenge, as they
uniquely decide the correct answer. In the last question, since the special keyword appear before the
pronoun, our resolver instead chose "upset", as a reasonable switch word could be "annoying".

Interestingly, we found qt with large values coincides with the special keyword of each Winograd
Schema in several cases. Intuitively, this means our LMs assigned very low probability for the
keyword after observing the wrong substitution. It follows that we can predict the keyword in each
Winograd Schema question by selecting the word positions with the highest value of qt.

Table 5: Accuracy of keyword detection from forward and backward scoring by retrieving top-2
tokens with the highest value of qt

Resolution accuracy Special word retrieved

Forward scoring 63.7% 97 / 133 (70%)
Backward scoring 58.2% 18 / 45 (40%)

For questions with keywords appearing before the reference, we detect them by backward-scoring
models. Namely, we ensemble 6 LMs, each trained on one text corpus with word order reversed.
Overall, we are able to discover a significant number of special keywords (115 out of 178 correctly
answered questions) as shown in Table 5. This strongly indicates a correct understanding of the
context and a good grasp of commonsense knowledge in the resolver’s decision process.

6.2 WINOGRAD SCHEMA CONTEXT ABLATION

In the original proposal of the Winograd Schema Challenge, Levesque et al. (2011) argue that by
careful wording of the context, no relevant knowledge is revealed about the correct answer. For
example, "big" is not a property exclusive to either "trophy" or "suitcase". This forces the system to
resort to the context for correct answer, as opposed to exploiting simple statistical correlation in the
training data to cheat the test.

We use the trained LMs to expose such correlation in the used training data by gradually ablating
the context from a WSC question. For example, at 100% ablation, the scoring reduces to comparing
only "the trophy is too big" versus "the suitcase is too big". Figure 3-left shows that there is indeed
such bias. For some LMs the bias made them perform worse than random at 100% ablation, while
for others they perform better than random without any context. Note that this bias, however, does
not necessarily affect the corresponding LM-scoring when context is included. As more context is
included, all LMs improve and reach the best performance at 0% ablation, indicating the critical role
of context in their scoring.

6.3 SCORING TYPE AND EFFECT OF TRAINING DATA.

We look at incorrect predictions from a word-level LM. With full scoring strategy, we observe that
qt at the pronoun position is most responsible for a very large percentage of incorrect decisions as
shown in Figure 2. For example, with the test "The trophy cannot fit in the suitcase because it is
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Figure 3: Analysis of different factors contributing to WSC test performance. Left: Context ablation
with LMs trained on different text corpora. Middle: LM scoring type. Right: Training text corpus.

too big.", the system might return cincorrect ="suitcase" simply because ccorrect = "trophy" is a
very rare word in its training corpus and therefore is assigned a very low probability, overpowering
subsequent qt values.

To verify this observation, we apply a simple fix to full scoring by normalizing its score with the
unigram count of c: Scorefull normalized = Scorefull/Count(c). This normalization indeed fixes
full scoring in 9 out of 10 tested LMs on PDP-60. On WSC-273, the observation is again confirmed
as partial scoring, which ignores c altogether, strongly outperforms the other two scorings in all cases
as shown in Figure 3-middle. We therefore attribute the different behaviour observed on PDP-60 as
an atypical case due to its very small size.

Next, we examine the effect of training data on commonsense reasoning test performance. An
ensemble of 10 LMs is trained on each of the five corpora: LM-1-Billion, CommonCrawl, SQuAD,
Gutenberg Books, and Stories. A held-out dataset from each text corpus is used for early stopping
on the corresponding training data.8 Figure 3-right shows that among single training text corpora,
test performance improves as the training text contains longer documents (LM-1-Billion is a set of
mostly independent sentences, while Gutenberg or Stories are full books or very-long documents).
Finally, the ensemble trained on a mix of different datasets perform best, highlighting the important
role of diversity in training data for commonsense reasoning accuracy of the final system.

7 CONCLUSION

We introduced a simple method to apply pretrained language models to tasks that require common-
sense knowledge. Key to our method is the insight that large LMs trained on massive text corpora
can capture certain aspect of human knowledge, and therefore can be used to score textual statements.
On the Winograd Schema Challenge, LMs are able to achieve 11 points of accuracy above the best
previously reported result. On mining novel commonsense facts from ConceptNet knowledge base,
LM scoring also outperforms previous methods on two different test criteria. We analyse the trained
language models and observe that key features of the context that identify the correct answer are
discovered and used in their predictions.

Traditional approaches to capturing common sense usually involve expensive human annotation to
build knowledge bases. This work demonstrates that commonsense knowledge can alternatively be
learned and stored in the form of distributed representations. At the moment, we consider language
modeling for learning from texts as this supplies virtually unlimited data. It remains an open question
for unsupervised learning to capture commonsense from other modalities such as images or videos.

8To speed up training on these large corpora, we first train the models on the LM-1-Billion text corpus. Each
trained model is then divided into three groups of parameters: Embedding, Recurrent Cell, and Softmax. Each
of the three is optionally transferred to train the same architectures on CommonCrawl, SQuAD and Gutenberg
Books. The best transferring combination is chosen on a held-out set.
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A RECURRENT LANGUAGE MODELS

The base model consists of two layers of Long-Short Term Memory (LSTM) Hochreiter & Schmid-
huber (1997) with 8192 hidden units. The output gate of each LSTM uses peepholes and a projection
layer to reduce its output dimensionality to 1024. We perform drop-out on LSTM’s outputs with
probability 0.25.

Table 6: One-dimensional convolutional layers used to process character inputs

Conv 1 Conv 2 Conv 3 Conv 4 Conv 5 Conv 6 Conv 7 Conv 8

Kernel size 1 2 3 4 5 6 7 7
Output channels 32 32 64 128 256 512 1024 2048

For word inputs, we use an embedding lookup of 800000 words, each with dimension 1024. For
character inputs, we use an embedding lookup of 256 characters, each with dimension 16. We
concatenate all characters in each word into a tensor of shape (word length, 16) and add to its two
ends the <begin of word> and <end of word> tokens. The resulting concatenation is zero-padded to
produce a fixed size tensor of shape (50, 16). This tensor is then processed by eight different 1-D
convolution (Conv) kernels of different sizes and number of output channels, listed in Table 6, each
followed by a ReLU acitvation. The output of all CNNs are then concatenated and processed by
two other fully-connected layers with highway connection that persist the input dimensionality. The
resulting tensor is projected down to a 1024-feature vector. For both word input and character input,
we perform dropout on the tensors that go into LSTM layers with probability 0.25.

Table 7: All variants of recurrent LMs used in our experiments.

LM name Difference to base settings

Word-LM 1 Dropout rate 0.1
Word-LM 2 Learning rate 0.05
Word-LM 3 Residual connections around LSTM layers
Word-LM 4 Project dimension 2048, embedding dimension 2048, One layer of LSTM
Char-LM 1 Embedding dimension 4096, project dimension 2048
Char-LM 2 Embedding dimension 2048, project dimension 2048
Char-LM 3 Embedding dimension 1024, learning rate 0.1, Residual instead of Highway connection
Char-LM 4 Learning rate 0.002, Embedding dimension 1024

We use a single fully-connected layer followed by a Softmax operator to process the LSTM’s output
and produce a distribution over word vocabulary of size 800K. During training, LM loss is evaluated
using importance sampling with negative sample size of 8192. This loss is minimized using the
AdaGrad Duchi et al. (2011) algorithm with a learning rate of 0.2. All gradients on LSTM parameters
and Character Embedding parameters are clipped by their global norm at 1.0. To avoid storing large
matrices in memory, we shard them into 32 equal-sized smaller pieces. In our experiments, we used
8 different variants of this base model as listed in Table 7.

In Table 8, we listed all LMs and their training text corpora used in each of the experiments in
Section 5.

B STORIES CORPUS SCORE RANKING

Figure 4 shows a histogram of similarity score introduced in Section 5.1. Inspecting an excerpt from
the highest ranking document reveals many complex references from pronouns, within long chains of
events. We hypothesize that this allows LM trained on this corpus to learn disambiguating pronouns
to make correct predictions.
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Table 8: Details of LMs and their training corpus reported in our experiments.

Experiment LM variant / training corpus

Single models on PDP-60 Word-LM 1/Gutenberg and Char-LM 1/Gutenberg

Ensemble on PDP-60 Two single models on PDP-60 + Word-LM 2/SQuAD +
Char-LM 2/LM1B + Char-LM 3/CommonCrawl

Ensemble of 10 models Ensemble on PDP-60 +
on WSC-273 Word-LM 1/Gutenberg (different random seed) + Word-LM 1/LM1B +

Char-LM 4/Gutenberg + Char-LM 4/SQuAD + Char-LM 4/CommonCrawl

Ensemble of 14 models Ensemble of 10 models on WSC-273 +
on WSC-273 Word-LM 1/Stories + Char-LM 2/Stories +

Word-LM 3/Stories + Word-LM 4/Stories

Ensemble of 6 Word-LM 1/Gutenberg + Word-LM 1/Stories +
backward-scoring models Char-LM 4/CommonCrawl + Char-LM 4/SQuAD +
on WSC-273 Word-LM 4/LM1B + Char-LM 2/Stories +
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One day when John and I had been  out on some -
business of our master  's , and were returning
gently on  a long , straight road , at some  d-
istance we saw a boy trying to  leap a pony ove-
r a gate ; the pony  would not take the leap , -
and the  boy cut him with the whip , but  he on-
ly turned off on one side .  He whipped him aga-
in , but the pony  turned off on the other side
. Then  the boy got off and gave him a hard  t-
hrashing , and knocked him about the  head ...

Figure 4: Left: Histogram of similarity scores from top 0.1% documents in CommonCrawl corpus,
comparing to questions in Winograd Schema Challenge. Right: An excerpt from the document
whose score is 0.083 (highest ranking). In comparison, a perfect score is of 1.0. Documents in this
corpus contain long series of events with complex references from several pronouns.

C INCORRECT AND AMBIGUOUS ANNOTATIONS IN RELAXED WINOGRAD
SCHEMA DATASET

On a non-exhaustive inspection of the dataset constructed by (Rahman & Ng, 2012), we found some
instances of incorrect or ambiguous annotation.9 Below we list two cases with our comment.

• A series of injections are used to battle a type of cancer in patients because they have a
special type of drug which counteracts this sickness. Label: patients. Comment: Found in
training set, incorrect label.
• John attacked Tim because he was a communist. Label: Tim. Comment: Found in test set,

there is no clear answer to this question as communists can also attack their enemy.

D DATA CONTAMINATION IN COMMONCRAWL

Using the similarity scoring technique in section 5.1, we observe a large amount of low quality
training text on the lower end of the ranking. Namely, these are documents whose content are mostly
unintelligible or unrecognized by our vocabulary. Training LMs for commonsense reasoning tasks on
full CommonCrawl, therefore, might not be ideal. On the other hand, we detected and removed a
portion of PDP-122 questions presented as an extremely high ranked document.

9The released dataset can be found at http://www.hlt.utdallas.edu/~vince/data/
emnlp12/, inspection done as of September 26th, 2018.
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