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ABSTRACT

It is well-known that overparametrized neural networks trained using gradient-
based methods quickly achieve small training error with appropriate hyperparam-
eter settings. Recent papers have proved this statement theoretically for highly
overparametrized networks under reasonable assumptions. These results either
assume that the activation function is ReLU or they depend on the minimum eigen-
value of a certain Gram matrix. In the latter case, existing works only prove that
this minimum eigenvalue is non-zero and do not provide quantitative bounds which
require that this eigenvalue be large. Empirically, a number of alternative activation
functions have been proposed which tend to perform better than ReLU at least
in some settings but no clear understanding has emerged. This state of affairs
underscores the importance of theoretically understanding the impact of activation
functions on training.
In the present paper, we provide theoretical results about the effect of activation
function on the training of highly overparametrized 2-layer neural networks. A
crucial property that governs the performance of an activation is whether or not it
is smooth:

• For non-smooth activations such as ReLU,SELU,ELU, which are not smooth
because there is a point where either the first order or second order derivative
is discontinuous, all eigenvalues of the associated Gram matrix are large under
minimal assumptions on the data.

• For smooth activations such as tanh, swish, polynomial, which have derivatives
of all orders at all points, the situation is more complex: if the subspace spanned
by the data has small dimension then the minimum eigenvalue of the Gram
matrix can be small leading to slow training. But if the dimension is large and
the data satisfies another mild condition, then the eigenvalues are large. If we
allow deep networks, then the small data dimension is not a limitation provided
that the depth is sufficient.

We discuss a number of extensions and applications of these results.

1 INTRODUCTION

It is now well-known that overparametrized feedforward neural networks trained using gradient-based
algorithms with appropriate hyperparameter choices reliably achieve near-zero training error, e.g.,
Neyshabur et al. (2015). Importantly, overparametrization also often helps with generalization; but
our central concern here is the training error which is an important component in understanding
generalization. We study the effect of the choice of activation function (we often just say activation)
on the training of overparametrized neural networks. By overparametrized setting we roughly mean
that the number of parameters or weights in the networks is much larger than the number of data
samples.

The well-known universal approximation theorem for feedforward neural networks states that any
continuous function on a bounded domain can be approximated arbitrarily well by a finite neural
network with one hidden layer. This theorem is generally stated for specific activation functions
such as sigmoid or ReLU. A more general form of the theorem shows this for essentially all non-
polynomial activations (Leshno et al., 1993; Pinkus, 1999; Sonoda & Murata, 2017). This theorem
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concerns only the expressive power and does not address how the training and generalization of
neural networks are affected by the choice of activation, nor does it provide quantitative information
about the size of the network needed for the task.

Traditionally, sigmoid and tanh had been the popular activations but a number of other activations
have also been considered including linear and polynomial activations (Arora et al., 2019a; Du &
Lee, 2018; Kileel et al., 2019). One of the many innovations in the resurgence of neural networks
in the last decade or so has been the realization that ReLU activation generally performs better than
the traditional choices in terms of training and generalization. ReLU is now the de facto standard
for activation functions for neural networks but many other activations are also used which may be
advantageous depending on the situation (e.g. (Goodfellow et al., 2016, Chapter 6)). In practice,
most activation functions often achieve reasonable performance. To quote Goodfellow et al. (2016):
In general, a wide variety of differentiable functions perform perfectly well. Many unpublished
activation functions perform just as well as the popular ones. Concretely, Ramachandran et al.
(2018) provides a list of ten non-standard functions which all perform close to the state of the art at
some tasks. This hints at the possibility of a universality phenomenon for training neural networks
similar to the one for expressive power mentioned above.

Search for activation functions. A number of recent papers have proposed new activations—such
as ELU, SELU, penalized tanh, SiLU/swish—based on either theoretical considerations or automated
search using reinforcement learning and other methods; e.g. Clevert et al. (2016); Klambauer et al.
(2017); Xu et al. (2016); Elfwing et al. (2017); Ramachandran et al. (2018). For definitions, see
Section 2 and Appendix B. These activation functions have been found to be superior to ReLU in
many settings. See e.g. Eger et al. (2018); Nwankpa et al. (2018) for overview and evaluation. We
quote once more from Goodfellow et al. (2016): The design of hidden units is an extremely active
area of research and does not yet have many definitive guiding theoretical principles.

Theoretical analysis of training of highly overparametrized neural networks. Theoretical anal-
ysis of neural network training has seen vigorous activity of late and significant progress was made
for the case of highly overparametrized networks. At a high level, the main insight in these works
is that when the network is large, small changes in weights can already allow the network to fit the
data. And yet, since the weights change very little, the training dynamics approximately behaves as
in kernel methods and hence can be analyzed (e.g. Jacot et al. (2018); Li & Liang (2018); Du et al.
(2019a); Allen-Zhu et al. (2019); Du et al. (2019b); Allen-Zhu et al. (2018); Arora et al. (2019c);
Oymak & Soltanolkotabi (2019)). There are also many other approaches for theoretical analysis, e.g.
Brutzkus et al. (2018); Mei et al. (2018); Chizat & Bach (2018). Because of the large number of
papers on this topic, we have chosen to list only the most closely related ones.

Analyses in many of these papers involve a matrix G, either explicitly (Jacot et al., 2018; Du et al.,
2019a;b) or implicitly (Allen-Zhu et al., 2019). (This matrix also occurs in earlier works (Xie et al.,
2017; Tsuchida et al., 2018).) λmin(G), the minimum eigenvalue of G, is an important parameter
that directly controls the rate of convergence of gradient descent training: the higher the minimum
eigenvalue the faster the convergence. Jacot et al. (2018); Du et al. (2019b) show that λmin(G) > 0
for certain activations assuming that no two data points are parallel. Unfortunately, these results do
not provide any quantitative information. The result of Allen-Zhu et al. (2019), where the matrix
G does not occur explicitly, can be interpreted as showing that the minimum eigenvalue is large
under the reasonable assumption that the data is δ-separated, meaning roughly that no two data points
are very close, and the activation used is ReLU. This quantitative lower bound on the minimum
eigenvalue implies fast convergence of training. So far, ReLU was the only activation for which such
a proof was known.

Our results in brief. A general result one could hope for is that based on general characteristics of
the activations, such as smoothness, convexity etc., one can determine whether the smallest eigenvalue
of G is small or large. We prove results of this type. A crucial distinction turns out to be whether
the activation is (a) not smooth (informally, has a “kink”) or (b) is smooth (i.e. derivatives of all
orders exist over R). The two classes of functions above seem to cover all “reasonable” activations;
in particular, to our knowledge, all functions used in practice seem to fall in one of the two classes
above.
• Activations with a kink, i.e., those with a a jump discontinuity in the derivative of some constant

order, have all eigenvalues large under minimal assumptions on the data. E.g., the first derivatives
of ReLU and SELU, the second derivative of ELU have jump discontinuities at 0. These results
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imply that for such activations, training will be rapid. We also provide a new proof for ReLU with
the best known lower bound on the minimum eigenvalue.

• For smooth activations such as polynomials, tanh and swish the situation is more complex: the
minimum eigenvalue can be small depending on the dimension of the span of the dataset. We give
a few examples: Let n be size of the dataset which is a collection of points in Rd, and let d′ be the
dimension of the span of the dataset. For quadratic activation, if d′ = O(

√
n), then the minimum

singular value is 0. For tanh and swish, if d′ = O(log0.75 n), then the minimum eigenvalue is
inverse superpolynomially small (exp(−Ω(n1/2d′))). In fact, a significant fraction of eigenvalues
can be small. This implies that for such datasets, training using smooth activations will be slow if
the dimension of the dataset is small. A trade off is possible: assuming stronger bounds on the
dimension of the span gives stronger bounds on the eigenvalues. We also show that these results are
tight in a precise sense. We further show that the above limitation of smooth activations disappears
if one allows sufficiently deep networks.

Unless otherwise stated, we work with one hidden layer neural nets where only the input layer is
trained. This choice is made to simplify exposition; extensions of various types including the ones
that drop the above restriction are possible and discussed in Section 5.

2 PRELIMINARIES

Denote the unit sphere in Rn by Sn−1 :=
{
u ∈ Rn :‖u‖2 = 1

}
where‖u‖2 :=‖u‖22 :=

∑n
i=1 u

2
i .

For u, v ∈ Rn, define the standard inner product by 〈u, v〉 :=
∑
i uivi. Given a set S, denote by

U (S) the uniform distribution over S. N (µ, σ2) denotes the univariate normal distribution with
mean µ and variance σ2. Let IS denote the indicator of the set S. For a matrix A containing elements
aij , ai denotes its i-th column. We define some of the popular non-traditional activation functions
here: swish(x) := x

1+e−x (Ramachandran et al., 2018) (called SiLU in Elfwing et al. (2017));
ELU(x) := max (x, 0) + min (x, 0) (ex − 1) (Clevert et al., 2016); SELU(x) := α1 max (x, 0) +
α2 min (x, 0) (ex − 1), where α1 and α2 are two different constants (Klambauer et al., 2017). See
Appendix B for more definitions.

We consider 2-layer neural networks

F (x;a,W) :=
cφ√
m

m∑
k=1

akφ
(
wT
k x
)
, (1)

where x ∈ Rd is the input and W = [w1, . . . ,wm] ∈ Rm×d is the hidden layer weight matrix
and a ∈ Rm is the output layer weight vector. Activation function φ : R → R acts entrywise
on vectors and c2φ := Ez∈N (0,1)φ(z)2. In the case of one hidden layer nets, we set cφ = 1 to
simplify expressions; this is without loss of generality. For deeper networks we do not do this as
this assumption would result in loss of generality. Elements of W and a have been initialized i.i.d.
from the standard Gaussian distribution. This initialization and the parametrization in Equation 1 are
from Du et al. (2019b). Together, these will be referred to as the DZPS setting. Parametrization in
practice does not have cφ√

m
in Equation 1; standard initializations in practice include He (He et al.,

2015) and Glorot initializations (Glorot & Bengio, 2010) and variants. In the DZPS setting, the
argument of the activation can be larger compared to the standard initializations, making the analysis
harder. Our theorems apply to the DZPS setting as well as to standard initializations and for the
latter easily follow as corollaries to the analysis in the DZPS setting. We defer this discussion to the
appendix. Unless otherwise stated, we work in the DZPS setting with one hidden layer neural nets
with initialization as above with only the input layer trained.

Given labeled input data {(xi, yi)}ni=1, where xi ∈ Rd and yi ∈ R, we want to find the best fit weights
W so that the quadratic loss L({(xi, yi)}ni=1;a,W) := 1

2

∑n
i=1(yi − F (xi;a,W))2 is minimized.

We train the neural network by fixing the output weight vector a at random initialization and training
the hidden layer weight matrix W (output layer being trained can be easily handled as in Du et al.
(2019a;b); See Appendix M for details). In this paper, we focus on the gradient descent algorithm for
this purpose. The gradient descent update rule for W is given by W(t+1) := W(t)− η∇WL(W(t)),
where W(t) denotes the weight matrix after t steps of gradient descent and η > 0 is the learning rate.
The output vector u(t) ∈ Rn is defined by u(t)

i := F (xi;a,W
(t)).
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Next, we define the matrix alluded to earlier, the Gradient Gram matrix G ∈ Rn×n associated with
the neural network defined in (1), referred to as the G-matrix in the sequel:

gi,j :=
1

m

∑
k∈[m]

a2
k φ
′(wT

k xi)φ
′(wT

k xj)〈xi,xj〉. (2)

We will often work with the related matrix M ∈ Rmd×n, whose i-th column is obtained by vectorizing
∇WF(xi, yi), i.e., Md(k−1)+1:dk,i := akφ

′ (wT
k xi

)
xi for k ∈ [m]. G is a Gram matrix: G =

1
mMTM. Denote by λi(G) the i-th eigenvalue of G with λ1 ≥ λ2 ≥ . . ., and similarly by σi(M)

the i-th singular value of M. These quantities are related by λi(G) = 1
mσ

2
i (M).

Following Allen-Zhu et al. (2019), we make the following mild assumptions on data.
Assumption 1. ‖xi‖2 = 1 ∀i ∈ [n].

Assumption 2. ‖(In − xix
T
i )xj‖2 ≥ δ ∀i, j ∈ [n], i 6= j i.e., the distance between the subspaces

spanned by xi and xj is at least δ > 0.

Assumption 1 can be easily satisfied by the following preprocessing: renormalize each xi so that
‖xi‖ ≤ 1/

√
2, add another coordinate to each xi so that ‖xi‖ = 1/

√
2 and then add another

coordinate with value 1/
√

2 to each xi. This ensures that ‖xi − xj‖2 ≥ δ implies Assumption 2 for
xi,xj , which we later verify empirically for CIFAR10.

3 REVIEW OF RELEVANT PRIOR WORK

To motivate the importance of the G-matrix, let us first consider the continuous time gradient flow
dynamics Ẇ(t) = −∇WL(W(t)), where L(W) denotes the loss function (in the notation we
suppressed dependence on data and the weights of the output layer) and Ẇ denotes the derivative
with respect to t. Let y ∈ Rn be the vector of outputs. It follows from an application of the chain
rule that u̇(t) = G(t)(y − u(t)). Here g(t)

i,j := 1
m

〈
xi,xj

〉∑m
k=1 φ

′(w
(t)T
k xj)φ

′(w
(t)T
k xi). It can be

shown that as m→∞, the matrix G(t) remains close to its initial value G(0) which is exactly the
G-matrix (see e.g. Jacot et al. (2018); Arora et al. (2019b) for closely related results). This leads us
to the approximate solution, which upon diagonalizing the PSD matrix G(0) is given by

y − u(t) =
∑
i∈[n]

(e−λitviv
T
i )(y − u(0)). (3)

Thus, it can be seen that the eigenvalues of the G-matrix, in particular λmin(G(0)), control the rate
of change of the output of the neural network towards the true labels. The following result plays a
central role in the present paper.
Theorem 3.1 (Theorem 4.1 of Du et al. (2019a)). Let φ be ReLU. Define matrix G∞ as
G∞ := Ew∼N (0,Id) IwTxi≥0,wTxj≥0

〈
xi,xj

〉
. Assume λ = λmin (G∞) > 0. If we set

m ≥ Ω
(
n6λ−4κ−3

)
and η ≤ O

(
λn−3

)
and initialize wk ∼ N (0, Id) and ak ∼ U {−1,+1}

for k ∈ [m], then with probability at least 1− κ over the random initialization, for t ≥ 1 we have
‖y − u(t)‖22 ≤ (1− 0.5ηλ)

t ‖y − u(0)‖22.

In the theorem above it can be seen that the time required to reach a desired amount of error is inversely
proportional to λ. Du et al. (2019b) extended the above result to general real-analytic functions.
While the definition of the G-matrix shows that it is positive semidefinite, it is not immediately clear
that the matrix is non-singular. But the following theorem, from Du et al. (2019b) says that the matrix
is indeed non-singular under very weak assumptions on the data and activation function. A similar
result for the limit m→∞ but for more general non-polynomial Lipschitz activations was shown in
Jacot et al. (2018) using techniques from Daniely et al. (2016).
Lemma 3.2 (Lemma F.1 in Du et al. (2019b)). If φ is a non-polynomial analytic function and xi and
xj are not parallel for distinct i, j ∈ [n], then λmin (G∞) > 0.

In these papers the number of neurons required and the rate of convergence depend on λmin(G∞)
(e.g. Theorem 3.1 above) and thus it is necessary for the matrix to have large minimum singular
value for their analysis to give useful quantitative bounds. Unfortunately, these papers do not provide
quantitative lower bound for λmin (G∞).
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Allen-Zhu et al. (2019) considered L-layer networks using ReLU (see Appendix D for details on their
parametrization). A major step in their analysis is a lower bound on the gradient norm at each step.

Theorem 3.3 (Theorem 3 in Allen-Zhu et al. (2019)). With probability at least 1 −
exp(−Ω(m/poly(n, 1

δ ))) with respect to the initialization, for every W such that ‖W−W(0)‖F ≤
1/poly(n,δ−1), we have ‖∇WL (W) ‖2F ≥ Ω(L(W)mδd−1n−2).

We show that λmin (G) is directly related to the lower bound on the gradient in the case of ReLU. It
is not clear if the same method can be extended to other activation functions.

With this in mind, we aim to characterize the minimum eigenvalue of Gram matrix G∞. Since, G∞

is the same matrix as G(0) in the limit m→∞, we will focus on proving high probability bounds
for eigenvalues of G(0).

4 MAIN RESULTS

4.1 ACTIVATIONS WITH A KINK

For any positive integer constant r, presence of a jump discontinuity in the r-th derivative of the
activation leads to a large lower bound on the minimum eigenvalue. The activation function has the
form φ(x) = φ1(x) Ix<α + φ2(x) Ix≥α, where −1 ≤ α ≤ 1. Recall that Cr+1 denotes the set of
r + 1 times continuously differentiable functions. We need φ1 and φ2 to satisfy the following set of
conditions parametrized by r and denoted Jr:

• φ1, φ2 ∈ Cr+1 in the domains (−∞, α] and [α,∞), respectively.

• The first (r + 1) derivatives of φ1 and φ2 are upper bounded in magnitude by 1 in (−∞, α]
and [α,∞) respectively.

• For 0 ≤ i < r, we have φ(i)
1 (α) = φ

(i)
2 (α).

• |φ(r)
1 (α)− φ(r)

2 (α)| = 1, i.e., the r-th derivative has a jump discontinuity at α.

Remark. We fix the constants in Jr to 1 for simplicity. We could easily parameterize these constants
and make explicit the dependence of our bounds on these parameters. The requirement on the
boundedness of derivatives is also not essential and can be relaxed as “all the action happens” in the
interval [−O(

√
logm), O(

√
logm)].

J1 covers activations such as ReLU, SELU and LReLU, while J2 covers activations such as ELU.
Below we state the bound explicitly for J2. Similar results hold for Jr for r ≥ 1. See Section K for
details.

Theorem 4.1 (J2 activations). : If the activation φ satisfies J2 then we have

λmin(G(0)) ≥ Ω(δ3n−7(log n)−1),

with probability at least 1 − e−Ω(δm/n2) with respect to {w(0)
k }mk=1 and {a(0)

k }mk=1, given that
m > max(Ω(n3δ−1 log(nδ−1)),Ω(n2δ−1 log d)).

The theorem above shows that the presence of a jump discontinuity in the derivative of activation
function (or one of its higher derivatives) leads to fast training of the neural network. For the special
case of ReLU we give a new proof. To our knowledge, lower bound on the minimum eigenvalue
of the G-matrix below is the best known. The proof technique uses Hermite polynomials and is
motivated by our results for smooth activations in the next section. See Section L for details.

Theorem 4.2. If the activation is ReLU and m ≥ Ω̃(n4δ−3 log4 n), then λmin(G(0)) ≥
Ω((δ1.5 log−1.5 n), with probability at least 1− e−Ω̃(mδ3n−2 log−3 n).

The dependence on n in the above bound is inverse-polylogarithmic as opposed to inverse-polynomial
that seems to result from using the technique of Allen-Zhu et al. (2019). It implies that with
m = Ω̃(n6/δ6) in poly(log(n/ε), 1/δ) steps gradient descent training achieves error less than ε.

4.2 SMOOTH ACTIVATIONS

In contrast to activations with a kink, the situation is more complex for smooth activations and we
can divide the results into positive and negative.
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Negative results for smooth activations. The G-matrix of constant degree polynomial activations,
such as quadratic activation, must have many zero eigenvalues; and of sufficiently smooth activations,
such as tanh or swish, must have many small eigenvalues, if the dimension of the span of data is
sufficiently small:

Theorem 4.3 (restatement of Theorem F.2). Let the activation be a degree-p polynomial such that
φ′(x) =

∑p−1
l=0 c`x

` and let d′ = dim(span{x1 . . .xn}) = O(n1/p). Then we have λmin(G(0)) =
0. Furthermore, λk = 0, for k ≥ dn/d′e.
Theorem 4.4 (restatement of Theorem F.10). Let the activation function be tanh and let d′ =
dim(span{x1 . . .xn}) = O(log0.75 n). Then we have λmin(G(0)) ≤ exp(−Ω(n1/2d′)), with prob-
ability at least 1 − 1/n3.5 over the random choice of weight vectors {w(0)

k }mk=1 and {a(0)
k }mk=1.

Furthermore, the same upper bound is satisfied by λk, for k ≥ dn/d′e.

See Appendix F for proofs. Note that the bounds above do not make any assumption on the data other
than the dimension of its span. The proof technique generalizes to give similar results for general
classes of smooth activation such as swish (Section 6 and Appendix H). In contrast to the above
result, the average eigenvalue of the G-matrix for all reasonable activation functions is large:

Theorem 4.5 (informal version of Theorem E.1). Let φ be a non-constant activation function, with
Lipschitz constant α and let G be its G-matrix. Then, tr(G) = Ω(n) with high probability.

The previous two theorems together imply that the G-matrix is poorly conditioned when d =
O(log0.75 n) and the activation function is smooth, e.g., tanh. The effect on training of G-matrix
being poorly conditioned can be easily seen in Equation 3 for the m→∞ case with gradient flow
discussed earlier. For the finite m setting, we show that the technique of Arora et al. (2019c) can be
extended to the setting of smooth functions (see Appendix M.4) to prove the following.

Theorem 4.6. Denote by vi the eigenvectors of G(0) and with λi the corresponding eigenvalue.
With probability at least 1 − κ over the random initialization, the following holds for t ≥ 0,
‖y−u(t)‖2 ≤ (

∑n
i=1(1−ηλi)2t(vTi (y−u(0)))2)1/2+ε, providedm ≥ Ω(n5κ−1λmin(G(0))−4ε−2)

and η ≤ O(n−2λmin(G(0))).

This result can be interpreted to mean that in the small perturbative regime of Du et al. (2019a); Arora
et al. (2019c), smooth functions like tanh do not train fast. The learning rate in the above result is
small as λmin(G(0)) is small. Analyzing the training for higher learning rates remains open.

Positive results for smooth activations. We show that in a certain sense the results of Theorem 4.3
and Theorem 4.4 are tight. Let us illustrate this for Theorem 4.4. Suppose that the activation function
is tanh and that the dimension of the span V of the data x1, . . . ,xn is Ω(nγ), for a constant γ.
Furthermore, we assume that the data is smoothed in the following sense. We start with a preliminary
dataset x′1, . . . ,x

′
n with the same span V , then we perturb each data point by adding i.i.d. Gaussian

noise, i.e. xi = x′i + ni, and normalize to have unit Euclidean norm (see Assumption 3 for a precise
statement). This Gaussian noise is obtained by taking the standard Gaussian variable on V multiplied
by a small factor. Thus the new data points have span V . For such datasets we show the following
theorem. For more general theorems for polynomial activations and tanh, see Theorem I.3 and
Theorem I.4 respectively.

Theorem 4.7 (Informal version of Corollary I.4.2). Let the activation be tanh, let the perturbation
noise be of the order (δ/

√
n) and d′ = dim span{x1, . . . ,xn} ≥ Ω(nγ), for a constant γ. Then

we have λmin(G(0)) ' Ω(δ(2/γ)n−(3/γ)) with probability at least 0.99 w.r.t. the noise matrix N,
{w(0)

k }mk=1 and {a(0)
k }mk=1, provided m ' Ω̃(n6/γδ−4/γ).

We now say a few words about our assumption that the data is smoothed. Smoothed analysis,
originating from Spielman & Teng (2004), is a general methodology for analyzing efficiency of
algorithms (often those that work well in practice) and can be thought of as a hybrid between worst-
case and average-case analysis. Since in nature, problem instances are often subject to numerical and
observational noise, one can model them by the process of smoothing. Smoothed analysis involves
analyzing the performance of the algorithm on smoothed instances, which can be substantially better
than the worst-case instances. Smoothed analysis has also been used in learning theory and our proof
is inspired by Anderson et al. (2014) addressing a different problem, namely rank-1 decomposition
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of tensors. In the present case, smoothness of the data rules out situations where the data has span d′
in a non-robust sense: most of the data points lie in small dimensional subspace and the dimension of
the span is high because of a few points. Some such condition seems essential.

In another direction, we show that if the network is sufficiently deep for tanh, only the separability
assumption on the data suffices. For deep networks, Du et al. (2019b) generalized the notion of
G-matrix to be the G-matrix for the penultimate layer (see Section J). This matrix and its eigenvalues
play similar role in the dynamics of training as for the one-hidden layer case discussed before; we
continue to denote this matrix by G(0). This result can be generalized to other smooth activations.
Theorem 4.8 (informal version of Theorem J.6). Let the activation be tanh and let the data satisfy
Assumption 1 and Assumption 2. Let the depth L satisfy L = Θ(log 1/δ). Then λmin(G(0)) ≥
e−Ω(

√
logn) � 1/poly(n) with high probability, provided m ≥ Ω

(
poly(n, 1/δ)

)
.

5 EXTENSIONS

For a large part of the paper we confine ourselves to the case of one hidden layer where only the
input layer is trained. This is in order to focus on the core technical issues of the spectrum of the
G-matrix. Indeed, our results can be extended along several axes, often by combining our results
for the G-matrix with existing techniques from the literature. We now briefly discuss some of these
extensions. Some of these are worked out in the appendix for completeness.

We can easily generalize to the case when the output layer is also trained (Section M.2). Also, we
have focused on training with gradient descent, but training with stochastic gradient descent can also
be analyzed for activations in Jr (Section M.5).

Generalization bounds from Arora et al. (2019c) can easily be extended to the set of functions
satisfying Jr using techniques from Du et al. (2019b). Similarly, techniques from Allen-Zhu et al.
(2019) for higher depth generalize to functions such as SELU, LReLU and ELU. We believe this also
generalizes to Jr. Other loss functions such as cross-entropy can be handled as well as activations
with more than one kink. The case of multi-class classification can also be handled (Sec. M.3). We
do not pursue these directions in this paper choosing to focus on the core issues about activations.
We briefly discuss extension to more general classes of activations in Appendix H.

6 PROOF SKETCH

In this section, we provide a high level sketch of the proofs of our results.
Activations with a kink. We first sketch the proof of Theorem K.1, which shows that the minimum
eigenvalue of the G-matrix is large for activations satisfying J1. As an illustrative example, consider
ReLU. Its derivative, the step function, is discontinuous at 0. In their convergence proof for ReLU
networks, Allen-Zhu et al. (2019) prove that the norm of the gradient for a W is large if the loss at
W is large. We observe that their technique also shows a lower bound on the lowest singular value
of the M-matrix by considering the norm of all possible linear combinations of the columns. For
ζ ∈ Sn−1, define the linear combination fζ(w) :=

∑n
i=1 ζi φ

′(wTxi)xi.

Theorem 6.1 (Informal statement of Claim K.2). Let φ ∈ J1. For any ζ ∈ Sn−1, fζ(w) has large
norm with high probability for a randomly chosen standard Gaussian vector w.

Using an ε-net argument on ζ, the above result implies a lower bound on the minimum singular
value of M. Allen-Zhu et al. (2019) write w as two independent Gaussian vectors w′ and w′′,
with large and small variances respectively. They isolate an event E involving w′. This event
happens if all but one of the summands in fζ(w) =

∑n
i=1 ζi φ

′((w′ + w′′)Txi)xi are fixed to
constant values with good probability over the choice of w′′. For the exceptional summand, say
ζj φ

′((w′ + w′′)Txj)xj , the choice of w′ is such that the argument (w′ + w′′)Txj can be on either
side of the jump discontinuity with large probability over the random choice of w′′. The random
choice of w′′ now shows that the whole sum is not concentrated and so with significant probability
has large norm. They show that E has substantial probability over the choice of w′, which implies
that with significant probability ‖fζ(w)‖ is large. The property of all but one of the summands being
fixed relies crucially on the fact that the derivative of ReLU is constant on both sides of the origin.

When generalizing this proof to activations in J1 we run into the difficulty that the derivative need
not be a constant function on the two sides of the jump discontinuity. We are able to resolve this
difficulty with additional technical ideas, in particular, using the assumption that |φ′(·)| is bounded.
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We work with event E′ involving w′: in the sum defining fζ(w) there is one exceptional summand
ζj φ

′((w′ + w′′)Txj)xj such that the sum involving the rest of the summands—while not fixed to a
constant value unlike for ReLU—does not change much over the random choice of w′′. Whereas the
exceptional summand varies a lot with the random choice of w′′ because the argument moves around
the jump discontinuity. We show that E′ has significant probability, which proves the theorem.

Now, we look at the proof of Theorem 4.1 which handles activations in J2. The goal again is to show
that for any ζ ∈ Sn−1, the function fζ(w) has large norm with good probability for the random choice
of w. To this end, we consider the Taylor approximation of gζ(w) :=

∑n
i=1 ζi φ

′(wTxi) around w′,
that is, gζ(w′ + w′′) = gζ(w

′) + (∇wgζ(w
′))Tw′′ + H(w′,w′′) where H is the error term. We

show that
∥∥∇wgζ(w

′)
∥∥ is likely to be large over the random choice of w′, and so (∇wgζ(w

′))Tw′′

is likely to be not concentrated on any single value if the error term H(w′,w′′) is sufficiently small,
which we show. To prove that ‖∇wgζ(w

′)‖ is large, note that∇wgζ(w
′) =

∑n
i=1 ζi φ

′′(wTxi)xi,
which allows us to use the argument above for fζ(w) being large in the case of J1. This implies
that gζ(w) is large with good probability, which implies, with further argument, that fζ(w) is large.
Full proofs of these results can be found in Appendix K. As mentioned earlier, the argument can be
generalized to condition Jr for any constant r; we omit the details.

Smooth activations. First we look at the proof sketch for Theorem 4.4. To understand the behavior
of smooth activations under gradient descent, we first look at the behavior of a natural subclass of
smooth functions: polynomials. The proof actually works with the M -matrix introduced earlier
whose spectrum is closely related to that of G = MTM/m. In this case, the problem of computing
the smallest eigenvalue reduces to finding a non-trivial linear combination of the columns of M
resulting in 0. We show that if d′, the dimension of the span of the data, is sufficiently small, then
this can be done implying that the smallest eigenvalue is 0. By a simple extension of the argument,
we can show that in fact the G-matrix has low rank. This gives
Theorem 6.2 (Informal version of Theorem F.2). The G-matrix for polynomial activation functions
has low rank if the data spans a low-dimensional subspace.

Given that polynomials have singular M -matrices, a natural idea is to approximate the smooth
function tanh′ by a suitable family of polynomials, and then use the above theorem to “kill” the
polynomial part using an appropriate linear combination and get an upper bound on the eigenvalue
comparable to the error in the approximation. An immediate choice is Taylor’s approximation. The
Taylor series for tanh′ around 0 has a radius of convergence π/2. Depending on the initialization and
m, the argument of the function can take values outside [−π/2, π/2]. To circumvent this difficulty,
we consider a different notion of approximation. Consider a series of Chebyshev polynomials∑
anTn(x) that approximates tanh′(x) in the L∞ norm in some finite interval. The fact that tanh′

can be extended analytically to the complex plane can be used to show that the coefficients of the
above series decay rapidly. The approximation is captured by the following theorem.
Theorem 6.3 (Informal version of Theorem F.4). tanh′ is approximable on the interval [−k, k] in the
L∞-norm by (Chebyshev) polynomials to error ε > 0 using a polynomial of degree O(k log(k/ε)).

When applying the lemma above, the degree required for approximation increases with the number
of neurons m. This is because the interval [−k, k], in which the approximation is required to hold,
grows with m (the maximum of mn Gaussians grows as O(

√
logmn)). This leads the degree of

polynomial to become too large to be “killed” as m becomes larger. Thus, for large m, this fails
to give the required bound. To remedy this, we relax the approximation requirement. Since we
are working with Gaussian initialization of weights a natural relaxation is the L2-approximation
under the Gaussian measure. This leads us to consider the Hermite expansion (see also Daniely et al.
(2016)) of tanh′. The p-th coefficient in Hermite expansion is an integral involving the p-th Hermite
polynomial. For large p, these polynomials are highly oscillatory which makes evaluation of the
coefficients difficult. Fortunately, a theorem of Hille (1940) comes to rescue. Again, the fact that
tanh′ can be analytically extended to a certain region of the complex plane can be used to bound the
decay of the Hermite coefficients, which in turn bounds the error in polynomial approximation:
Theorem 6.4 (Informal version of Theorem G.2). tanh′ is approximable on R in the L2-norm with
respect to the Gaussian measure by (Hermite) polynomials of degree p with error exp(−Ω(

√
p)).

In contrast, the p-th Hermite coefficients of the step function (also called threshold or sgn) which is
the derivative of ReLU (whose G-matrix has large minimum eigenvalue), decays as p−0.75 (this fact
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underlies Theorem L.2). The L2-approximation gives us a bound on the expected loss. To argue about
high probability bounds, we need to resort to concentration of measure arguments. This requires the
number of neurons m to be large. Thus, these two notions of approximation complement each other.

Now, using these theorems for the small and large m regimes, we can show that the eigenvalues of
the G-matrix are indeed small as stated in Theorem 4.4. These results can be easily extended to swish.
In fact, the above theorems hold for general functions satisfying certain regularity conditions such as
having an analytic continuation onto a strip of complex plane that contains the domain of interest, e.g.
an interval of R or all of R (Appendix F).

For smoothed data not restricted to small dimension, tanh works well. We sketch the proof of
Theorem 4.7 showing that our results about the limitations of smooth activations are essentially tight
when the data is smoothed. It is well-known (see Fact C.9) that the minimum singular value of a (tall)
matrix M is lower-bounded as follows: take a column of M and consider its distance from the span
of the rest of the columns. The minimum of this quantity over all columns gives a lower bound on the
minimum singular value (up to polynomial factors in the dimensions of M). The problem of lower
bounding λmin(G(0)) then reduces to the problem of lower bounding a product involving (a) the
minimum singular value of X∗p, the p-th Khatri–Rao power of the data matrix X = [x1, . . . ,xn], (b)
the p-th Hermite coefficient of tanh′ (see Lemma I.1 and Lemma I.2). We use p to be approximately
equal to 1/γ. For (a) we use the above strategy to lower bound the minimum singular value of X∗p.
It turns out that for any given column, its distance from the span of the rest of the columns can be
written as a polynomial in the noise variables. We can then use the anticoncentration inequality of
Carbery–Wright (see Fact C.8) to show that this distance is unlikely to be small, and then use the
union bound to show that this is unlikely to be small for every column. For (b), we invoke a result
of Boyd (1984) implying that the upper bound exp(−Ω

(√
p
)
) on the p-th Hermite coefficient of

tanh′ used in Theorem 6.4 above is essentially tight. The choice of p that gives the best lower bound
depends on the activation function.

Depth helps for tanh. We now sketch the proof of Theorem 4.8 (for a formal statement, see
Theorem J.6). For each i ∈ [n] and l ∈ {0, ..., L − 1}, let x(l)

i be the output of layer l on input xi.
We track the behavior of the x

(l)
i as l increases:

Lemma 6.5 (informal version of Lemma J.1 and Lemma J.2). As l increases, the Euclidean norm of
each x

(l)
i is approximately preserved. On the other hand, for every i 6= j, |(x(l)

i )Tx
(l)
j | shrinks.

This implies that for sufficiently large L, the Gram matrix of the output of the penultimate layer, i.e.
(X(L−1))TX(L−1), where X(L−1) = [x

(L−1)
1 , . . . ,x

(L−1)
n ] is diagonally-dominant and has large

minimum eigenvalue. The rest of the proof has some overlap with the proof for smoothed data
above. For each p ≥ 0, λmin(G(0)) can be lower bounded by a product involving (a) the minimum
eigenvalue of the p-th Hadamard power of the Gram matrix of x(L−1)

i , and (b) the p-th Hermite
coefficient of tanh′ (see Equation 47). For (a) we use the diagonal-dominance of the Gram matrix.
For (b) we proceed as in the case of smoothed data. The choice p = Θ(log n) turns out to give the
best lower bound on λmin(G(0)).

7 EXPERIMENTS

Synthetic data. We consider n equally spaced data points on S1, randomly lifted to S9. We
randomly label the data-points from U {−1, 1}. We train a 2-layer neural network in the DZPS
setting with mean squared loss, containing 106 neurons in the first layer with activations tanh, ReLU,
swish and ELU at learning rate 10−3. The output layer is not trained during gradient descent. In
Figure 1(a) and Figure 1(b) we plot the squared loss against the number of epochs trained. Results
are averaged over 5 different runs. We observed that the eigenvalues and the eigenvectors stayed
essentially constant throughout training, indicating overparametrized regime. ReLU converges to
zero training error much faster than other activation functions, ELU is faster than tanh and swish. In
Figure 1(c) and Figure 1(d) we plot the eigenvalues at initialization. Eigenvalues of ReLU and ELU
are larger compared to those of tanh and swish. This is consistent with the theory.
Real data. We consider a random subset of 104 images from CIFAR10 dataset (Krizhevsky &
Hinton, 2009). We train a 2-layer network containing 105 neurons in the first layer. First, we verify
Assumption 2 regarding δ-separation of data samples. We plot the L2-distances between all pairs
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(a) (b) (c) (d)

Figure 1: Experiments on synthetic dataset (From left to right) (a)Rate of convergence of 2-layer
network for different activations when n = 10 (b) Rate of convergence of 2-layer network for different
activations when n = 50 (c) Eigenvalues of the G-matrix at initialization for different activations
when n = 10 (d) Eigenvalues of the G-matrix at initialization for different activations when n = 50

of preprocessed images (described in Section 2) in Figure 2(a). It shows that the assumptions hold
for CIFAR10, with δ at least 0.1. Figure 2(b) has the plot of the cumulative sums of eigenvalues,
normalized to the range [0, 1], of the data covariance matrix. This figure shows that the intrinsic
dimension of data is much larger than O (log n), where n denotes the number of samples.

Eigenvalues of the G-matrix for different activations at initialization are plotted in Figure 2(c). This
shows that ReLU has higher eigenvalues compared to other activations. However there isn’t much
difference between the spectrum of ELU and tanh. This is likely due to the fact that we are in the
regime of Theorem I.4.

We observed a difference in the rate of convergence while training a 2-layer network, with both
layers trainable, using 256 batch sized stochastic gradient descent (SGD) with cross entropy loss
on the random subset of CIFAR10 dataset at l.r. 10−3 (Figure 2(d)). Here we are not in the
overparametrized regime as the eigenvalues and eigenvectors change considerably during training.
Therefore, observations in Figure 2(d) can be attributed to the eigenvalue plots in Figure 2(c) only in
the first few iterations of SGD.

(a) (b) (c) (d)

Figure 2: Experiments on a random subset of 104 images from CIFAR10 dataset: (a) L2-distances
between all pairs of preprocessed images (b) Semilog plot of sum of squares of top k singular values
of data matrix (c) Eigenvalue distribution of G-matrix at initialization (d) Convergence speed of 2
layer networks using different activation functions.

8 CONCLUSION

In this paper we characterized the effect of activation function on the training of neural networks in
the overparametrized regime. Our results hold for very general classes of activations and cover all
the activations in use that we are aware of. Many avenues for further investigation remain: there are
gaps between theory and practice because of the differences in the sizes, learning rates, optimization
procedures and architectures used in practice and those analyzed in theory: compared to practice,
most theoretical results in the recent literature (including the present paper) require the size of the
networks to be very large and the learning rate to be very small. Bridging this gap is an exciting
challenge. Fine-grained distinction between the performance of activations is also of interest. For
example, Figure 2(d) shows that ReLU converges much faster compared to the other activations. But
the roles can be reversed based on the architecture and the dataset etc., e.g., Ramachandran et al.
(2018). In a given situation, what makes one activation more suitable than another?
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A ADDITIONAL RELATED WORK

The literature is extensive; we only mention some of the related work Pennington et al. (2017); Louart
et al. (2018); Hanin (2018); Hanin & Rolnick (2018); Pennington & Worah (2017; 2018); Pennington
et al. (2018). Of these, perhaps the closest to our work is Louart et al. (2018): they keep the random
weights in the input layer fixed and only train the output layer. The main result is determination of the
spectrum of a matrix associated with the input layer with the activation function being Lipschitz. This
matrix is different from one considered here. Also the scaling used is different: both the dimension of
the data, number of samples, and the number of neurons grow at the same rate to infinity. The effect
of the activation function on the training via the spectrum is considered but no results are provided
for popular activations. Hayou et al. (2019) aim to find the best possible initialization of weights, that
lead to better propagation of information in an untrained neural network, i.e. the rate of convergence
of correlation among hidden layer outputs of datapoints to 1 should be of the order 1

poly(L) , where L
is the number of layers. They show smooth activation functions have a slower rate and hence, are
better to use in deep neural networks. However, this set of parameterizations, called “edge of chaos”,
were proven to be essential for training by Lee et al. (2017) under the framework of equivalence of
infinite width deep neural networks to Gaussian processes over the weight parameters. The extent to
which the approximation of stochastic gradient descent by Bayesian inference holds is still an open
problem.

B ACTIVATIONS

We introduce some of the most popular activation functions. These activation functions are unary, i.e.
of type φ : R→ R, and act on vectors entrywise: φ((t1, t2, ...)) := (φ(t1), φ(t2), ...). In this paper
we do not study activation functions with learnable parameters such as PReLU, or activation functions
such as maxout which are not unary. Activations functions are also referred to as nonlinearities,
although the case of linear activation functions has also received much attention.

• ReLU(X) := max (x, 0)

• LReLU(x) := max (x, 0) + αmin (x, 0), where α is a constant less than 1
• Linear(x) := x

• tanh(x) := e2x−1
e2x+1

• sigmoid(x) := 1
1+e−x

• swish(x) := x
1+e−x Ramachandran et al. (2018) (called SiLU in Elfwing et al. (2017))

• ELU(x) := max (x, 0) + min (x, 0) (ex − 1) Clevert et al. (2016)
• SELU(x) := α1 max (x, 0) + α2 min (x, 0) (ex − 1), where α1 and α2 are two different

constants Klambauer et al. (2017).

C PRELIMINARY FACTS AND DEFINITIONS

We note some well known facts about concentration of Gaussian random variables to be used in the
proofs.
Fact C.1. For a Gaussian random variable v ∼ N (0, σ2), ∀t ∈ (0, σ), we have

Pv{|v| ≥ t} ∈
(

1− 4

5

t

σ
, 1− 2

3

t

σ

)
.

In fact, the following holds true. ∀t ∈ (0, σ/2), we have

Pv{|v − a| ≥ t} ∈
(

1− 4

5

t

σ
, 1− 1

4

t

σ

)
.

where 0 ≤ a ≤ σ.
Fact C.2. For a Gaussian random variable v ∼ N (µ, σ2), ∀t ∈ (0, σ), we have ∀t ≥ 0

Pv
{
|v − µ| ≤ t

}
≤ 1− 2e−

t2

2σ2 .
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Fact C.3 (Hoeffding’s inequality, see Boucheron et al. (2013)). Let x1, x2, .., xn be n independent
random variables, where xi lies in the interval [ai, bi], and let x̄ be the empirical mean, i.e., x̄ =∑n

i=1 xi
n . Then,

Pr
(∣∣x̄− E (x̄)

∣∣ ≥ t) ≤ 2e
− 2n2t2∑n

i=1(ai−bi)
2
.

Fact C.4 (Multiplicative Chernoff bound, see Boucheron et al. (2013)). Let x1, x2, .., xn be indepen-
dent random variables taking values in {0, 1}, and let x̄ be the empirical mean, i.e., x̄ =

∑n
i=1 xi
n .

Then

Pr
(
x̄ < (1− t)E (x̄)

)
≤ e−

t2E(x̄)
2 ,

Pr
(
x̄ > (1 + t)E (x̄)

)
≤ e−

t2E(x̄)
2+t

for all t ∈ (0, 1).

Fact C.5 (Maximum of Gaussians, see Boucheron et al. (2013)). Let x1, x2, ..., xn be n Gaussians
following N

(
0, σ2

)
. Then,

Pr

{
max
i∈[n]
|xi| ≤ k

√
log nσ

}
≥ 1− 2

n
k2

2 −1
.

where k > 0 is a constant.

Fact C.6 (Chi square concentration bound, see lemma 1 in Laurent & Massart (2000)). For a variable
x that follows chi square distribution with k degrees of freedom, the following concentration bounds
hold true.

P (x− k ≥ 2
√
kt+ 2t) ≤ exp(−t),

P (k − x ≥ 2
√
kt) ≤ exp(−t).

Fact C.7 (Mini-max formulation of singular values). Given a matrix M ∈ Rm×n, assuming n ≤ m,
the singular values of M can be defined as follows.

σk (M) = min
U

max
ζ

{
Mζ

∣∣∣∣ζ ∈ U, ζ 6= 0

}∣∣∣∣ dim (U) = k

 ∀k ∈ [n].

Fact C.8 (adaptation of Carbery & Wright (2001); see Anderson et al. (2014)). Let Q (x1, . . . , xn)
be a multilinear polynomial of degree d. If Var (Q) = 1, when xi ∼ N (0, 1)∀i ∈ [n]. Then,
∀t ∈ R and ε > 0, there exits C > 0 s.t.

Pr(x1,...,xn)∼N (0,In)

(∣∣Q (x1, . . . , xn)− t
∣∣ ≤ ε) ≤ Cdε1/d.

Fact C.9 (Rudelson & Vershynin (2009)). Given a matrix A ∈ Rn×m, the following holds true for
all i ∈ [m].

1√
m

min
i∈[m]

dist (ai,A−i) ≤ σmin(A)

where A−i = span
(
aj : j 6= i

)
Fact C.10 (Gershgorin circle theorem, see e.g. Varga (2010)). Every eigenvalue of a matrix A ∈
Cn×n, with entries aij , lies within at least one of the discs

{
D(aii, ri)

}n
i=1

, where ri =
∑
j:j 6=i

∣∣aij∣∣
and D(aii, ri) ⊂ C denotes a disc centered at aii and with radius ri.

Fact C.11 (Weyl’s inequalities (Weyl, 1912)). Let A and B be two hermitian matrices. Then, the
following hold true ∀i, j ∈ [n].

λi+j−1 (A + B) ≤ λi (A) + λj (B)

λi+j−n (A + B) ≥ λi (A) + λj (B)
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Definition C.1 (Khatri Rao product and Hadamard product, see Khatri & Rao (1968)). Given a
matrix A ∈ Rm×n and a matrix B ∈ Rp×q, the Kronecker (or tensor) product A⊗B is defined as
the mp× nq matrix given by

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 .
Given a matrix A ∈ Rm×n and a matrix B ∈ Rp×n, the Khatri Rao product A ∗B is defined as the
mp× n matrix given by

A ∗B =
[
a1 ⊗ b1 a2 ⊗ b2 · · ·an ⊗ bn

]
.

Given a matrix A ∈ Rm×n and a matrix B ∈ Rm×n, the Hadamard product A � B ∈ Rm×n is
defined as

(A ∗B)ij = aijbij , ∀i ∈ [m], j ∈ [n].

Notation: Given a matrix X ∈ Rm×n, we denote order-r Khatri-Rao product of X as X∗r ∈ Rmr×n,
which represents X ∗X . . . ∗X︸ ︷︷ ︸

r times

. We denote order-r Hadamard product of X as X�r ∈ Rn×n, which

represents X�X . . .�X︸ ︷︷ ︸
r times

and can be shown to be equal to (X∗r)
T
X∗r.

C.1 GENERAL APPROACH FOR BOUNDING EIGENVALUE OF G-MATRIX

The Gram matrix G can be written as

G =
1

m
MTM.

where M ∈ Rmd×n is defined by

Md(k−1)+1: dk,i = akφ
′
(
wT
k xi

)
xi for k ∈ [m].

Denoting by λk(G) and σk(M) as kth eigenvalue and kth singular value of G and M respectively,
we can write λk (G) as 1

mσk (M)
2. The minimum singular value of M can be defined (through the

minmax theorem) as
σmin (M) = min

ζ∈Sn−1
‖Mζ‖ .

Hence, the general approach to show a lower bound of σmin (M) is to show that the following
quantity ∥∥∥∥∥∥

n∑
i=1

ζimi

∥∥∥∥∥∥ =

m∑
k=1

√√√√√
∥∥∥∥∥∥
n∑
i=1

akζiφ′(wT
k xi)xi

∥∥∥∥∥∥
2

(4)

is lower-bounded for all ζ ∈ Sn−1.

To show an upper bound, we pick a ζ ′ ∈ Sn−1 and use

σmin (M) = min
ζ∈Sn−1

‖Mζ‖ ≤

∥∥∥∥∥∥
n∑
i=1

ζ ′imi

∥∥∥∥∥∥ . (5)

D STANDARD PARAMETRIZATION AND INITIALIZATIONS

A 2-layer (i.e. 1-hidden layer) neural network is given by

F (x;a,b,W) =

m∑
k=1

akφ
(
wT
k x+ bk

)
,
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where a ∈ Rm is the output layer weight vector, W ∈ Rd×m is the hidden layer weight matrix and
b ∈ Rm denotes the hidden layer bias vector. This parametrization differs slightly from the choice
made in Equation 1. By standard initialization techniques He et al. (2015) and Glorot & Bengio
(2010), there are two ways in which the initial values of the weights W(0) and a(0) are chosen,
depending on whether the number of neurons in the previous layer is taken into account (fanin) or the
number of neurons in the current layer is taken into account (fanout).

• Init(fanin) : w
(0)
k ∼ N

(
0, 1

dId
)

and a(0)
k ∼ N

(
0, 1

m

)
∀k ∈ [m],

• Init(fanout): w(0)
k ∼ N

(
0, 1

mId
)

and a(0)
k ∼ N (0, 1) ∀k ∈ [m].

Note that Allen-Zhu et al. (2019) use Init (fanout) initialization. The elements of b are initialized
from N

(
0, β2

)
, where β is a small constant. We set β = 0.1 in Init (fanin) initialization and

β = 1√
m

in Init (fanout) initialization.

D.1 NOTE ON G-MATRIX FOR STANDARD INITIALIZATIONS

We follow the argument in Section 3 to get the G-matrix (G) as

g
(t)
ij = η

m∑
k=1

a2
kφ
′
(
wT
k xi + bk

)
φ′
(
wT
k xj + bk

) 〈
xi,xj

〉
,

where η is the gradient flow rate needed to control the gradient during descent algorithm to stop
gradient explosion, i.e. we need to control the maximum eigenvalue of the Gram matrix.

For Init (fanin) and Init (fanout), we set η as 1 and 1
m respectively to get the same Gradient Gram

matrix as in Equation 2.

E LOWER BOUND ON THE TRACE OF G-MATRIX

In this section, we lower bound the trace of the gradient matrix for a general activation function as a
point of comparison for our results regarding the lowest eigenvalue.
Theorem E.1. Let φ be an activation function, with Lipschitz constant α and let G(0) be the G-
matrix at initialization. Let Ew∼N (0,I)

(
φ′
(
wTxi

)2)
= 2c for a positive constant c and for all i.

Then, tr(G(0)) ≥ cn with probability greater than 1− e−Ω(m/α2 log2 m) −m−3.5.
Remark. The constant c depends on the choice of the activation function and is bounded away from 0
for most activation functions such as ReLU or tanh.

Proof. The trace of the G-matrix is given by

tr(G(0)) =
1

m

m∑
j=1

n∑
i=1

(
a

(0)
j φ′

(
w

(0)T
j xi

))2

.

Using Fact C.5,
{
a

(0)
j

}m
j=1

can be shown to be in the range
(
−3
√

logm, 3
√

logm
)

with probability

at-least 1−m−3.5. Assuming this is true, we claim the following two statements. For any j we have

(expectation is over W(0) and
{
a

(0)
k

}m
k=1

)

E
w

(0)
j ,a

(0)
j

: |a(0)
j |≤3

√
logm

n∑
i=1

(
a

(0)
j φ′

(
w

(0)T
j xi

))2

=

n∑
i=1

E
a

(0)
j

: |a(0)
j |≤3

√
logm

(
a

(0)
j

)2

E
w

(0)
j

(
φ′
(
w

(0)T
j xi

))2

≥
n∑
i=1

2c

(
1−

√
logm

m

)
≥ cn.
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where we use the independence of a(0)
j and w

(0)
j and the variance of a(0)

j is at-least
(

1−
√

logm
m

)
,

taking the bound on a(0)
j into account, in the intermediate steps.

Also, we get from the Hoeffding bounds,

Pr

 1

m

m∑
j=1

n∑
i=1

(
a

(0)
j φ′

((
w

(0)
j

)T
xi

))2

≥ 1

2
cn

 ≤ 1− e−Ω(mn2/α4 log2 m)

as required.

This shows that the trace is large with high probability. From it follows that average of eigenvalue is
Ω (1). It also follows that maximum eigenvalue is Ω (1).

F UPPER BOUND ON LOWEST EIGENVALUE FOR tanh

For activation functions represented by polynomials of low degree, we show that the G-matrix
is singular. In fact, the rank of this matrix is small if the degree of the polynomial is small. To
upper bound the lowest eigenvalue of the G-matrix for the tanh activation function, we proceed by
approximating tanh′ with polynomials of low degree. It turns out that tanh′ can be well-approximated
by polynomials in senses to be described below. This allows us to use the result about polynomial
activation functions to show that the minimum singular value of the G-matrix of tanh is small. The
approximation of tanh′ by polynomials turns out to be non-trivial. It does have Taylor expansion
centered at 0 but the radius of convergence is π/2 and thus cannot be used directly if the approximation
is required for bigger intervals.

We consider two different notions of approximations by polynomials, depending on the initialization
and the regime of the parameters. It is instructive to first consider polynomial activations before going
to tanh. Next section is devoted to polynomial activations.

F.1 POLYNOMIAL ACTIVATION FUNCTIONS

Let’s begin with the linear activation function. In this case, the G-matrix turns out to be the Gram
matrix of the data. Since each datapoint is low dimensional, we get that it is singular:
Lemma F.1. (Linear activation function) If φ(x) = x and d < n, then the G-matrix is singular, that
is

λmin

(
G(0)

)
= 0.

In fact, at least (n− d) eigenvalues of the G-matrix are 0.

Proof. Since φ (x) = x, we have φ′ (x) = 1 and the G-matrix is given by

G =
1

m

 m∑
j=1

a2
j

XTX

where X = [x1,x2, ...,xn] is the matrix containing the xi’s as its columns. Since the xi’s are
d-dimensional vectors, rank(X) ≤ d and so, X can have at most d non-zero singular values, which
leads to at most d non-zero eigenvalues for G.

We next show that activation functions represented by low degree polynomial must have singular
Gradient Gram matrices:
Theorem F.2. Let φ′(x) =

∑p
`=0 c`x

` and d′ = dim
(
Span {x1 . . . xn}

)
. Then, the G-matrix is

singular, that is
λmin

(
G(0)

)
= 0,

assuming that the following condition holds,(
d′ + p

p

)
< n+ 1. (6)
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Proof. Referring to Equation 5, it suffices to find one ζ ′ ∈ Sn−1 such that∥∥∥∥∥∥
n∑
i=1

ζ ′imi

∥∥∥∥∥∥
2

=

√√√√√ m∑
k=1

∥∥∥∥∥∥
n∑
i=1

ζ ′iakφ
′(wT

k xi)xi

∥∥∥∥∥∥
2

2

= 0.

For any k ∈ [m] and ζ ∈ Rn consider

n∑
i=1

ζiakφ
′(wT

k xi)xi =

n∑
i=1

ζiak

p∑
`=1

c`−1

(
wT
k xi

)`−1

xi

which can be written as

ak

p∑
l=1

c`−1

∑
β∈Zd+,‖β‖1=`−1

(
n∑
i=1

ζix
β
i xi︸ ︷︷ ︸

†

)
wβ
k (7)

Here Z+ denotes the set of non-negative integers, and the notation xβ is shorthand for
∏d
j=1 x

βj
j .

Note that the term denoted by † is a d-dimensional vector, since xi ∈ Rd. The actual number of
unique equations in † depends on d′, since the xi’s can have only upto d′ order unique moments.
Hence, if we want to make the above zero, it suffices to make the term denoted by † zero for each
of the summands. This is a system of linear equations in variables {ζi}ni=1. Counting the number
of constraints for each summand and summing over all the indices gives us that the number of
constraints is given by

p∑
`=1

(
d′ + `− 1

`

)
which is equal to

(
d′+p
p

)
− 1. Note that this can also be seen by counting the number of non-trivial

monomials of degree at most p in d′ variables. Hence, making the number of constraints less then
number of variables, leads to existence of at least one non-zero vector ζ ′′ satisfying the set of
constraints. Since, the set of linear equations is independent of the choice of k, the claim holds true
for all k. Thus, using a unit normalized ζ ′′ in Equation 5, we get σmin (M) = 0.

Corollary F.2.1. If d′ = dim
(
span {x1 . . .xn}

)
≤ O

(
log0.75 n

)
, φ′(x) =

∑p
`=0 c`x

` and p ≤

O(n
1
d′ ) then the minimum eigenvalue of the G-matrix satisfies

λmin

(
G(0)

)
= 0.

Proof. If d′ = O
(

log0.75 n
)

, Condition 6 can be simplified to get

p = O(n
1
d′ )

Applying Theorem F.2 with the above condition, we get the desired solution.

By slightly modifying the proof of the above theorem, we can actually show not only that the matrix
is singular, but also that the kernel must be high dimensional.

Theorem F.3. If d′ = dim
(
span {x1 . . .xn}

)
≤ O

(
log0.75 n

)
, φ′(x) =

∑p
`=0 c`x

` and p ≤

O(n
1
d′ ), then

(
1− 1

d′

)
n low-order eigenvalues of the G-matrix satisfy

λk

(
G(0)

)
= 0, ∀k ≥

⌈
n

d′

⌉
.
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Proof. We follow the proof of Theorem F.2. Referring to Fact C.7, it suffices to find one n
(
1− 1

d′

)
dimensional subspace U such that∥∥∥∥∥∥

n∑
i=1

ζimi

∥∥∥∥∥∥
2

=

√√√√√ m∑
k=1

∥∥∥∥∥∥
n∑
i=1

ζiakφ′(wT
k xi)xi

∥∥∥∥∥∥
2

2

= 0.

holds true ∀ζ ∈ U.

For a weight row vector wk ∈ {w1, ... ,wm}, its corresponding output weight ak and an arbitrary
ζ ∈ Rn, we can simplify the following quantity

n∑
i=1

ζiakφ
′(wT

k xi)xi =

n∑
i=1

akζi

p∑
`=1

c`−1

 d∑
j=1

wk,j xi,j

`−1

xi

to get the same set of constraints on variable ζ, as in Equation 7. Making the number of constraints
less than

⌈
n
d′

⌉
leads to the existence of the desired subspace U, whose dimension is n

(
1− 1

d′

)
,

satisfying the constraints. This can be restated as(
d′ + p

p

)
− 1 ≤ n

d′

which can be further simplified using the fact that d′ ≤ O
(

log0.75 n
)

to get

p ≤ O

( n
d′

) 1
d′

 = O
(
n1/d′

)
.

In the above inequality, we use the fact that 1 ≤ d′1/d
′ ≤
√

2. Since, the set of linear equation is
independent of the choice of w, the claim holds true for all w ∈ {w1, ...,wm}, from which the result
follows.

Now, if a function is well approximated by a low degree polynomial then we can use the idea from
the above theorem to kill all but the small error term leaving us with a small eigenvalue. But, for
different regimes of the parameters, we need to consider different polynomial approximations.

F.2 L∞ APPROXIMATION USING THE CHEBYSHEV POLYNOMIALS

Let f : [−k, k]→ R be a function for some k > 0. We would like to approximate f with polynomials
in the L∞ norm. That is, we would like a polynomial gp of degree p such that

sup
x∈[−k,k]

∣∣f(x)− gp(x)
∣∣ ≤ ε.

First, we reduce the above problem to that of approximating functions on [−1, 1]. The idea is to
consider the scaled function fk(x) = f(kx). Note that fk : [−1, 1] → R. Let h be a polynomial
approximating fk i.e. supx

∣∣fk(x)− h(x)
∣∣ ≤ ε. Then, consider the function gp(x) = h

(
x/k

)
. Then,∣∣f(x)− gp(x)

∣∣ =
∣∣∣fk (x/k)− h(x/k)

∣∣∣ ≤ ε. Thus, we can consider approximation of functions on
[−1, 1].

We are interested in approximating the derivative of tanh on (−τ, τ). Denote by σ the sigmoid
function given by

σ(x) =
1

1 + e−x
.

It follows from the definition that tanh (x) = 2σ (2x)− 1.

The approach is to consider a series in the Chebyshev polynomials Tn. That is, we consider
N∑
i=0

anTn
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The coefficients an corresponding to σ can be computed using the orthogonality relations for the
Chebyshev polynomials.

an =
2

π

∫ 1

−1

σ(x)Tn(x)√
1− x2

dx.

Using this, one can show the following theorem about the polynomial approximations of the sigmoid
function.

Theorem F.4 (Equation B.7 in Shalev-Shwartz et al. (2011)). For each k ≥ 0 and ε ∈ (0, 1], there is
a polynomial gp of degree p with

p =


log
(

4π+2k
π2ε

)
log (1 + πk−1)


such that

sup
x∈[−1,1]

∣∣gp(x)− σ(kx)
∣∣ ≤ ε.

The proof of the claim follows by bounding an using contour integration. From the above discussion,
in order to approximate tanh in the interval (−τ, τ), we need to approximate 2σ (2τx)− 1. From
Theorem F.4, we require a polynomial of degree

p =

⌈
log
(

4π+2τ
π2ε

)
log (1 + πτ−1)

⌉
. (8)

Recall that we actually need to approximate the derivative of tanh. But this can be achieved easily
from the fact that tanh′(x) =

(
1 + tanh(x)

) (
1− tanh(x)

)
and the following lemma.

Lemma F.5. Let I be an interval and let fi, gi : I → R for i ∈ {1, 2} be functions such that
supx∈I

∣∣fi(x)− gi(x)
∣∣ ≤ ε for all i and

∣∣fi(x)
∣∣ ≤ 1 for x ∈ I and all i. Then,

sup
x∈I

∣∣f1(x)f2(x)− g1(x)g2(x)
∣∣ ≤ 3ε.

Proof. For any x ∈ I we have∣∣f1(x)f2 (x)− g1(x)g2 (x)
∣∣ ≤ ∣∣f1(x)f2 (x)− f1(x)g2 (x) + f1(x)g2 (x)− g1(x)g2 (x)

∣∣
≤
∣∣f1(x)f2 (x)− f1(x)g2 (x)

∣∣+
∣∣f1(x)g2 (x)− g1(x)g2 (x)

∣∣
≤
∣∣f1 (x)

∣∣∣∣f2 (x)− g2 (x)
∣∣+
∣∣g2 (x)

∣∣∣∣f1 (x)− g1 (x)
∣∣

≤ ε+ (1 + ε) ε

≤ 2ε+ ε2

≤ 3ε.

F.3 L2 APPROXIMATION USING HERMITE POLYNOMIALS

Next we consider approximating f in the 2-norm i.e. we would like to find a polynomial hp of degree
p such that ∫ ∞

−∞

∣∣f(x)− hp(x)
∣∣2 dµ(x)

is minimized. µ denotes the Gaussian measure on the real line. Note that this problem can be solved
using the technique of orthogonal polynomials since L2 (R, µ) is a Hilbert space. The study of
orthogonal polynomial is a rich and well-developed area in mathematics (see Szegő (1975); Lebedev
(1972)). Our main focus in this section will be the case where f is the derivative of tanh and in later
sections we extend this analysis to other activation functions.
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Let Hk denote the k-th normalized (physicists’) Hermite polynomial given by

Hk(x) =
[√

π2kk!
]−1/2

(−1)
k
ex

2 dk

dxk
e−x

2

, (9)

and the corresponding normalized (probabilists’) Hermite polynomial is given by

Hek(x) =
[√
πk!
]−1/2

(−1)
k
ex

2/2 d
k

dxk
e−x

2/2. (10)

The Hermite polynomials are usually written without the normalization. The normalization terms
ensure that the polynomials form orthonormal systems with respect to their measures. Recall that
µ (x;σ) denotes the density function of a Gaussian variable with mean 0 and standard deviation σ.
The series of polynomials Hk are orthonormal with respect to Gaussian measure µ

(
x; 1√

2

)
and the

series of polynomials Hek are orthonormal with respect to the standard Gaussian measure µ (x; 1)
i.e. ∫ ∞

−∞
Hm(x)Hn(x) dµ

(
x;

1√
2

)
= δm,n, (11)∫ ∞

−∞
Hem(x)Hen(x) dµ(x; 1) = δm,n. (12)

The two versions of the Hermite polynomials are related by

Hm(x) = Hem

(√
2x
)
. (13)

For any function f ∈ L2 (µ), we can define the Hermite expansion of the function as

f =

∞∑
i=0

fiHei.

From the orthogonality of the Hermite polynomials, we can compute the coefficients as

fi =

∫
f (x)Hei (x) dµ (x; 1) .

Since L2 is a Hilbert space, we can use the Pythagoras theorem to bound the error of the projection
onto the space of degree k polynomials as

∞∑
i=k+1

|fi|2.

This leads us to consider the Hermite coefficients of the functions we would like to study.

We defined the Hermite expansion in terms of probabilists’ Hermite polynomials. For physicists’
version we can define an expansion similarly. In this paper, we will use probabilists’ version in our
proofs. Since the literature we draw on comes from both conventions, we will need to talk about
physicists’ version also.

In the following we will be using complex numbers. For z ∈ C, the imaginary part of z is denoted by
=(z).

The following theorem provides conditions under which the Hermite coefficients decay rapidly. It
says that if a function extends analytically to a strip around the real axis and the function decays
sufficiently rapidly as the real part goes to infinity, the Hermite series converges uniformly over
compact sets in the strip and consequently has rapidly decaying Hermite coefficients. The extension
to the complex plane provide the function with strong regularity conditions.
Theorem F.6. (Theorem 1 in Hille (1940)) Let f(z) be an analytic function. A necessary and
sufficient condition in order that the Fourier-Hermite series

∞∑
k=0

ckHk(z)e−
z2

2 , ck =

∫ ∞
−∞

f(t)Hk(t)e−
t2

2 dt (14)
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shall exist and converge to the sum f(z) in the strip Sτ =
{
z ∈ C :

∣∣= (z)
∣∣ < τ

}
, is that f(z) is

holomorphic in Sτ and that to every β, 0 ≤ β < τ , there exits a finite positive B(β) such that∣∣f(x+ iy)
∣∣ ≤ B(β)e−|x|(β

2−y2)
1/2

where x ∈ (−∞,∞), y ∈ (−β, β). Moreover, whenever the condition is satisfied, we have

|ck| ≤M(ε)e−(τ−ε)
√

2k+1 (15)

for all positive ε. Here, M denotes a function that depends only on ε.

The function tanh can be naturally extended to the complex plane using its definition in terms of
the exponential function. From this definition, it follows that tanh has a simple pole at every point
such that e2z + 1 = 0. The set of solutions to this are given by 2z = (2n+ 1)π. Thus, tanh is
holomorphic in any region not containing these singularities. In particular, tanh is holomorphic in
the strip Sπ/2 =

{
z ∈ C :

∣∣=(z)
∣∣ < π/2

}
. The same holds for tanh′.

Using the above theorem, we bound the size of the Hermite coefficients of the derivative of tanh and
thus bound the error of approximation by low degree polynomials.

Theorem F.7. Let φ1(z) = tanh′
(
z/
√

2
)
e−

z2

2 . Consider the Hermite expansion of φ1 in terms of

{Hk}∞k=0, as

φ1(z) =

∞∑
k=0

ckHk(z)e−
z2

2 . (16)

Then,

|ck| ≤ O
(
e−

π
√
k

4

)
.

Proof. As before consider the strip Sτ =
{
z ∈ C :

∣∣=(z)
∣∣ < τ

}
. Note that φ1(z) is holomorphic in

Sτ for τ <
√

2π/2. For every β ∈ [0,
√

2π/4], consider z = x + iy ∈ Sβ and set
√

2x′ = x and√
2y′ = y. Also note that tanh′(z) = 1/ cosh2(z). Then

∣∣φ1(z)
∣∣ =

∣∣∣∣∣ 1

cosh2 (x′ + iy′)

∣∣∣∣∣
∣∣∣∣e−(x′+iy′)

2
∣∣∣∣

=

∣∣∣∣ 1

cosh (x′ + iy′)

∣∣∣∣2∣∣∣e−x2+y2−2ixy
∣∣∣

=

∣∣∣∣ 1

cos y′ coshx′ + i sin y′ sinhx′

∣∣∣∣2∣∣∣e−x2+y2−2ixy
∣∣∣

=
1

cos2 y′ cosh2 x′ + sin2 y′ sinh2 x′

∣∣∣e−x2+y2−2ixy
∣∣∣

≤
e−x

2

ey
2∣∣e2ixy

∣∣
cos2 y′ cosh2 x′

≤ e−x
2

eβ
2

(cos2 β) cosh2 x′

≤ e−x
2

eβ
2

(sec2 β) sech2x′

≤ 4e−x
2

eβ
2

(sec2 β)
(
ex
′
+ e−x

′
)−2

≤ 4e−x
2

eβ
2

(sec2 β) e−
√

2|x|

≤ 40 eβ
2

(sec2 β) e−
√
β2−y2|x|.
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The last inequality follows by noting that
√
β2 − y2 ≤ β ≤

√
2π/4 ≤

√
2. This satisfies the required

condition with B (β) = 40 eβ
2

(sec2 β). Hence, from Theorem F.6, we have that Equation 16 is
convergent in the strip Sτ , for τ ≤

√
2π
4 . Thus, from Equation 15, using ε =

√
2π
8 we have

|ck| ≤ Ce−
π

4
√

2

√
2k+1

for some constant C independent of k.

Corollary F.7.1. Let φ2(x) = tanh′(x). Consider the Hermite expansion of φ2:

φ2(x) =

∞∑
k=0

c̄kHek(x). (17)

Then,

|c̄k| ≤ O
(
e−

π
√
k

4

)
.

Proof. Using orthonormality of Hek with respect to the standard Gaussian measure, we have

c̄k =

∫ ∞
−∞

φ2(x)Hek(x) dµ(x; 1) =
1√
2π

∫ ∞
−∞

φ2(x)Hek(x)e−
x2

2 dx

=
√

2
1√
2π

∫ ∞
−∞

φ2

(√
2x
)
Hek

(√
2x
)
e−x

2

dx

Using φ2

(√
2x
)

= φ1 (x) e
x2

2 , defined in Theorem F.7 and Hek
(√

2x
)

= Hk (x), as given by
Equation 13, we have

c̄k =
1√
π

∫ ∞
−∞

φ1 (x)Hk (x) e−
x2

2 dx

Applying Theorem F.7, we get the required bound.

Corollary F.7.2. Let φ2(x) = tanh′(x) and let φ2 be approximated by Hermite polynomials
{Hek}∞k=0 of degree up to p in Equation 17, denoted by

hp(x) :=

p∑
k=1

c̄kHek(x).

Let
Ep(x) := φ2(x)− hp(x).

Then, ∫ ∞
−∞

Ep(x)2 dµ(x; 1) ≤ O
(√

pe
− π

4
√

2

√
p
)
.

Proof.

Ep(x) = φ2(x)− hp(x) =
∞∑

k=p+1

c̄kHek(x).

Using orthonormality of normalized Hermite polynomials with respect standard Gaussian measure,
we have ∫ ∞

−∞
Ep(x)2 dµ(x; 1) =

∞∑
k=p+1

∫ ∞
−∞

c̄2kHek(x)Hek(x) dx =

∞∑
k=p+1

c̄2k.

Substituting the bounds for {c̄k}∞k=p+1 from Corollary F.7.1, we have
∞∑

k=p+1

c̄2k ≤
∞∑

k=p+1

e
− π

4
√

2

√
2k+1

≤
∫ ∞
p

e
− π

4
√

2

√
2x+1

dx

=
32

π2

(
π

4
√

2

√
2p+ 1 + 1

)
e
− π

4
√

2

√
2p+1

,

as required.
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For comparison, consider the Hermite expansion of the derivative of ReLU, the threshold function. It
can be shown (see (Lebedev, 1972, page 75)) that

ReLU′(x) =
1

2
√
π

∞∑
k=0

(−1)
k
√√

π22k+1(2k + 1)!

22k (2k + 1) k!
H2k+1(x) +

1

2

=
1

4
√

4π

∞∑
k=0

(−1)
k
√

(2k + 1)!

2k (2k + 1) k!
H2k+1(x) +

1

2

≈
∞∑
k=0

(−1)
k
√

22kk2k
√

2ke−2k

2k
√

(2k + 1)kk
√
ke−k

H2k+1(x) +
1

2

≈
∞∑
k=0

(−1)
k√

(2k + 1) 4
√
k
H2k+1(x) +

1

2

≈
∞∑
k=0

(−1)
k

k0.75
H2k+1(x) +

1

2
. (18)

We can also expand the threshold function, in terms of probabilist’s Hermite polynomials in the
following manner. If the expansion of threshold function is written as

∑∞
k=0 c̄kHek (x), then

c̄k =
1√
2π

∫ ∞
−∞

ReLU′(x)Hek(x)e−
x2

2 dx

=
1√
π

∫ ∞
−∞

ReLU′(
√

2y)Hek(
√

2y)e−y
2

dy

=
1√
π

∫ ∞
−∞

ReLU′(y)Hk(y)e−y
2

dy (19)

= ck ≈
(−1)

k

k0.75
(20)

where we use Equation 13 and the fact that ReLU′(y) = ReLU′(
√

2y) in Equation 19.

It can now be seen that the Hermite coefficients do not decay rapidly for this function.

F.3.1 DZPS SETTING

For this choice of initialization, defined in section 2, we need to consider two different regimes
depending on the number of neurons m. When m is small, we use Chebyshev approximation in
the L∞ norm, while we use the L2 approximation by Hermite polynomials when m is large. First
consider the Chebyshev approximation.

Theorem F.8. Assuming φ(x) = tanh(x) and weights w(0)
k ∼ N (0, Id), a

(0)
k ∼ N (0, 1) ∀k ∈ [m],

the minimum eigenvalue of the G-matrix is

λmin

(
G(0)

)
≤ O

n
4π + 6

√
log nm(

1 + π/3√
lognm

)p


2


with probability at least 1 − 2
(mn)3.5 with respect to

{
w

(0)
k

}m
k=1

and
{
a

(0)
k

}m
k=1

, where p is the
largest integer that satisfies Condition 6.

Proof. In the following, for typographical reasons we will write wk instead of w(0)
k and ak instead

of a(0)
k . Referring to Equation 5, it suffices to find a vector ζg ∈ Sn−1 s.t.

∥∥∑n
i=1 ζ

g
imi

∥∥ is small.

For each k ∈ [m] and i ∈ [n], wT
k xi is a Gaussian random variable following N (0, 1). Thus,

there are mn Gaussian random variables and with probability at least
(

1− 2
(mn)3.5

)
with re-

spect to {wk}mk=1, maxi∈[n],k∈[m]

∣∣wT
k xi

∣∣ ≤ 3
√

log nm. Hence, we restrict ourselves to the
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range
(
−3
√

log nm, 3
√

log nm
)
, when we analyze φ(x). Now, from Equation 8 and Lemma F.5,

we have that there exists a polynomial g (x) of degree p that can approximate φ′ in the interval(
−3
√

log nm, 3
√

log nm
)

with the error of approximation in L∞ norm ε given by

ε ≤ 3

4π + 6
√

log nm(
1 + π/3√

lognm

)p
 .

From Theorem F.2, there exists ζg ∈ Sn−1 s.t.

m∑
k=1

∥∥∥∥∥∥
n∑
i=1

ζgi ak g
(
wT
k xi

)
xi

∥∥∥∥∥∥
2

2

= 0

provided Condition 6 holds true. For any weight vector wk, it’s corresponding output weight ak and
any ζ ∈ Sn−1, we have∥∥∥∥∥∥
n∑
i=1

ζi akφ
′(wT

k xi)xi −
n∑
i=1

ζi akg(wT
k xi)xi

∥∥∥∥∥∥
2

≤

√√√√a2
k

n∑
i=1

ζ2
i

(
φ′(wT

k xi)− g(wT
k xi)

)2√√√√ n∑
i=1

‖xi‖2

(21)

≤
√
nε|ak| (22)

where we use triangle inequality and the Cauchy-Schwartz inequality in Inequality 21, ‖ζ‖ = 1,
‖xi‖ = 1 and that the maximum error of approximation is ε in Inequality 22. Hence, for ζ = ζg , we
have∥∥∥∥∥∥
n∑
i=1

ζgi akφ
′(wT

k xi)xi

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
n∑
i=1

ζgi akφ
′(wT

k xi)xi −
n∑
i=1

ζgi akg(wT
k xi)xi

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
n∑
i=1

ζgi akg(wT
k xi)xi

∥∥∥∥∥∥
2

≤
√
n|ak| ε (23)

Thus, ∥∥∥∥∥∥
n∑
i=1

ζgimi

∥∥∥∥∥∥ =

√√√√√ m∑
k=1

∥∥∥∥∥∥
n∑
i=1

ζgi akφ
′
(
wT
k xi

)
xi

∥∥∥∥∥∥
2

≤

√√√√ m∑
k=1

a2
k

√
nε ≤

√
5m
√
nε

where in the final step, we use chi-square concentration bounds (Fact C.6) to show that
√∑m

k=1 a
2
k

is at-most
√

5m with probability at-least 1− e−m. Using Equation 5, σmin (M) ≤
√

5m
√
nε. That

implies, λmin(G) = 1
mλmin (M)

2 ≤ 5nε2. Since, ε decreases with increasing p, we substitute the
value of ε at maximum value of p possible in order to get the desired result.

Note that since the upper bound on the eigenvalue depends on m, the bound becomes increasingly
worse as we increase m. This is because as we increase m, the interval

(
−3
√

log nm, 3
√

log nm
)

in
which we need the polynomial approximation to hold increases in length and thus the degree needed
to approximate grows with m. To remedy this, we relax the approximation guarantee required from
the L∞ norm to the L2 norm under the Gaussian measure. This naturally leads to approximation by
Hermite polynomials as discussed in subsection F.3.

Theorem F.9. Assuming φ(x) = tanh(x) and weights w(0)
k ∼ N (0, Id) , a

(0)
k ∼ N (0, 1) ∀k ∈ [m],

with probability at least 1− e−Ω
(

mc2

n2 logm

)
−m−3.5 over the choice of

{
w

(0)
k

}m
k=1

and
{
a

(0)
k

}m
k=1

the minimum eigenvalue of the G-matrix is bounded by c, i.e.

λmin(G(0)) ≤ c, where

c = max

(
O
(
n log n logm√

m

)
,O
(
n2√pe−

π
4
√

2

√
p
))

and p is the largest integer that satisfies Condition 6.
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Proof. In the following, for typographical reasons we will write wk instead of w(0)
k . Referring to

Equation 5, it suffices to find a vector ζh ∈ Sn−1 s.t.
∥∥∑n

i=1 ζ
h
i mi

∥∥ is small.

Theorem G.2 gives the error of approximating φ′ by a polynomial h, consisting of Hermite polyno-
mials of degree ≤ p, in the L2 norm. Let Ep denote the error function of approximation, given by
Ep(x) = φ′(x)− h(x).

From Theorem F.2, there exists ζh ∈ Sn−1 s.t. for all w and ã we have
n∑
i=1

ζhi ãh(wTxi)xi = 0,

provided p satisfies Condition 6.

We can use Fact C.5 to confine the maximum magnitude of ak to 3
√

logm. Thus, assuming that this
condition holds true, we claim the following. Using ζh, we get

Ew∼N (0,Id),ã∼N (0,1)

∥∥∥∥∥∥
n∑
i=1

ζhi ãφ
′(wTxi)xi

∥∥∥∥∥∥
2

= Ew∼N (0,Id),ã∼N (0,1)

∥∥∥∥∥∥
n∑
i=1

ζhi ãhp(w
Txi)xi +

n∑
i=1

ãζhi Ep(w
Txi)xi

∥∥∥∥∥∥
2

(24)

= Ew∼N (0,Id),ã∼N (0,1)

∥∥∥∥∥∥
n∑
i=1

ζhi ãEp(w
Txi)xi

∥∥∥∥∥∥
2

(25)

≤ Ew∼N (0,Id),ã∼N (0,1)ã
2

∥∥∥∥∥∥
n∑
i=1

ζhi xi

∥∥∥∥∥∥
2 n∑

i=1

(
Ep

(
wTxi

))2
 (26)

≤ n
n∑
i=1

{
Ew∼N (0,Id)

(
Ep

(
wTxi

))2
}

(27)

= n2 Ew∼N (0,Id)

(
Ep

(
wTx1

))2

. (28)

We approximate φ′ by h and use the definition of ζh in Equation 24, apply Cauchy-Schwartz in
Equation 25, ‖xi‖ = 1 ∀i ∈ [n],

∥∥ζh∥∥ = 1, the linearity of expectation in Equation 26 and maximum
variance of ã, given the constraint on it’s magnitude, as upperbounded by 1 in Equation 27. wTx1

follows a Gaussian distribution N (0, 1). Hence, denoting εh as the error of approximation from
Corollary F.7.2, we get

Ew∼N (0,Id),ã∼N (0,1)

∥∥∥∥∥∥
n∑
i=1

ζhi ãφ
′(wTxi)xi

∥∥∥∥∥∥
2

≤ n2εh

where
εh ≤ O(

√
pe
− π

4
√

2

√
p
).

Applying Hoeffding’s inequality for m weight vectors wk ∼ N (0, Id) and ak ∼ N (0, 1), we get

Pr
{wk}mk=1,{ak}

m
k=1

 1

m

m∑
k=1

∥∥∥∥∥∥
n∑
i=1

ζhi akφ
′(wT

k xi)xi

∥∥∥∥∥∥
2

≤
(
n2εh + t

) ≥ 1− e−
2mt2

9n2 log2 m −m−3.5.

In the above inequality, we use the restriction of the maximum magnitude of ak to 3
√

logm and
hence, ∀k,

∥∥∥∑n
i=1 ζ

h
i akφ

′ (wT
k xi

)
xi

∥∥∥ ∈ (0, 3√n√logm
)
. Using t = max

(
n2εh,

n logn logm√
m

)
, c
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being a constant and substituting the value of ε, we get the final upper bound. Thus,

m∑
k=1

∥∥∥∥∥∥
n∑
i=1

ζhi φ
′(wT

k xi)xi

∥∥∥∥∥∥
2

2

≤ mmax

(
O
(
n2εh

)
,O
(
n log n logm√

m

))
(29)

Using Equation 5 and the fact λmin(G) = 1
mσmin(M)2, we get the final bound.

The upper bound on minimum eigenvalue from Theorem F.8 can be rewritten as

λmin(G(0)) ≤ O
(
n log (nm)e

−p log
(

1+π
3

√
log(nm)

))
for a small constant C and p denotes the largest integer that satisfies Condition 6. Let us assume
that d′ ≤ O

(
log0.75 n

)
, where d′ = dim

(
Span {x1 . . .xn}

)
. Then, we use the value of p from

Corollary F.2.1 for the next set of arguments. Substituting the value of p, we get

λmin(G(0)) ≤ O
(
n log (nm)e

−n1/d′ log
(

1+π
3

√
log(nm)

))
Assuming m < e

O
(
n1/d′

)
, we have

λmin(G(0)) ≤ O
(
n2e
−Ω
(
n1/2d′

))
= e
−Ω
(
n1/2d′

)
.

By Theorem F.9, when m > e
Ω
(
n1/2d′

)
,

λmin(G(0)) ≤ max

(
n1.5 log (n)e

−Ω
(
n1/2d′

)
,O
(
n2e
− π

4
√

2
n1/2d′

))
= e
−Ω
(
n1/2d′

)

with high probability with respect to {wk}mk=1 and {ak}mk=1. Hence, the final bounds of minimum
singular value of Gram matrix in case of tanh activation has been summarized below.

Theorem F.10. Let d′ = dim
(
span {x1 . . .xn}

)
≤ O

(
log0.75 n

)
. Assuming φ(x) = tanh(x) and

weights w
(0)
k ∼ N (0, Id) , a

(0)
k ∼ N (0, 1) ∀k ∈ [m], the minimum eigenvalue of the G-matrix

satisfies

λmin

(
G(0)

)
≤ e−Ω(n1/2d′ )

with probability at least 1− 1
n3.5 with respect to the weight vectors

{
w

(0)
k

}m
k=1

and
{
a

(0)
k

}m
k=1

.

In fact, as in Theorem F.3, we can show that the smallest
(
1− 1

d′

)
n eigenvalues of the matrix are

small. This is captured in the following theorem.

Corollary F.10.1. Let d′ = dim
(
span {x1 . . .xn}

)
= O

(
log0.75 n

)
. Assuming φ(x) = tanh(x)

and weights w(0)
k ∼ N (0, Id) , a

(0)
k ∼ N (0, 1) ∀k ∈ [m], then eigenvalues of the G-matrix satisfy

λk

(
G(0)

)
≤ e−Ω

(
n1/2d′

)
∀k ≥

⌈
n

d′

⌉
with probability at least 1− 1

n2.5 with respect to the weight vectors
{
w

(0)
k

}m
k=1

and
{
a

(0)
k

}m
k=1

.

Proof. In the following, for typographical reasons we will write wk instead of w(0)
k and ak instead of

a
(0)
k . We give a proof outline. We will approximate φ′ by a p-degree polynomial h as in Theorem F.8
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and Theorem F.9, where p ≤ O
(
n1/d′

)
. From Theorem F.3, we get that for polynomial h, there

exits a n(1− 1
d′ ) dimensional subspace U for which the following quantity√√√√√ m∑

k=1

∥∥∥∥∥∥
n∑
i=1

ζiakh
(
wT
k xi

)
xi

∥∥∥∥∥∥
2

= 0

is 0, ∀ζ ∈ U. Now, we can take an orthonormal basis ζ(U) =

[
ζ(1), ζ(2), ..., ζ

(
n(1− 1

d′ )
)]

of U and

for each ζ(j), we can follow the same proof structure in Theorem F.8, Theorem F.9 and Theorem F.10
to get

1

m

m∑
k=1

∥∥∥∥∥∥
n∑
i=1

ζ
(j)
i akφ

′
(
wT
k xi

)
xi

∥∥∥∥∥∥
2

≤ e−Ω
(
n1/2d′

)

with probability at-least 1− 1
n2.5 with respect to {wk}mk=1 and {ak}mk=1. Now, for bounding singular

value σk(M), for k ≥
⌈
n
d′

⌉
, we use the following argument. We choose a subset S(n−k) of size

n− k from ζ(U). This subset is a n− k dimensional subspace U′ of Rn. Each ζ ∈ U′ can be written
in the form

ζ =
∑

j∈[n] : ζ(j)∈U′
αjζ

(j)

with
∑
j∈[n] : ζ(j)∈U′ α

2
j = 1. Then, for each ζ ∈ U′,

1

m

m∑
k=1

∥∥∥∥∥∥
n∑
i=1

ζiakφ
′
(
wT
k xi

)
xi

∥∥∥∥∥∥
2

=
1

m

m∑
k=1

∥∥∥∥∥∥∥
n∑
i=1

∑
j∈[n] : ζ(j)∈U′

αjζ
(j)
i akφ

′
(
wT
k xi

)
xi

∥∥∥∥∥∥∥
2

=
1

m

m∑
k=1

∥∥∥∥∥∥∥
∑

j∈[n] : ζ(j)∈U′
αj

 n∑
i=1

ζ
(j)
i akφ

′
(
wT
k xi

)
xi


∥∥∥∥∥∥∥

2

≤ 1

m

m∑
k=1

 ∑
j∈[n] : ζ(j)∈U′

α2
j


 ∑
j∈[n] : ζ(j)∈U′

∥∥∥∥∥∥
 n∑
i=1

ζ
(j)
i akφ

′
(
wT
k xi

)
xi

∥∥∥∥∥∥
2


≤

(
n

(
1− 1

d′

))
e
−Ω
(
n1/2d′

)
= e
−Ω
(
n1/2d′

)
(30)

Thus, it follows from the definition of σk (M) from Fact C.7 that

σk (M) ≤
√
me
−Ω
(
n1/4d′

)

Using λk
(
G(0)

)
= 1

mσk (M)
2, we get the final upper bound.

F.3.2 STANDARD SETTING

Now, we consider upper bounding the eigenvalue of the G-matrix for the standard initialization,
defined in Appendix D.

Theorem F.11 (Init(fanout) setting). Assuming φ(x) = tanh(x) and weights w
(0)
k ∼

N
(
0, 1

mId
)
, a

(0)
k ∼ N (0, 1) and b

(0)
k ∼ N

(
0, 1

m

)
∀k ∈ [m], the minimum eigenvalue of the

G-matrix is

O

n
 4π + 6

√
lognm
m(

1 + π/3√
lognm
m

)p


2

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with probability at least 1− 2
(mn)3.5 with respect to

{
w

(0)
k

}m
k=1

,
{
a

(0)
k

}m
k=1

and
{
b
(0)
k

}m
k=1

, where
p is the largest integer that satisfies Condition 6.

Proof. For each k ∈ [m] and i ∈ [n], wT
k xi is a Gaussian random variable following N

(
0, 1

m

)
.

Thus, there are mn Gaussian random variables and it follows from Fact C.5 that with probability

at least
(

1− 2
(mn)3.5

)
with respect to {wk}mk=1, maxi∈[n],k∈[m]

∣∣wT
k xi

∣∣ ≤ 3
√

lognm
m . Now, we

follow the same proof as F.8 but restricted to the range
(
−3
√

lognm
m , 3

√
lognm
m

)
to get the desired

result.

Corollary F.11.1 (Init(fanout) setting). If d′ = dim
(
Span {x1 . . .xn}

)
≤ O

(
log0.75 n

)
. Assum-

ing φ(x) = tanh(x) and weights w(0)
k ∼ N

(
0, 1

mId
)
, a

(0)
k ∼ N (0, 1) and b(0)

k ∼ N
(
0, 1

m

)
∀k ∈

[m], the minimum eigenvalue of the G-matrix satisfies

λmin

(
G(0)

)
≤ e−Ω(n1/2d′ )

with probability at least 1 − 1
n3 with respect to the weight vectors

{
w

(0)
k

}m
k=1

,
{
a

(0)
k

}m
k=1

and{
b
(0)
k

}m
k=1

.

Proof. It follows from the same proof as Theorem F.3.

Theorem F.12 (Init(fanin) setting). Assuming φ(x) = tanh(x) and weights w
(0)
k ∼ N

(
0, 1

dId
)
,

a
(0)
k ∼ N

(
0, 1

m

)
and b(0)

k ∼ N (0, 0.01) ∀k ∈ [m], the minimum eigenvalue of the G-matrix is

λmin

(
G(0)

)
≤ O

n2

 4π + 6
√

lognm
d(

1 + π/3√
lognm
d

)p


2


with probability at least 1− 2
(mn)3.5 with respect to

{
w

(0)
k

}m
k=1

,
{
a

(0)
k

}m
k=1

and
{
b
(0)
k

}m
k=1

, where
p is the largest integer that satisfies Condition 6.

Proof. The proof follows from the proofs of Theorem F.8 and Theorem F.9, with the region of

approximation reduced to
(
−3
√

lognm
d , 3

√
lognm
d

)
.

Corollary F.12.1 (Init(fanin) setting). If d′ = dim
(
Span {x1 . . .xn}

)
≤ O

(
log0.75 n

)
. Assuming

φ(x) = tanh(x) and weights w(0)
k ∼ N

(
0, 1

dId
)
, a(0)

k ∼ N
(
0, 1

m

)
and b(0)

k ∼ N (0, 0.01) ∀k ∈
[m], the minimum eigenvalue of the G-matrix satisfies

λmin

(
G(0)

)
≤ e−Ω(

√
dn1/2d′ )

with probability at least 1 − 1
n3 with respect to the weight vectors

{
w

(0)
k

}m
k=1

,
{
a

(0)
k

}m
k=1

and{
b
(0)
k

}m
k=1

.
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G UPPER BOUND ON LOWEST EIGENVALUE FOR SWISH

In this section, we show upper bounds on the eigenvalues for the G-matrix for the Swish activation
function using techniques largely similar to the techniques uses for the tanh activation function. This
is not too surprising since they satisfy the following functional identity

swish(x) =
x

2

[
tanh

(
x

2

)
+ 1

]
.

Hence

swish′ (x) =
1

2

[
1 +

x

2
tanh′

(
x

2

)
+ tanh

(
x

2

)]
.

Theorem G.1. swish′(t) is approximated by a degree p polynomial gp(t) within error ε in the interval
[−k, k] in the L∞ norm:

sup
t∈[−k,k]

∣∣swish′(t)− gp(t)∣∣ ≤ ε
where

p =


log
(

4πk+2k2

π2ε

)
log (1 + πk−1)

 .
Similarly, for the L2 approximation for swish, we proceed using the same technique as for tanh.

Theorem G.2. Let φ2(x) = swish′(x) and let φ2 be approximated by Hermite polynomials
{Hek}∞k=0 of degree up to p in Equation 17, denoted by

hp(x) =

p∑
k=1

c̄kHek(x).

Let
Ep(x) = φ2(x)− hp(x).

Then, ∫ ∞
−∞

Ep(x)2 dµ(x; 1) ≤ O
(√

pe
− π

4
√

2

√
p
)
.

Using the above theorems and the techniques from the previous sections, we can upper bound the
eigenvalues of the G-matrix with the swish activation f0unction. We summarize this in the following
theorems.

Theorem G.3. Consider the setting of Du et al. (2019a). If d′ = dim
(
Span {x1 . . .xn}

)
≤

O
(

log0.75 n
)

. Assuming φ(x) = swish(x) and weights w(0)
k ∼ N (0, Id)∀k ∈ [m], then eigenvalues

of the G-matrix satisfy

λk

(
G(0)

)
≤ e−Ω

(
n1/2d′

)
∀k ≥

⌈
n

d′

⌉
with probability at least 1− 1

n2.5 with respect to the weight vectors
{
w

(0)
k

}m
k=1

and
{
a

(0)
k

}m
k=1

.

H A DISCUSSION ON UPPER BOUND OF LOWEST EIGENVALUE FOR GENERAL
ACTIVATION FUNCTIONS

In this section, we generalize the results of the previous sections upper bounding the eigenvalues of
theG-matrix to a more general class of activation functions. To this end we note that the only property
of the tanh and swish we used was that these functions are well-approximated by polynomials of low
degree. The approximation theorems used in the previous sections can be stated under fairly general
conditions on the activation functions.
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For the Chebyshev approximation, it can be shown that a function with k derivatives with bounded
norms can be approximated by Chebyshev polynomials of degree N with error that decays like N−k.
This shows that for smooth functions the error decays faster than any inverse polynomial. Under
the assumption of analyticity, this can be further improved to get exponential decay of error. We
summarize this in the following theorem.
Theorem H.1 (see Section 5.7 in Mason & Handscomb (2002)). Let f : [−1, 1]→ R be a function
with k+ 1 continuous derivatives. Let SNf be the Chebyshev approximation of f to degree N . Then,
we have

sup
x∈[−1,1]

∣∣f(x)− (SNf) (x)
∣∣ ≤ O (N−k) .

Furthermore, if f can be extended analytically to the ellipse

Er =

{
z ∈ C : z =

(w + w−1)

2
|w| ≤ r

}
,

then
sup

x∈[−1,1]

∣∣f(x)− (SNf) (x)
∣∣ ≤ O (r−N) .

Similarly, for Hermite approximation one can state the decay of the Hermite coefficients in terms of
the regularity of the derivatives, expressed in terms of inclusion of the function in certain Sobolev
spaces. Also, Theorem F.6 indicates that extending the function on to the complex plane gives better
convergence properties. See Thangavelu (1993) for further details.

With these general approximation theorems and techniques from the previous sections, we can extend
the upper bound on the eigenvalues on activation functions satisfying sufficient regularity conditions.
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I LOWER BOUND ON EIGENVALUES FOR tanh WHEN THE DIMENSION OF THE
DATA IS NOT TOO SMALL

For the following proof, we assume the data generation process as follows.
Assumption 3. The data is mildly generic as in smoothed analysis: e.g., xi is obtained by adding

small multiple
(
σ = O

(
δ

2
√
n

))
of IID standard Gaussian noise within the subspace V′ of arbitrary

initial samples x′i, with V′ := Span{x′1, . . . ,x′n} and renormalizing to 1. Denoting the initial set
of samples as X′ =

{
x′1, . . .x

′
n

}
and the noise matrix N, that has each entry coming iid from

N
(
0, σ2

)
, we have the data matrix X defined by {x1, . . .xn}, where

xi =
ni + x′i∥∥ni + x′i

∥∥
Remark. Assuming that the initial samples x′i are one-normalized, w.h.p. the norm of the noisy
vectors x′i + ni are in the range (1− δ, 1 + δ) and thus, renormalization involves division by a
constant in the range ( 1

1+δ , 1
1−δ ). Assuming that the initial samples x′i are 2δ separated, w.h.p. the

separation between xi can be shown to be at least δ, thus satisfying Assumption 2.
Assumption 4. Let d′ = span{x1, . . . ,xn}. For simplicity, we assume d = d′ i.e. x1, ...,xn lie in
d′-dimensional space (otherwise we project them to d′ dimensional space using SVD) and d′ ≥ 2.

While our result here builds upon the smoothed analysis of Anderson et al. (2014), the following
lemma provides a more modular approach though no new essential technical ingredient.
Lemma I.1 (cf. Lemma H.1 in Oymak & Soltanolkotabi (2019)). For an activation function φ and
a data matrix X ∈ Rd×n with unit Euclidean norm columns, the minimum eigenvalue of the Gram
matrix G∞, satisfies the following inequality

λmin (G∞) ≥ c̄2r
(
φ′
)
λmin

((
XTX

)�(r+1)
)
, ∀r ≥ 0

where
(
XTX

)�(r+1)
is given by (X∗r)

T
X∗r, X∗r ∈ Rn×dr denotes the Khatri-Rao product of

matrix X and c̄r(φ′) denotes the r-th coefficient in the probabilists’ Hermite expansion of φ′.

Proof. Each element of G∞ can be expressed in the following manner.

g∞ij = Ew∼N (0,1),ã∼N (0,1)ã
2φ′
(
wTxi

)
φ′
(
wTxj

)
xTi xj =

∞∑
a=0

c̄2a
(
φ′
) (

xTi xj

)a+1

where we use a) unit variance of ã and independence of ã and w and b) the fact that wTxi and wTxj
are xTi xj correlated for a normally distributed vector w and hence, use Lemma N.4. Thus,

G∞ =

∞∑
a=0

c̄2a
(
φ′
) (

XTX
)�(a+1)

Using Weyl’s inequality (Fact C.11) for the sum of PSD matrices
{(

XTX
)�(a)

}∞
a=1

, we get

G∞ � c̄2r
(
φ′
) (

XTX
)�(r+1)

,∀r ≥ 0

from which, the assertion follows.

Lemma I.2. Let d′ = dim span{x1, . . . ,xn}. Denote by p be an integer that satisfies(
d′

p

)
≥ n. (31)

Then for any κ ∈ (0, 1), with probability at least 1− κ with respect to the noise matrix N,

σn (X∗p) ≥ Ω

(
1√
n

(
σκ

np

)p)
.
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Proof. X∗p has d′p rows and n columns. However, the number of distinct rows is given by
(
d′+p−1

p

)
.

This follows by counting the number of distinct terms in the polynomial
(∑d′

k=1 vk

)p
, where {vk}d

′

k=1

is a set of d′ variables. Since, we assume that
(
d′

p

)
, which is lesser than this quantity, is greater than

n, the number of distinct rows is greater than the number of columns for the matrix X∗p. Let X̂∗p
denotes a n× n sized square block of X∗p, that contains any random subset of size n from the set of
distinct rows of X∗p as rows, such that each row represents elements of Khatri-Rao product of the
form

∏
j∈[d′] x

bj
j , 0 ≤ bj ≤ 1 ∀j ∈ [d′], for a vector x ∈ Rd′ . We can see that λn(X̂∗p) ≤ σn(X∗p).

Hence, we will focus on the minimum eigenvalue λn(X̂∗p).

Fix k ∈ [n] and let u be the vector orthogonal to the subspace spanned by the columns of X̂∗p, except
the kth column. Vector u is well-defined with probability 1. Then the distance between x̂∗pk and the
span of the rest of the columns, denoted dist(x̂∗pk , X̂

∗p
−k), is given by

uT x̂∗pk =
∑
s∈[n]

usgs

({
cx′kj + cnkj

}d′
j=1

)
(32)

=: P

({
cnkj

}d′
j=1

)
, (33)

where gs denotes a degree-p polynomial and is given by

gs

({
cx′kj + cnkj

}d′
j=1

)
=
∏
j∈[d′]

(
cx′kj + cnkj

)bsj
, 0 ≤ bsj ≤ 1 ∀j ∈ [d′],

∑
j∈[d′]

bsj = p.

c denotes a constant in the range ( 1
1+δ ,

1
1−δ ), which is the normalization factor used in Assumption 3.

Hence, Equation 32 is a degree p polynomial in variables nkj . We will apply the anticoncentration
inequality of Carbery-Wright to show that the distance between any column and the span of the rest
of the columns is large with high probability. The variance of the polynomial is given by

Var

(
P

({
nkj
}d′
j=1

))
≥
∑
s∈[n]

|us|2
∏
j∈[d′]

E
(
cx′kj + cnkj

)2bsj
≥
(

σ

1 + δ

)2p

≥
(
σ

2

)2p

where we use the fact that‖u‖ = 1 and nkj are Gaussian variables of variance δ2

4n . Using a minor
adjustment of Fact C.8, which takes into consideration the fact that our gaussian variables are of
variance δ2

4n and the variance of the polynomial is not 1, we have

Pr


∣∣∣∣∣P
({

nkj
}d′
j=1

)∣∣∣∣∣ ≤ ε
 ≤ Cpε1/pσ

2

, C > 0 is a constant.

Using a union bound over the choice of k, we get

Pr
{

dist(x̂∗pk , X̂
∗p
−k) ≤ ε, ∀k ∈ [n]

}
≤ Cpnε

1/p

σ
2

Using ε =
(

σκ
2Cpn

)p
, we get

σn

(
X̂∗p

)
=

1√
n

min
k∈[n]

dist(x̂∗pk , X̂
∗p
−k) ≥ ε/

√
n.

with probability at least 1− κ. We use Fact C.9 in the above inequality.

Theorem I.3. Let φ(x) be a constant degree p polynomial, with leading coefficient 1, and d′ =
dim span{x1, . . . ,xn} ≥ Ω(n1/p). Then for any κ ∈ (0, 1) we have

λmin

(
G(0)

)
≥ Ω

(
1

n

(
κσ

np

)2p
)
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with probability at least 1− κ w.r.t. the noise matrix N and {w(0)
k }mk=1, provided

m ≥ Ω

(
p4pn4p+4 log

(
n/κ

)
log2p+3m

σ4pκ4p

)
.

Proof. For a degree-p polynomial with leading coefficient 1, the (p− 1)-th coefficient in Hermite
expansion of φ′ is given by 1. Also, note that Equation 31 is satisfied by p, given that d′ ≥ Ω

(
n

1
p

)
for a constant p. Thus, using Lemma I.1, Lemma I.2 to find minimum eigenvalue of G∞ and then
applying Hoeffding’s inequality (Fact C.3) to bound the deviation of minimum eigenvalue of G(0)

from G∞, we get the desired bound.

Theorem I.4. Let the activation function φ be tanh and d′ = dim span{x1, ...,xn} ≥ Ω (log n).
Then for any κ ∈ (0, 1) we have

λmin

(
G(0)

)
≥ Ω

(
c̄2p−1

(
tanh′

)
n

(
κσ

np

)2p
)

with probability at least 1− κ w.r.t. the noise matrix N and {w(0)
k }mk=1, provided

m ≥ Ω

(
p4pn4p+4 log

(
n/κ

)
log2m

σ4pκ4p

)
,

where p denotes the smallest odd integer satisfying(
d′

p

)
≥ n,

and c̄p
(
tanh′

)
denotes the p-th coefficient in the probabilists’ Hermite expansion of tanh′.

Proof. p is chosen such that Equation 31 is satisfied. We use Lemma I.1, Lemma I.2 to find minimum
eigenvalue of G∞ and then applying Hoeffding’s inequality (Fact C.3) to bound the deviation of
minimum eigenvalue of G(0) from G∞, we get the desired bound.

Now, we specify the behavior of the probabilists’ hermite expansion coefficients cp−1

(
φ′
)

for
φ = tanh. Let β, the exponent of real axis convergence of tanh′, be the least upper bound on γ for
which

tanh′(x) = O
(
e−ν|x|

γ
)
, x ∈ R,

for some constant ν > 0 as|x| → ∞. We have β = 1, as tanh′(x) ∼ e−4|x| for large|x|.
Hence, using Eq. 5.15 in Boyd (1984) for the coefficients c̄k in the probabilists’ Hermite expansion
of tanh′ we have

c̄k =
2

(2k + 1)
1/4

Θ

(
e−

π
4 (2k+1)

1
2

)
, as k →∞. (34)

We remark that Boyd (1984) uses physicists’ Hermite expansion. Following similar technique as
in Corollary F.7.1 and Theorem F.7, we can get the exact similar form of probabilists’ Hermite
expansion coefficients c̄k

(
tanh′

)
.

Thus for p = O(log n), we have c̄p = Ω̃
(
e−c

′√logn
)

.

Corollary I.4.1. Let φ(x) be the activation function tanh and d′ = span{x1, ...,xn} = Θ (log n).
Then,

λmin

(
G(0)

)
≥
(
σ

n

)O(logn)

with probability at least 1 − 1/poly(n) − e
−Ω
(

m
log2 m

( σn )
O(logn)

)
w.r.t. the noise matrix N and

{w(0)
k }mk=1.
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Corollary I.4.2. Let the activation be tanh and d′ = dim span{x1, ...,xn} = Θ (nγ), for a constant

γ ≥ Ω
(

log logn
logn

)
. Then for any κ ∈ (0, 1) we have

λmin

(
G(0)

)
≥ Ω

(
e−c

′√logn

n

(
κσ

np

)2p
)

with probability at least 1− κ w.r.t. the noise matrix N and {w(0)
k }mk=1, provided

m ≥ Ω

(
p4pn4p+4 log

(
n/κ

)
log2m

σ4pκ4p

)
,

where p is the smallest ”odd” integer satisfying(
d′

p

)
≥ n,

and c′ is a constant. p can be shown to lie in the range,

1

γ
≤ p ≤ 2

γ − 2
logn

.
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J DEPTH HELPS FOR tanh

Let the neural network under consideration be

F

(
x;a,

{
W(l)

}L
l=1

)
=

cφ√
m

m∑
k=1

akφ

((
w

(L)
k

)T
x(L−1)

)
where x(l) ∈ Rm ∀l ≥ 1 and x(l) ∈ Rd for l = 0, is defined recursively by its components as
follows.

x
(l)
k =

cφ√
m
φ

((
w

(l)
k

)T
x(l−1)

)
∀k ∈ [m],∀l ≥ 1

x
(0)
k = xk ∀k ∈ [d].

cφ =
(
Ez∼N (0,1)φ(z)2

)− 1
2

, with φ following the following three properties.

• φ(0) = 0.
• φ is α-Lipschitz.
• Ez∼N (0,1) φ(z) = 0

The weight matrices and the output weight vector are given by
{
W(l)

}L
i=1

and a respectively, where

a ∈ Rm, W(l) ∈ Rm×m for l ≥ 2 and W(l) ∈ Rm×d for l = 1.

Now, we define the Gram matrix G(0) as follows (cf. Eq. 13 in Du et al. (2019b)).

g
(0)
ij =

1

m

∑
k∈[m]

a2
kφ
′
((

w
(L)
k

)T
x

(L−1)
i

)
φ′
((

w
(L)
k

)T
x

(L−1)
j

)
with its counterpart G∞, when m→∞, given by

g∞ij = Ew∼N (0,I),a∼N (0,1)a
2φ′
(
wTx

(L−1)
i

)
φ′
(
wTx

(L−1)
j

)
Lemma J.1. For a small constant ε > 0, if m ≥ Ω

(
max

(
2L log2 m

ε2 log nL, (nL)
2/7
))

, then with

probability at least 1− e−Ω(mε2/2L log2 m) − nL
m3.5 we have∥∥∥x(l)

i

∥∥∥ ∈ (1− ε, 1 + ε) ∀i ∈ [n], l ∈ {0, . . . , L− 1} . (35)

Proof. We will use induction on l to show that for any given i with appropraite probability we have∥∥∥x(l)
i

∥∥∥ ∈ (1−
(

4c2φα
2
)l−L

ε, 1 +
(

4c2φα
2
)l−L

ε

)
∀l ∈ [L].

We will apply union bound over the choice of i to derive the result for all i ∈ [n]. The result holds true
for l = 0 by Assumption 1. Let’s assume that the result holds true for l = t. For a randomly picked
vector w ∼ N (0, I), wTx

(t)
i follows a normal distribution with mean 0 and standard deviation∥∥∥x(t)

i

∥∥∥ ∈ (1− εt, 1 + εt), where εt =
(

4c2φα
2
)t−L

ε. Denote unit normalized form of x
(t)
i as

x
(t)
i . Since, there are m random Gaussian vectors in the matrix W(t+1), leading to formation of m

Gaussians along the dimension of W(t+1)Tx
(t)
i , we can apply Fact C.5 to confine each dimension of

W(t+1)Tx
(t)
i to the range

(
−3
√

logm
∥∥∥x(t)

i

∥∥∥ , 3√logm
∥∥∥x(t)

i

∥∥∥) with probability at least 1− 1
m3.5 .

Assuming that this holds true, we can claim the following: First,

Pr
W(t+1)


∣∣∣∣∣∣ 1

m

m∑
k=1

c2φφ
(
w

(t+1)T
k x

(t)
i

)2

− Ew∼N (0,I)c
2
φφ
(
wTx

(t)
i

)2

∣∣∣∣∣∣ ≥ α2c2φεt

 ≤ 2e
−Ω

(
mε2t

log2 m

)

(36)
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where we use Hoeffding’s inequality (Fact C.3) and bound on w
(t)T
k x

(t)
i and the α-Lipschitzness of

the activation φ to put a bound on
∣∣∣φ(w

(t+1)T
k x

(t)
i )
∣∣∣ to be used in Hoeffding’s inequality.

Second, using Taylor expansion of φ, the deviation of Ew∼N (0,I)c
2
φφ(wTx

(t)
i )2 from

Ez∼N (0,1) c
2
φφ(z)2 can be bounded in the following manner.

Ew∼N (0,I) c
2
φ φ(wTx

(t)
i )2 = Ew∼N (0,I) c

2
φ φ
(
wTx

(t)
i

)2

+ ε′ = Ez∼N (0,1) c
2
φ φ(z)2 + ε′ (37)

where ε′ ∈
(
−2c2φα

2εt, 2c
2
φα

2εt

)
. This follows from the following set of equations.

φ(wTx
(t)
i )2 = φ

(
wTx

(t)
i

)2

+ 2

∫ 1

s=0

φ
(

(1− s)wTx
(t)
i + swTx

(t)
i

)
φ′
(

(1− s)wTx
(t)
i + swTx

(t)
i

)(
wTx

(t)
i −wTx

(t)
i

)
ds

≤ φ
(
wTx

(t)
i

)2

+ 2εt(1 + εt)α
2
(
wTx

(t)
i

)2

. (38)

In the inequality above we used the facts that φ is α-Lipschitz, and since φ(0) = 0 by assumption,
φ(z) ≤ α|z|.
This gives

Ew∼N (0,I) c
2
φ φ(wTx

(t)
i )2 ≤ Ew∼N (0,I) c

2
φ φ
(
wTx

(t)
i

)2

+ 2εt(1 + εt)α
2c2φ Ew∼N (0,I)

(
wTx

(t)
i

)2

≤ Ew∼N (0,I) c
2
φφ
(
wTx

(t)
i

)2

+ 2εt(1 + εt)α
2c2φ.

Third, we use the definition of cφ and the α-Lipschitzness of φ, to bound the error due to restricting

the maximum magnitude of wTx
(t)
i to 3

√
logm

∥∥∥x(t)
i

∥∥∥, to get

E
w∼N (0,I):

∣∣∣wTx(t)
i

∣∣∣≤3
√

logm
c2φφ

(
wTx

(t)
i

)2

= Ew∼N (0,I)c
2
φφ
(
wTx

(t)
i

)2

+O

(√
logm

m

)

= 1 +O

(√
logm

m

)
(39)

This can be shown by the following equation.∣∣∣∣Ew∼N (0,I):
∣∣∣wTx(t)

i

∣∣∣≤3
√

logm
c2φ φ

(
wTx

(t)
i

)2

− Ew∼N (0,I)c
2
φ φ
(
wTx

(t)
i

)2
∣∣∣∣ ≤ 2

1√
2π

∫ ∞
3
√

logm

φ(x)2e−x
2/2dx

≤ α22
1√
2π

∫ ∞
3
√

logm

x2e−x
2/2dx

≤ α2

√
logm

m
(40)

Combining Equation 36, Equation 37 and Equation 39, we get that with probability at least 1 −

2e
−Ω

(
mε2t

log2 m

)
−m−7/2,

∥∥∥x(t+1)
i

∥∥∥ =

 1

m

m∑
k=1

c2φφ(w
(t)T
k xi)

2

1/2

∈
(

1− 4α2c2φεt, 1 + 4α2c2φεt

)
.

We use the union bound for all the induction steps and examples to get the final desired bounds.
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Lemma J.2. If for a pair i, j ∈ [n], x(l−1)T
i x

(l−1)
j = ρ s.t. |ρ| ≤ 1 − δ and if Equation 35 holds,

then for all small ε > 0,∣∣∣x(l)T
i x

(l)
j

∣∣∣ ≤ 3 (1 + 2ε) εα2c2φ+(1 + 2ε) max

(
1 + c

2

(
δ

n2

)
+

1− c
2

(
δ

n2

)2

,
1 + c

2
|ρ|+ 1− c

2
|ρ|2
)

with probability at least 1−m−7/2 − e−Ω(mδ2/α4n4 log2 m) w.r.t. initialization, where c denotes the
ratio c̄21(φ)∑∞

a=1 c̄
2
a(φ) .

Proof. From Equation 35, for a small constant ε,
∥∥∥x(l−1)

i

∥∥∥ ∈ (1− ε, 1 + ε) ,∀i ∈ [n] with high

probability. For a vector x set x := x/‖x‖; thus we will use x
(l−1)
i for x

(l−1)
i /

∥∥∥x(l−1)
i

∥∥∥. We

use Fact C.5 to restrict the maximum magnitude of the 2m Gaussians wT
k x

(l−1)
i and wT

k x
(l−1)
j for

k ∈ [m] to 3
√

logm
∥∥∥x(l−1)

i

∥∥∥ and 3
√

logm
∥∥∥x(l−1)

j

∥∥∥ respectively. Assuming that this condition
holds, we have

x
(l)T
i x

(l)
j = c2φ

1

m

∑
k∈[m]

φ
(
w

(l)T
k x

(l−1)
i

)
φ
(
w

(l)T
k x

(l−1)
j

)
= c2φ

1

m

∑
k∈[m]

φ
(
w

(l)T
k x

(l−1)
i

)
φ
(
w

(l)T
k x

(l−1)
j

)
+ ε′ (41)

= c2φEw∼N (0,I)φ
(
w

(l)T
k x

(l−1)
i

)
φ
(
w

(l)T
k x

(l−1)
j

)
+ ε′ + ε′′ (42)

= c2φ

∞∑
a=0

c̄2a (φ) ρa + ε′ + ε′′ + ε′′′. (43)

We get Equation 41 along the lines of Equation 38: we use 1-st order Taylor expansion of
φ
(
wT
k x

(l−1)
i

)
around wT

k x
(l−1)
i and φ

(
wT
k x

(l−1)
j

)
around wT

k x
(l−1)
j , α-Lipschitzness of φ and

upper and lower bounds of
∥∥∥x(l−1)

i

∥∥∥ and
∥∥∥x(l−1)

j

∥∥∥ from Lemma J.1 to get

φ(wT
k x

(l−1)
i )φ(wT

k x
(l−1)
j ) = φ

(
wT
k x

(l−1)
i

)
φ(wT

k x
(l−1)
j )

+

∫ 1

s=0

φ(wT
k x

(l−1)
j )φ′

(
(1− s)wT

k x
(l−1)
i + swT

k x
(l−1)
i

)(
wT
k x

(l−1)
i −wT

k x
(l−1)
i

)
ds

+

∫ 1

t=0

φ(wT
k x

(l−1)
i )φ′

(
(1− t)wT

k x
(l−1)
j + twT

k x
(l−1)
j

)(
wT
k x

(l−1)
j −wT

k x
(l−1)
j

)
dt

+

∫ 1

s=0

∫ 1

t=0

φ′
(

(1− s)wT
k x

(l−1)
i + swT

k x
(l−1)
i

)(
wT
k x

(l−1)
i −wT

k x
(l−1)
i

)
φ′
(

(1− t)wT
k x

(l−1)
j + twT

k x
(l−1)
j

)(
wT
k x

(l−1)
j −wT

k x
(l−1)
j

)
dsdt

≤ φ
(
wT
k x

(l−1)
i

)
φ
(
wT
k x

(l−1)
j

)
+ α2

(
2ε(1 + ε) + ε2(1 + ε)2

)∣∣∣wT
k x

(l−1)
i

∣∣∣∣∣∣wT
k x

(l−1)
j

∣∣∣ . (44)

In the inequality above we used the facts that φ is α-Lipschitz, and since φ(0) = 0 by assumption,
φ(z) ≤ α|z|. This gives

1

m

m∑
k=1

c2φφ(wT
k x

(l−1)
i )φ(wT

k x
(l−1)
j ) ≤ 1

m

m∑
k=1

c2φφ(wT
k x

(l−1)
i )φ(wT

k x
(l−1)
i )

+ α2
(

2ε(1 + ε) + ε2(1 + ε)2
) 1

m

m∑
k=1

c2φ

∣∣∣wT
k x

(l−1)
i

∣∣∣∣∣∣wT
k x

(l−1)
j

∣∣∣
≤ 1

m

m∑
k=1

c2φφ(wT
k x

(l−1)
i )φ(wT

k x
(l−1)
i ) + 4α2c2φ

(
2ε(1 + ε) + ε2(1 + ε)2

)
.
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In the last step, we use Hoeffding’s inequality to bound the deviation of
1
m

∑m
k=1 c

2
φ

∣∣∣wT
k x

(l−1)
i

∣∣∣∣∣∣wT
k x

(l−1)
j

∣∣∣ from Ew∼N (0,I) c
2
φ

∣∣∣wTx
(l−1)
i

∣∣∣∣∣∣wTx
(l−1)
j

∣∣∣ and using stan-

dard gaussian moments, we can show that that Ew∼N (0,I)

∣∣∣wTx
(l−1)
i

∣∣∣∣∣∣wTx
(l−1)
j

∣∣∣ is at-most 4. Thus,
combining everything,we get

ε′ ∈
(
−20εα2c2φ, 20εα2c2φ

)
with probability at least 1−e−Ω(m/ log2 m). In Equation 42, we use Hoeffding’s inequality (Fact C.3),
α-Lipschitzness of φ and bound for the magnitude of the 2m gaussians wT

k x
(l−1)
i and wT

k x
(l−1)
j to

get ε′′ ∈ (−τ, τ) where

τ =


1−c

2 |ρ|
(
1−|ρ|

)
, if |ρ| ≥ δ

n2 .
1−c

2
δ
n2

(
1− δ

n2

)
, otherwise.

with probability at least 1 − e
−
(

Ω(mδ2/α4n4 log2 m)
)

. Note that, the minimum value of τ is
1−c

2
δ
n2

(
1− δ

n2

)
. The reason of using this form of τ will be discussed below. We use Lemma N.4 in

Equation 43, with ρ00 =
∥∥∥x(l−1)

i

∥∥∥2

, ρ11 =
∥∥∥x(l−1)

j

∥∥∥2

and ρ01 = ρ
∥∥∥x(l−1)

i

∥∥∥∥∥∥x(l−1)
j

∥∥∥. This follows

from the fact that for a random normal vector w ∼ N (0, I), wTx follows a normal distribution with
mean 0 and variance‖x‖2 and the covariance of wTx and wTy is xTy for two vectors x and y. We

have an additional error term ε′′′ ∈
(
−
√

logm
m ,

√
logm
m

)
owing to the condition that

∣∣∣wT x̄
(l−1)
i

∣∣∣
must be at most 3

√
logm (proof will follow exactly along the lines of Equation 40).

Let us now focus on the quantity R (ρ) for the activation function cφφ(.), defined in Fact N.2. From
the definition of cφ, it follows that c2φ = 1∑∞

a=1 c̄
2
a(φ) . Thus, we have

∣∣R(ρ)
∣∣ ≤ R(|ρ|) ≤ R(1) = 1,

which comes from the properties of R, as given in Fact N.2. Again, we have

∣∣R(ρ)
∣∣ ≤ R(|ρ|) ≤

c2φ ∞∑
a=1

c̄2a (φ)|ρ|2 + c2φc
2
1 (φ)

(
|ρ| −|ρ|2

)
=

(
|ρ|+ c̄21 (φ)∑∞

a=1 c̄
2
a(φ)

(
1−|ρ|

))
|ρ|

Thus,∣∣∣x(l)T
i x

(l)
j

∣∣∣ ≤ ∣∣ε′′∣∣+
∣∣ε′∣∣+

∣∣ε′′′∣∣+
∣∣R(ρ)

∣∣ ≤ 6εα2c2φ + max

(
1 + c

2

(
δ

n2

)
+

1− c
2

(
δ

n2

)2

,
1 + c

2
|ρ|+ 1− c

2
|ρ|2
)

(45)

where c denotes the ratio c̄21(φ)∑∞
a=1 c̄

2
a(φ) . In the equation above, we can see that the form of τ = max

∣∣ε′∣∣
has been chosen so that R(|ρ|) +

∣∣ε′∣∣ ≤ 1
2

(
R(|ρ|) +|ρ|

)
Thus,∣∣∣x(l)T

i x
(l)
j

∣∣∣ ≤ 6 (1 + 2ε) εα2c2φ + (1 + 2ε) max

(
1 + c

2

(
δ

n2

)
+

1− c
2

(
δ

n2

)2

,
1 + c

2
|ρ|+ 1− c

2
|ρ|2
)

(46)

where we use the bound on
∥∥∥x(l)

i

∥∥∥ from Equation 35.

Lemma J.3. ∀i, j ∈ [n], i 6= j, if xTi xj ≤ 1− δ, then x
(L−1)T
i x

(L−1)
j ≤ ε, where

Ω

(
δ

n2(1− c)

)
≤ ε ≤ 1− Ω

(
δ

n2(1− c)

)
,
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and

L ≥ 2

1− c
max

(
Ω

(
log

1

δ

)
,Ω

(
log

1

ε

))
,

with probability at least 1−Ω
(

1
m3

)
, provided m ≥ Ω

(
2Ln2α4c4φ log (n2L) log2 m

δ2

)
, , where c denotes

the ratio c̄21(φ)∑∞
a=1 c̄

2
a(φ) .

Proof. Applying Lemma J.2 with ε = δ
20n2α2c2φ

, we have for each layer l ∈ [L] and i, j ∈ [n]; i 6= j,∣∣∣x(l)T
i x

(l)
j

∣∣∣ ≤ f (∣∣∣x(l−1)T
i x

(l−1)
j

∣∣∣)
holds with probability 1 − Ω

(
1
m3

)
, provided m ≥ Ω

(
2Ln4α4c4φ log (n2L) log2 m

δ2

)
. Here function

f : R→ R is s.t. for ρ ∈ R,

f(ρ) =

f̂ (ρ) , if|ρ| ≥ δ
n2 .

1+c
2

(
δ
n2

)
+ 1−c

2

(
δ
n2

)2

+ δ
n2 , otherwise.

where function f̂ is defined as

f̂ (ρ) =
1 + c

2
ρ+

1− c
2

ρ2 +
δ

n2

Thus, ∣∣∣x(L)T
i x

(L)
j

∣∣∣ ≤ f ◦ f . . . ◦ f︸ ︷︷ ︸
L times

(∣∣∣x(0)T
i x

(0)
j

∣∣∣)
Let’s now focus on the function f . It can be seen that for the function f̂ , 2δ

n2(1−c) and 1− 2δ
n2(1−c)

are two fixed points, and starting from any positive ρ(0) strictly less than 1− 2δ
n2(1−c) and following

fixed point algorithm leads to convergence to the point 2δ
n2(1−c) . Since, f̂ equals the function f till

the convergence point, the rate of convergence of fixed point algorithm for the function f is well
approximated by the rate of convergence for the function f̂ . Also, the rate of convergence of f̂ is
equal to the rate of convergence of the function f̃ : R→ R defined for each ρ ∈ R as

f̃(ρ) =
1 + c

2
ρ+

1− c
2

ρ2.

Lemma J.4 shows that starting at ρ(0) = 1− δ, the number of fixed point iteration steps to reach ε for
function f̃ is given by 2

1−c max
(

Ω log
(

1
δ

)
,Ω log

(
1
ε

))
. Hence, from this argument, if

∣∣∣x(0)T
i x

(0)
j

∣∣∣ ≤
1− δ and L ≥ 2

1−c max
(

Ω
(
log 1

δ

)
,Ω
(
log 1

ε

))
, the quantity

∣∣∣x(L)T
i x

(L)
j

∣∣∣ becomes less than ε .

Lemma J.4. For ρ ∈ R, define the function f̃ : R→ R by

f̃(ρ) = aρ+ (1− a)ρ2

where a is a constant in (0, 1
2 ). Starting at ρ(0) = 1− δ, the number of fixed point iteration steps to

reach ε is given by 1
1−a max

(
Ω
(
log 1

δ

)
,Ω
(
log 1

ε

))
.

Proof. The function f̃ has fixed points 0 and 1, but it’s easy to see that starting at any point below
1, fixed point iteration converges to 0; we want to understand the speed of convergence. We will
divide the fixed point iterate’s path into two sub-paths (a) movement from 1− δ to 1− b (b is a small
constant) and (b) movement from 1− b to ε.
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• Movement from 1−δ to 1− b :. We will divide the path into subpaths (1−2tδ, 1−2t−1δ),
where t is an integer in (0, log b

δ ). We show that ∀t ≤ O
(

log b
δ

)
, the number of iterations

to reach from 1− 2t−1δ to 1− 2tδ can be upper bounded by 1
1−a . The number of iterations

of function f̃ to go from (1−2t−1δ, 1−2tδ) is at most the number of iterations of the linear
function f̂ : R→ R defined by

f̂ (ρ) =
(

1− (1− a)2t−1δ
)
ρ.

The number of fixed point iterations of f̂ to go from
(
1− 2t−1δ

)
to
(
1− 2tδ

)
is given by

log 1−2t−1δ

1−2tδ

log(1−(1−a)2t−1δ)
, which can be shown to be less than 2 2tδ−2t−1δ

(1−a)2t−1δ = 2
1−a using Taylor

expansion of log function. Thus, the total number of iterations involved in the entire path is
upper bounded by 2

1−a log b
δ .

• Movement from 1− b to ε : The number of iterations of f̃ is t most that of a linear function
f̂ in the domain (0, 1− b) defined by

f̂(ρ) =
(
1− (1− a)b

)
ρ.

The number of iterations of f̂ to go from (1− b) to ε is given by log 1−b
ε

log 1
1−b(1−a)

, which upper

bounded by 1
b(1−a) log 1−b

ε , for small enough constant b.

Thus, summing the number of steps needed in the two subpaths leads to the desired quantity.

Theorem J.5. If

L ≥ 2

1− c
max

(
Ω

(
log

1

δ

)
,Ω

(
log 2n

log n

))
,

then

λmin

(
G(0)

)
≥ Ω

(
c̄2Θ(logn)

(
φ′
))
−O

(
δ

n

)
with probability at least 1 − Ω

(
1
m3

)
, provided m ≥ Ω

(
2Ln4α4c4φ log (n2L) log2 m

δ2

)
, where c̄k

(
φ′
)

denotes the kth order coefficient in the probabilists’ Hermite expansion of φ′ and c denotes the ratio
c̄21(φ)∑∞
a=1 c̄

2
a(φ) .

Proof. Assuming Equation 35 with ε = δ
n2c2φα

2 , using Lemma I.1 we get

λmin (G∞) ≥ c̄2Θ(logn)

(
φ′
)
λmin

((X(L)
)∗ logn

)T (
X

(L)
)∗ logn

+ ε′ + ε′′ (47)

where X
(L)

denotes a m×n matrix, with its ith column containing x
(L)
i , which is the unit normalized

form of x(L)
i ,

(
X

(L)
)∗r

denotes its order rth Khatri–Rao power. There are two error terms ε′ and ε′′

because of two reasons (a) norm of x(L)
i is ε away from 1 (b) magnitude of wTx

(l)
i is restricted to

3
√

logm. Following the line of proof of Equation 38, magnitude of ε′ can be bounded toO
(
nc2φα

2ε
)

.

Also, following the line of proof of Equation 40, magnitude of ε′′ can be bounded to n
√

logm
m . Now,

we make the following claims.

First, xTi xj , for any i, j ∈ [n] with i 6= j, can be shown to be at most to 1− δ, using Assumption 2.
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Second, if xTi xj = ρ s.t. |ρ| ≤ 1 − δ, applying Lemma J.3 shows that
∣∣∣∣(x(L)

i

)T
x

(L)
j

∣∣∣∣ ≤ ε̃, for a

small constant ε̃, provided L ≥ 2
1−c max

(
Ω
(
log 1

δ

)
,Ω
(
log 1

ε̃

))
, with high probability.

Third, if for any i, j ∈ [n],
(
x

(L)
i

)T
x

(L)
j = ρ′ < 1, then we can see that

((
x

(L)
i

)∗r)T (
x

(L)
j

)∗r
=

ρ′r, where x∗r denotes the order-r Khatri–Rao product of a vector x.

Combining these claims, we get the following.

First, The diagonal elements of the matrix

((
X

(L)
)∗ logn

)T (
X

(L)
)∗ logn

are equal to 1. Second,

the non diagonal element at row i and column j of the matrix

((
X

(L)
)∗ logn

)T (
X

(L)
)∗ logn

is

given by
((

x
(L)
i

)∗ logn
)T (

x
(L)
i

)∗ logn

, whose magnitude is bounded by ε̃logn. Hence, if

L ≥ 2

1− c
max

(
Ω

(
log

1

δ

)
,Ω

(
log 2n

log n

))
,

each non diagonal element’s absolute value becomes less than 1
2n and so the absolute sum of non

diagonal elements is at least 1
2 away from the absolute value of the diagonal element, for each row of

the matrix
((

X(L)
)∗ logn

)T (
X(L)

)∗ logn

. Using Fact C.10, we get for r = log n,

λmin

(
X(L)∗rTX(L)∗r

)
≥ 1

2
(48)

Combining the value of ε′, value of ε′′ and Equation 48 gives us the minimum eigenvalue of G∞.
Since,

λmin

(
G(0)

)
≥ λmin (G∞)−

∥∥∥∥(G∞ −G(0)
)∥∥∥∥

F

,

we use Hoeffding’s inequality to bound the magnitude of each element of
(
G∞ −G(0)

)
to

λmin (G∞) /2n and hence, get a bound on λmin

(
G(0)

)
.

Theorem J.6. If φ = tanh and

L ≥ 2

1− c
max

(
Ω

(
log

1

δ

)
,

(
log 2n

log n

))
,

then

λmin

(
G(0)

)
≥ e
−Ω

(
log

1
2 n

)
� 1/poly(n)

with probability at least 1 − Ω
(

1
m3

)
, provided m ≥ Ω

(
2Ln4 log (n2L) log2 m

δ2

)
, for an arbitrary

constant ε > 0. The constant c denotes the ratio c̄21(tanh)∑∞
a=1 c̄

2
a(tanh) .

Proof. The proof follows from Theorem J.5, with the bound on Hermite coefficients for tanh′ from
Eqn. (34).

We re-state the rate of convergence theorem from Du et al. (2019b) and use our bounds on minimum
eigenvalue of the gram matrix to give a more finer version of the theorem.
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Theorem J.7 (Thm 5.1 in Du et al. (2019b)). Assume that Assumption 1 and Assumption 2 hold
true,|yi| = O(1) ∀i ∈ [n] and the number of neurons per layer satisfy

m ≥ Ω

2O(L) max

 n4

λ4
min

(
G(0)

) , n
κ
,
n2 log

(
Ln
κ

)
λ2

min

(
G(0)

)

 .

Then, if we follow a Gradient Descent algorithm with step size

η = O

λmin

(
G(0)

)
n22O(L)

 ,

with probability at least 1− κ over the random initialization, the following holds true ∀t ≥ 1.

∥∥∥y − u(t)
∥∥∥2

≤

1−
ηλmin

(
G(0)

)
2


t∥∥∥y − u(0)

∥∥∥2

.

Thus, refining the above theorem with our computed bounds for λmin

(
G(0)

)
> O( 1

n ), we get the
following.
Theorem J.8. If φ = tanh,

L ≥ 2

1− c
max

(
Ω

(
log

1

δ

)
,

(
log 2n

log n

))
,

and the number of neurons per layer satisfy

m ≥ Ω

2O(L) max

{
n8,

n

κ
, n4 log

(
Ln

κ

)} ,

then, if we follow a Gradient Descent algorithm with step size

η ≤ O
(

1

n32O(L)

)
,

with probability at least 1− κ over the random initialization, the following holds true ∀t ≥ 1.∥∥∥y − u(t)
∥∥∥2

≤
(

1− η

2n

)t∥∥∥y − u(0)
∥∥∥2

.

The constant c denotes the ratio c̄21(tanh)∑∞
a=1 c̄

2
a(tanh) .
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K LOWER BOUND ON LOWEST EIGENVALUE FOR NON-SMOOTH FUNCTIONS

For α ∈ (−1, 1) define the activation function φ by

φ(x) = φ1(x)Ix<α + φ2(x)Ix≥α.

We show that the minimum singular value of the G-matrix is at least inverse polynomially large in n
and δ, provided φ1 and φ2 satisfy the following properties for some positive integer r. We denote this
condition by Jr.

• φ1, φ2 ∈ Cr+1 in the domains (−∞, α] and [α,∞), respectively.

• The first (r + 1) derivatives of φ1 and φ2 are upper bounded in magnitude by 1 in (−∞, α]
and [α,∞) respectively.

• For 0 ≤ i < r, we have φ(i)
1 (α) = φ

(i)
2 (α).

•
∣∣∣φ(r)

1 (α)− φ(r)
2 (α)

∣∣∣ = 1, i.e. the r-th derivative has a jump discontinuity at α.

In the following we consider J1 and J2. The results can be easily generalized to higher r but with
lower bound degrading as n−2r .

K.1 J1: THE FIRST DERIVATIVE IS DISCONTINUOUS AT A POINT

K.1.1 DZPS SETTING

Recall that this setting was defined in section 2. ReLU, SELU and LReLU satisfy the conditions for
the following theorem. The data set {(xi, yi)}ni=1, for xi ∈ Rd and yi ∈ R is implicitly understood
in the theorem statements below.

Theorem K.1. Let the condition on φ be satisfied for r = 1. Assume that w
(0)
k ∼

N (0, Id) and a
(0)
k ∼ N (0, 1) ∀k ∈ [m]. Then, the minimum singular value of the G-matrix

satisfies

λmin

(
G(0)

)
≥ Ω

(
δ

n3

)
,

with probability at least 1 − e−Ω(δm/n2) with respect to {w(0)
k }mk=1 and {a(0)

k }mk=1, given that m
satisfies

m ≥ Ω

(
n3

δ
log

n

δ1/4

)
.

Proof. In the following, we will write wk instead of w(0)
k and ak instead of a(0)

k . Consider the
following sum for an arbitrary unit vector ζ and a random standard normal vector w:

n∑
i=1

ζi φ
′
(
wTxi

)
xi.

To lower bound the lowest eigenvalue of the G-matrix, we will give a lower bound on the norm of
this vector. In order to do this, we use the following claim whose proof is deferred to later in the
section.

Claim K.2. For ζ ∈ Sn−1, let

f(w) =

n∑
i=1

ζi φ
′
(
wTxi

)
xi.

Then we have

Pr
w∼N (0,Id)

(∥∥f(w)
∥∥

2
≥ 0.1√

n

)
≥ Ω

(
δ

n2

)
.
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From this claim, we have

Pr
w∼N (0,Id)


∥∥∥∥∥∥
n∑
i=1

ζi φ
′
(
wTxi

)
xi

∥∥∥∥∥∥
2

≥ 0.1√
n

 ≥ Ω

(
δ

n2

)
.

Hence,

Pr
w∼N (0,Id),ã∼N (0,1)


∥∥∥∥∥∥
n∑
i=1

ãζi φ
′
(
wTxi

)
xi

∥∥∥∥∥∥
2

≥ 0.1√
n

 ≥ Ω

(
δ

n2

)
.

owing to the fact that for a standard normal variate ã, |ã| is at least 1 with probability at least 0.2
using Fact C.1. Applying the Chernoff bounds, we have

Pr
{Wk}mk=1,{ak}

m
k=1

 1

m

m∑
k=1

∥∥∥∥∥∥
n∑
i=1

ζiakφ
′
(
wT
k xi

)
xi

∥∥∥∥∥∥
2

2

≥ 10−3δ

n3

 ≥ 1− e−Ω
(
δm
n2

)
.

To get the bound for all ζ ∈ Sn−1, we use an ε-net argument with ε = Θ
(√

δ
n2

)
and ε-net size

(
1
ε

)n
.

This gives that

1

m

m∑
k=1

∥∥∥∥∥∥
n∑
i=1

ζiφ
′
(
wT
k xi

)
xi

∥∥∥∥∥∥
2

2

≥ Ω

(
δ

n3

)
holds for all ζ ∈ Sn−1 with probability at least

1−

(
n2

√
δ

)n
e
−Ω
(
δm
cn2

)
≥ 1− e−Ω

(
δm
n2

)

with respect to {wk}mk=1 and {ak}mk=1, assuming that m ≥ Ω
(
n3

δ log n4

δ

)
. Thus, using the fact that

λmin

(
G(0)

)
= 1

mσmin (M)
2, we get the final bound.

Corollary K.2.1. Let the activation be ReLU, then

λmin

(
G(0)

)
≥ Ω

(
δ

n3

)
with probability at least 1 − e−Ω

(
δm
n2

)
with respect to

{
w

(0)
k

}m
k=1

and
{
a

(0)
k

}m
k=1

, given that m
satisfies

m ≥ Ω

(
n3

δ
log

n

δ1/4

)
.

We now move on to showing the main claim required in the Theorem K.1. Claim K.2 is an adaptation
of (Allen-Zhu et al., 2019, Claim 6.4) with a slightly different choice of parameters and exposition.

Proof of Claim K.2 . Let i∗ denote arg maxi∈[n] ζi. We split vector w into two independent weight
vectors, as follows

w = w′ + w′′,

w′ =
(
Id − xi∗x

T
i∗

)
w −

√
1− θ2g1xi∗ ,

w′′ = θg2xi∗ , (49)

where g1 and g2 are two independent Gaussian random variables following N
(
0, 1− θ2

)
and

N
(
0, θ2

)
respectively and we set θ = δ

n2 .
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Let E denote the following event.

E =

{∣∣∣w′Txi∗ − α∣∣∣ < δ

10n2
and

∣∣∣w′Txi − α∣∣∣ > δ

4n2
∀i ∈ [n] \ {i∗} and |θg2| ∈

(
δ

9n2
,
δ

5n2

)}
.

Assuming event E occurs, for i = i∗ we have∣∣∣w′Txi∗ − α∣∣∣ ≤ δ

10n2
,
∣∣∣w′′Txi∗ ∣∣∣ =

∣∣∣θg2x
T
i∗xi∗

∣∣∣ ≥ δ

9n2
,

and for ∀i 6= i∗ we have∣∣∣w′Txi − α∣∣∣ > δ

4n2
,
∣∣∣w′′Txi∣∣∣ =

∣∣∣θg2x
T
i∗xi

∣∣∣ ≤ δ

5n2
.

Hence, conditioned on E , for i 6= i∗ we have IwTxi≥α = Iw′Txi≥α always and IwTxi∗≥α 6=
Iw′Txi∗≥α with probability 1/2.

Conditioned on E and using triangle and Cauchy–Schwartz inequalities we get

‖
∑

i∈[n],i6=i∗
ζi φ
′(wTxi)xi −

∑
[n],i6=i∗

ζi φ
′(w′Txi)xi‖2

≤
∑

i∈[n],i6=i∗
‖ζixi‖2

∣∣∣φ′(wTxi)− φ′(w′Txi)
∣∣∣

≤

 ∑
i∈[n],i6=i∗

‖ζixi‖22

1/2 ∑
i∈[n],i6=i∗

(φ′(wTxi)− φ′(w′Txi))2

1/2

=

 ∑
i∈[n],i6=i∗

(φ′(wTxi)− φ′(w′Txi))2

1/2

≤

 ∑
i∈[n],i6=i∗

∣∣∣wTxi −w′Txi

∣∣∣2
1/2

(50)

≤ O
(√
n
) δ

5n2
= O

(
δ

5n1.5

)
,

where we use our assumption that
∣∣φ′′(x)

∣∣ ≤ 1 for x ∈ R \ {α} in Inequality 50. Conditioning
on E was used in concluding that either φ′(wTxi) − φ′(w′Txi) = φ′1(wTxi) − φ′1(w′Txi) or
φ′(wTxi)− φ′(w′Txi) = φ′2(wTxi)− φ′2(w′Txi). In other words, φ′1 and φ′2 “don’t mix”. Since∣∣limz→α− φ

′(z)− limz→α+ φ′(z)
∣∣ = 1 and|ζi∗ | ≥ 1√

n
, we have

Pr
g2

(∥∥∥∥ζi∗ φ′ (wTxi∗
)
xi∗ − ζi∗ φ′

(
w′Txi∗

)
xi∗

∥∥∥∥
2

≥ 1√
n

(
1− δ

5n2

) ∣∣∣∣ E
)

=
1

2
.

To see this, note that given conditioned on E , with probability 0.5 with respect to g2, wTxi is going
to cross the jump discontinuity at α and thus, φ′ is going to change by at least 1, minus the maximum
movement on either side of α, which is bounded. Thus,

Pr
w


∥∥∥∥∥∥
n∑
i=1

ζiφ
′
(
wTxi

)
xi

∥∥∥∥∥∥
2

≥ 0.1√
n

∣∣∣∣∣ E
 ≥ 0.5.

We now need to show that E occurs with high probability. To do this, we state the following claim
that we prove later.

Claim K.3. Let all the variables be as in Claim K.3. Then,

Pr
w′

(∣∣∣w′Txi∗ − α∣∣∣ ≤ δ

10n2
and

∣∣∣w′Txi − α∣∣∣ ≥ δ

4n2
∀i 6= i∗

)
≥ Ω

(
δ

n2
√

1− θ2

)
.
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From Claim K.3, we have

Pr
w′

(∣∣∣w′Txi∗ − α∣∣∣ ≤ δ

10n2
and

∣∣∣w′Txi − α∣∣∣ ≥ δ

4n2
∀i 6= i∗

)
≥ Ω

(
δ√

1− θ2n2

)
.

Also, using the fact that θg2 ∼ N
(
0, θ2

)
and Fact C.1, we have

Pr
g2

(
|θg2| ∈

(
δ

9n2
,
δ

5n2

))
≥

δ
5n2

δ
n2

− 2

3

δ
9n2

δ
n2

≥ 0.08.

Independence of w′ and w′′ implies

Pr
w

[E ] ≥ Ω

(
δ

n2

)
.

Thus,

Pr
w∼N (0,Id)

(∥∥f(w)
∥∥

2
≥ 0.1√

n

)
≥ Pr

w∼N (0,Id)

(∥∥f (w)
∥∥

2
≥ 0.1√

n

∣∣∣∣E
)

Pr
w∼N (0,Id)

[E ]

≥ Ω

(
δ

n2

)
.

Proof of K.3. By the definition of w′, w′Txi∗ is equal to
√

1− θ2g1, which is distributed according
to N

(
0, 1− θ2

)
. Hence, applying concentration bounds from Fact C.1, we get that

Pr
w′

(∣∣∣w′Txi∗ − α∣∣∣ ≤ δ

10n2

)
≥ δ

40n2
√

1− θ2
. (51)

We can divide w′ ∀i ∈ [n] into two parts:

• Component orthogonal to xi∗ given by w′T
(
Id − xi∗x

T
i∗
)
xi

• Component parallel to xi∗ given by w′T
(
xi∗x

T
i∗
)
xi.

This gives us
w′Txi = w′T

(
Id − xi∗x

T
i∗

)
xi︸ ︷︷ ︸

�

+w′T
(
xi∗x

T
i∗

)
xi.

Conditioning on w′Txi∗ such that Equation 51 is satisfied, we get that w′Txi is distributed according
to

w′Txi ∼ N

(
w′T

(
xi∗x

T
i∗

)
xi,
(

1− θ2
)∥∥∥∥(Id − xi∗x

T
i∗

)
xi

∥∥∥∥2

2

)
.

By our assumption,
∥∥∥(Id − xi∗x

T
i∗
)
xi

∥∥∥
2
≥ δ. Also,

0 ≤
∣∣∣∣w′T (xi∗xTi∗)xi∣∣∣∣ =

∣∣∣∣w′Txi∗ (xTi∗xi)∣∣∣∣ ≤ ∣∣∣∣α+
δ

10n2

∣∣∣∣ ≤ 1 (52)

Hence, again applying concentration bounds from Fact C.1, we get for a fixed i 6= i∗

Pr
w′

(∣∣∣w′Txi − α∣∣∣ ≥ δ

4n2

)
≥ 1− δ

5n2
√

1− θ2δ
.

Taking a union bound, we get that ∀i ∈ [n] and i 6= i∗

Pr
w′

(∣∣∣w′Txi − α∣∣∣ ≥ δ

4n2

)
≥ 1− 1

5n
√

1− θ2
≥ 4

5
,

as required.
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K.1.2 J1 FOR STANDARD SETTING

The above theorems can be easily adapted to the standard settings, defined in Appendix D. We
capture this with the following corollaries.
Corollary K.3.1 (Adapting Theorem K.1 for Init (fanin) setting). Let the condition on φ be satisfied
for r = 1. Assume, w(0)

k ∼ N
(
0, 1

dId
)
, b

(0)
k ∼ N (0, 0.01) and a(0)

k ∼ N
(
0, 1

m

)
∀k ∈ [m].

Then, the minimum singular value of the G-matrix satisfies

λmin

(
G(0)

)
≥ Ω

(
δ

n3

)
,

with probability at least 1− e−Ω(δm/n2) with respect to {w(0)
k }mk=1, {b(0)

k }mk=1 and {a(0)
k }mk=1, given

that m satisfies

m ≥ Ω

(
n3

δ
log

n

δ1/4

)
.

Corollary K.3.2 (Adapting Theorem K.1 for Init (fanout) setting). Let the condition on φ be satisfied
for r = 1. Assume, w(0)

k ∼ N
(
0, 1

mId
)
, a

(0)
k ∼ N (0, 1) and b(0)

k ∼ N
(
0, 1

m

)
∀k ∈ [m]. Then,

the minimum singular value of the G-matrix satisfies

λmin

(
G(0)

)
≥ Ω

(
δ

n2

)
,

with probability at least 1− e−Ω(δm/n) with respect to {w(0)
k }mk=1, {b(0)

k }mk=1 and {a(0)
k }mk=1, given

that m satisfies

m ≥ Ω

(
n2

δ
log

n

δ1/2

)
.

K.2 J2 : THE SECOND DERIVATIVE HAS JUMP DISCONTINUITY AT A POINT

K.2.1 DZPS SETTING

Recall that this setting was defined in Section 2.

Theorem K.4. Let φ satisfy the condition for r = 2. Assume that w(0)
k ∼ N (0, Id) and a(0)

k ∼
N (0, 1) ∀k ∈ [m]. Then, the minimum singular value of the G-matrix satisfies

λmin

(
G(0)

)
≥ Ω

(
δ3

n7 log n

)
,

with probability at least 1 − e−Ω(δm/n2) with respect to {w(0)
k }mk=1 and {a(0)

k }mk=1, given that m
satisfies

m > max

Ω

(
n3

δ
log

(
n

δ1/3

))
,Ω

(
n2 log(d)

δ

) .

Proof. In the following, we will use wk instead of w
(0)
k and ak instead of a(0)

k . Referring to
Equation 4, it suffices to show that∥∥∥∥∥∥

n∑
i=1

ζimi

∥∥∥∥∥∥
2

2

=

m∑
k=1

∥∥∥∥∥∥
n∑
i=1

ζiakφ
′
(
wT
k xi

)
xi

∥∥∥∥∥∥
2

2

.

is lower bounded for all vectors ζ ∈ Sn−1 with high probability. Fix a particular ζ ∈ Sn−1. For each
k ∈ [m] and each i ∈ [n], we have wT

k xi ∼ N (0, 1). First, we analyze the sum for a fixed k, i.e. we
consider

∑n
i=1 ζi φ

′ (wT
k xi

)
xi. We split vector wk as

wk = ŵk + w̄k,

53



Published as a conference paper at ICLR 2020

where ŵk and w̄k are two independent Gaussian vectors in Rd distributed according to
N
(

0,
(
1− θ2

)
Id

)
and N

(
0, θ2Id

)
respectively. We set

θ =
δ

2000n2
√

log n
.

Define the event Cw on a weight vector w as

Cw =

{∣∣∣wTxi − α
∣∣∣ ≥ δ

100n2
: i ∈ [n]

}
.

Using Fact C.1 and the fact that xi are unit vectors,

Pr
w∼N (0,(1−θ2)Id)

[Cw] ≥ 1− δ

400n
√

1− θ2
. (53)

Define the event Dw on a weight vector w as

Dw =

{∣∣∣wTxi

∣∣∣ ≤ δ

500n2
: i ∈ [n]

}
.

Fact C.2 shows that,

Pr
w∼N (0,θ2Id)

[Dw] ≥

1− 2n exp

(
−t2

2

) (54)

≥ 1− 2

n7
(55)

≥ 0.5, (56)

where we set t = δ
500n2θ to get Inequality 55.

We want ŵk to satisfy condition Cŵk and w̄k to satisfy condition Dw̄k . Since, ŵk and w̄k are
independent of each other, we use Equation 53 and Equation 54 to get

Pw̄k,ŵk

(
Cŵk and Dw̄k

)
≥ 0.25.

Assuming both the conditions hold, it follows that IŵTk xi≥α = IwTk xi≥α. We will work conditioned
on both the events.

Define a function f as follows,

f(w) =

n∑
i=1

ζi φ
′(wTxi).

Note that

∇wf(w) =

n∑
i=1

ζi φ
′′(wTxi)xi.

In the sequel, we will use f ′ for ∇wf(w) and f ′′ for ∇2
wf(w). It is easy to see that the only

discontinuities of the derivative of function f are when wTxi = α, since it is the only point of
discontinuity for φ′′. Thus, assuming that Cŵk and Dw̄k hold, we can apply Taylor expansion to
f(ŵk) for a perturbation of w̄k, ensuring that all the derivatives exist in the neighborhood of interest.
Hence,

f(wk) = f(ŵk) + 〈w̄k, f
′(ŵk)〉+R2 (wk) ,

where R2 denotes the second order remainder term in the Taylor expansion given by

R2 (wk) =
1

2

∫ 1

t=0

〈
f ′′ (ŵk + tw̄k) , w̄⊗2

k

〉
dt.

Using∇2
wf(w) =

∑n
i=1 ζi x

⊗2
i φ(3) (z)

∣∣∣∣
z=〈w,xi〉

, we have

R2 (wk) =
1

2

∫ 1

t=0

n∑
i=1

ζi
(
〈w̄k,xi〉

)2
φ(3)

(
〈ŵk + tw̄k,xi〉

)
dt.
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The magnitude of this term can be bounded as follows.

∣∣R2 (wk)
∣∣ =

1

2

n∑
i=1

ζi
(
〈w̄k,xi〉

)2(∫ 1

t=0

φ(3)
(
〈ŵk + tw̄k,xi〉

)
dt

)

≤ 1

2

√√√√ n∑
i=1

(∫ 1

t=0

φ(3)
(
〈ŵk + tw̄k,xi〉

)
dt

)2
√√√√ n∑

i=1

ζ2
i

(
〈w̄k,xi〉

)4
(57)

≤ 1

2

√
n

(
δ

500n2

)2

(58)

≤ O

(
δ2

n3.5

)
,

where Inequality 57 uses Cauchy-Schwartz inequality, Inequality 58 uses the fact that all the deriva-
tives of φ of order up to r+ 1 are bounded for x 6= 0 and w̄k satisfies condition Dw̄k and ŵk satisfies
Cŵk . Thus we have

f(wk) = f(ŵk) + 〈w̄k, f
′(ŵk)〉+O

(
δ2

n3.5

)
. (59)

Consider the following two cases.

Case 1:
∣∣f(ŵk)

∣∣ < 1
2

√
0.01
n θ.

First, we condition on the event that ŵk is picked so that
∥∥f ′ (ŵk)

∥∥2

2
≥ 0.01

n and Cŵk holds true. We
shall refer to this condition as Bŵk . By Claim K.5, we get that

Pr
ŵk

[
Bŵk

]
= Pr

ŵk

(∥∥f ′(ŵk)
∥∥2

2
≥ 0.01

n
and Cŵk

)
≥ Ω

(
δ

(1− θ2)n2

)
. (60)

〈w̄k, f
′(ŵk)〉 is a random variable following N

(
0, θ2

∥∥f ′(ŵk)
∥∥2

2

)
. Thus applying Fact C.1,

Pr
w̄k

(∣∣〈w̄k, f
′(ŵk)〉

∣∣ ≥√0.01

n
θ

∣∣∣∣ Bŵk

)
≥ 1

5
.

Now letting event D̄w̄k denote the complement of the event Dw̄k we have

Pr
w̄k

(∣∣∣〈w̄k, f
′(Ŵk)〉

∣∣∣ ≥√0.01

n
θ
∧

DW̄k

∣∣∣∣BŴk

)

= Pr
w̄k

(∣∣〈w̄k, f
′(ŵk)〉

∣∣ ≥√0.01

n
θ

∣∣∣∣ Bŵk

)
− Pr

w̄k

(∣∣〈w̄k, f
′(ŵk)〉

∣∣ ≥√0.01

n
θ

∣∣∣∣ Bŵk , D̄w̄k

)
Pr
w̄k

[
D̄w̄k

]
≥ 1

5
− 2

n7

≥ 1/10.

Hence, from Equation 59, we get

Pr
w̄k

(∣∣f(wk)
∣∣ ≥ 1

2

√
0.01

n
θ and Dw̄k

∣∣∣∣Bŵk

)
≥ 0.1.

Thus,

Pr
wk

(∣∣f(wk)
∣∣ ≥ 1

2

√
0.01

n
θ

)
≥ Pr

wk

(∣∣f(wk)
∣∣ ≥ 1

2

√
0.01

n
θ and Bŵk and Dw̄k

)

≥ Pr
ŵk

[
Bŵk

]
Pr
w̄k

(∣∣f(wk)
∣∣ ≥ 1

2

√
0.01

n
θ and Dw̄k

∣∣∣∣Bŵk

)

≥ Ω

(
δ

n2

)
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Case 2:
∣∣f(ŵk)

∣∣ ≥ 1
2

√
0.01
n θ.

We can upper-bound the magnitude of f ′(ŵk) by O(
√
n) as follows.

∥∥f ′(ŵk)
∥∥ =

∥∥∥∥∥∥
n∑
i=1

ζiφ
′′(ŵT

k xi)xi

∥∥∥∥∥∥ ≤
√√√√ n∑

i=1

ζ2
i φ
′′(ŵT

k xi)
2

√√√√ n∑
i=1

‖xi‖2 ≤ O(
√
n).

Here we use the fact that‖ζ‖ = 1, φ′′ is bounded by a constant at all x 6= α and‖xi‖ = 1 for i ∈ [n].
Note that, this bound always holds true, irrespective of the value of ŵk. Again, using the fact that
〈w̄k, f

′(ŵk)〉 is a Gaussian variable following N (0, θ2
∥∥f ′(ŵk)

∥∥2
), Fact C.1 shows that,

Pr
w̄k

(∣∣〈w̄k, f
′(ŵk)〉

∣∣ ≤ 1

4

√
0.01

n
θ

∣∣∣∣ Cŵk

)
≥ 0.1

4

2/3
√
n
∥∥f ′(ŵk)

∥∥ ≥ 0.1

4

2/3

n
.

Now,

Pr
w̄k

(∣∣〈w̄k, f
′(ŵk)〉

∣∣ ≤ 1

4

√
0.01

n
θ
∧

Dw̄k

∣∣∣∣ Cŵk

)

= Pr
w̄k

(∣∣〈w̄k, f
′(ŵk)〉

∣∣ ≤ 1

4

√
0.01

n
θ

∣∣∣∣ Cŵk

)
− Pr

w̄k

(∣∣〈w̄k, f
′(ŵk)〉

∣∣ ≤ 1

4

√
0.01

n
θ

∣∣∣∣ Cŵk , D̄w̄k

)
Pr
w̄k

[
D̄w̄k

]
≥ 1

60n
− 2

n7

≥ Ω

(
1

n

)
.

Hence, from Equation 59, we get

Pr
w̄k

(∣∣f(wk)
∣∣ ≥ 1

4

√
0.01

n
θ
∧

Dw̄k

∣∣∣∣Cŵk

)
≥ Ω

(
1

n

)
.

Thus,

Pr
wk

(∣∣f(wk)
∣∣ ≥ 1

4

√
0.01

n
θ

)
≥ Pr

wk

(∣∣f(wk)
∣∣ ≥ 1

4

√
0.01

n
θ and Cŵk

∧
Dw̄k

)

≥ Pr
ŵk

[
Cŵk

]
Pr
w̄k

(∣∣f(wk)
∣∣ ≥ 1

4

√
0.01

n
θ and Dw̄k

∣∣∣∣Cŵk

)

≥ Ω

(
1

n

)
.

Thus, combining the two cases, we have

Pr
wk

(∣∣f(wk)
∣∣ ≥ Ω

(
δ

n2.5
√

log n

))
≥ Ω

(
δ

n2

)
. (61)

Hence,

Pr
wk,ak


∣∣∣∣∣∣
n∑
i=1

ζiakφ
′(wT

k xi)

∣∣∣∣∣∣ ≥ Ω

(
δ

n2.5
√

log n

) ≥ Ω

(
δ

n2

)
. (62)

owing to the fact that for a standard normal variate ã, |ã| is at-least 1, with probability at-least 0.2
using Fact C.1. Applying a Chernoff bound over all k ∈ [m], we get

m∑
k=1

 n∑
i=1

ζiφ
′
(
wT
k xi

)2

≥ Ω

(
δ3m

n7 log n

)

56



Published as a conference paper at ICLR 2020

with probability at least 1 − exp(−Ω( δmn2 )) with respect to {wk}mk=1 and {ak}mk=1.. Applying an
ε-net argument over ζ ∈ Sn−1, with ε = δ1.5

2n4
√

logn
and ε-net size

(
1
ε

)n
, we get that

m∑
k=1

 n∑
i=1

ζiφ
′(wT

k xi)

2

≥ Ω

(
δ3m

n7 log (n)

)
(63)

holds for all ζ ∈ Sn−1 with probability at least

1−

(
2n4
√

log n

δ1.5

)n
e
−Ω
(
mδ
n2

)
≥ 1− e−Ω

(
mδ
n2

)

with respect to {wk}mk=1 and {ak}mk=1., where we assume that m > Ω

(
n3

δ log
(

n
δ1/3

))
. Now

consider the following function,

f(w) =

m∑
k=1

n∑
i=1

ζiakφ
′
(
wT
k xi

)
xi

where ζ ∈ Sn−1. Note that f(w) is a d-dimensional vector. Also, the above can be written as

f(w) = Qv

where Q = [qij ] ∈ Rd×n is defined by

qi,j = ζjxj,i

and v ∈ Rn, defined by
vi = akφ

′(wT
k xi).

Also, since ‖ζ‖ = 1 and ‖xi‖ = 1 ∀i ∈ [n], we have ‖Q‖F = 1. Consider the following quantity∑n
j=1 qi,jvj . This quantity denotes the dot product of a row vector of Q and v. We can apply

Equation 63 to get ∣∣∣∣∣∣
n∑
j=1

qi,j
‖qi‖

vj

∣∣∣∣∣∣
2

≥ Ω

(
δ3m

n7 log n

)

holds true with probability at-least 1 − e
−Ω
(
δm
n2

)
with respect to {wk}mk=1 and {ak}mk=1. Note

that, the coefficients have been normalized to unit norm to satisfy the condition based on which
Equation 63 was derived. We can take a union bound over all the rows of Q to get

∥∥f(w)
∥∥2

=

d∑
i=1

∣∣∣∣∣∣
n∑
j=1

qi,jvj

∣∣∣∣∣∣
2

≥
d∑
i=1

‖qi‖2 Ω

(
δ3m

n7 log n

)

=‖Q‖2F Ω

(
δ3m

n7 log n

)
= Ω

(
δ3m

n7 log n

)
with probability at least

1− de−Ω
(
δm
n2

)
≥ 1− e−Ω

(
δm
n2

)
with probability at least 1− e−Ω

(
δm
n2

)
with respect to {wk}mk=1 and {ak}mk=1, assuming that m ≥

Ω
(
n2 log d

δ

)
. Thus, we can use Equation 4 to show that,

σmin (M) ≥ Ω

√ δ3m

n7 log n

 .

Using the fact that λmin

(
G(0)

)
= 1

mσmin (M)
2, we get that λmin

(
M(0)

)
≥ Ω( δ3

n7 logn ) with

probability at least 1− e−Ω
(
δm
n2

)
.
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ELU satisfies the conditions required for Theorem K.4. We state this explicitly in the following
theorem.

Corollary K.4.1. Assume w
(0)
k ∼ N (0, Id) and a

(0)
k ∼ N (0, 1)∀k ∈ [m], if φ(x) =

Ix<0 (ex − 1) + Ix≥0x, we have that for the G-matrix,

λmin

(
G(0)

)
≥ Ω

(
δ3

n7 log n

)

with probability at least 1− e−Ω
(
δm
n2

)
with respect to

{
w

(0)
k

}m
k=1

, given that m satisfies

m > max

Ω

(
n3

δ
log

(
n

δ1/3

))
,Ω

(
n2 log(d)

δ

) .

Claim K.5. Let the variables have the same meaning as in the theorem Theorem K.4. Then,

Pr
w∼N (0,c2Id)

(
‖f ′(w)‖22 ≥

1

4n
and Cw

)
≥ Ω(

δ

cn2
)

for a variable c that depends on n and δ.

Proof. Let i∗ denote arg maxi∈[n] ζi. We can split w as w = w′ + w′′, where

w′ = (Id − xi∗x
T
i∗)w +

√
1− θ2g1xi∗

and
w′′ = θg2xi∗

where θ = δ
n2 and g1, g2 are two independent gaussians ∼ N (0, c2). Let E denote the following

event.

E =

{∣∣∣w′Txi∗ − α∣∣∣ < δ

10n2
and

∣∣∣w′Txi − α∣∣∣ > δ

4n2
∀i ∈ [n], i 6= i∗ and |θg2| ∈

(
δ

9n2
,
δ

5n2

)}
Event E satisfies condition Cw because for i∗,∣∣∣wTx∗i − α

∣∣∣ =
∣∣∣w′Txi∗ + w′′Txi∗ − α

∣∣∣ > ∣∣∣∣∣∣∣w′Txi∗ − α∣∣∣−∣∣∣w′′Txi∗ ∣∣∣∣∣∣∣ > δ

90n2

and for all i 6= i∗,∣∣∣wTxi − α
∣∣∣ =
∣∣∣w′Txi + w′′Txi − α

∣∣∣ > ∣∣∣∣∣∣∣w′Txi − α∣∣∣−∣∣∣w′′Txi∣∣∣∣∣∣∣ > δ

20n2

Hence, we can write that

Pr
w∼N (0,c2Id)

(
‖f ′(w)‖22 ≥

1

4n
and Cw

)

≥ Pr
w∼N (0,(1−θ2)Id)

(
‖f ′(w)‖22 ≥

1

4n
and Cw

∣∣∣∣∣E
)

Pr
w∼N (0,(1−θ2)Id)

E

= Pr
w∼N (0,(1−θ2)Id)

(
‖f ′(w)‖22 ≥

1

4n

∣∣∣∣∣E
)

Pr
w∼N (0,(1−θ2)Id)

E

≥ 1

2

0.2δ

cn2
= Ω(

δ

cn2
),

where we use Claim K.6 in the final step.
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Claim K.6.

Pr
w∼N (0,c2Id)

‖f ′(w)‖22 ≥
0.01

n

∣∣∣∣∣E
 ≥ 1

2

and
Pr

w∼N (0,c2Id)
(E) ≥ 0.08δ

c2n2

where E is defined and w has been split into w′ and w′′ as in proof of Claim K.5.

Proof. This follows from the proof of Claim K.2, with a slight change in distribution of w from
N (0, Id) to N

(
0, c2Id

)
and the function under consideration is changed to

f ′(w) =

n∑
i=1

ζiφ
′′
(
wTxi

)
xi.

K.2.2 J2 FOR STANDARD SETTING

As before, we state the main theorem for standard initializations, defined in Appendix D, as corollaries.
Corollary K.6.1 (Adapting Theorem K.4 for Init(fanin) setting). Let the condition on φ be satisfied
for r = 1. Assume, w(0)

k ∼ N
(
0, 1

dId
)
, b

(0)
k ∼ N (0, 0.01) and a(0)

k ∼ N
(
0, 1

m

)
∀k ∈ [m].

Then, the minimum singular value of the G-matrix satisfies

λmin

(
G(0)

)
≥ Ω

(
δ3

n7d log n

)

with probability at least 1− e−Ω
(
δm
n2

)
with respect to

{
w

(0)
k

}m
k=1

, given that m satisfies

m > max

Ω

(
n3

δ
log

(
n

δ1/3d1/9

))
,Ω

(
n2 log(d)

δ

) .

Corollary K.6.2 (Adapting Theorem K.4 for Init(fanout) setting). Let the condition on φ be satisfied
for r = 1. Assume, w(0)

k ∼ N
(
0, 1

mId
)
, b

(0)
k ∼ N

(
0, 1

m

)
and a(0)

k ∼ N (0, 1) ∀k ∈ [m]. Then,
the minimum singular value of the G-matrix satisfies

λmin

(
G(0)

)
≥ Ω

(
δ2

mn4 log n

)
,

with probability at least 1− e−Ω(δm/n) with respect to {w(0)
k }mk=1, {b(0)

k }mk=1 and {a(0)
k }mk=1, given

that m satisfies

m ≥ Ω

(
n2

δ
log

mn5 log n

δ2

)
.
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L A NEW PROOF FOR THE MINIMUM EIGENVALUE FOR ReLU

Theorem L.1 (Thm 3.3 in Du et al. (2019a)). Consider the 2-layer feed forward network in Equa-
tion 1. Assume that w(0)

k ∼ N (0, 1) and a
(0)
k ∼ U{−1,+1} ∀k ∈ [m], Assumption 1 and

Assumption 2 hold true and|yi| ≤ C, for some constant C. Then, if we use gradient flow optimiza-

tion and set the number of hidden nodes m = Ω

(
n6 log m

κ

λmin(G∞)4κ3

)
, with probability at least 1 − κ

over the initialization we have

‖ut − y‖2 ≤ e−λmin(G∞)t‖u0 − y‖

Remark. The above proof can be adapted for the gradient descent algorithm with a learning rate less
than O

(
λmin (G∞) /n2

)
, following the proof of Theorem 5.1 in Du et al. (2019b) and theorem 4.1

in Du et al. (2019a) without substantial changes in the bounds.

Theorem L.2. Assume that we are in the setting of Theorem L.1. If the activation is ReLU and

m ≥ Ω
(
n4δ−3 log4 n

)
, then with probability at least 1− exp

(
−Ω

(
mδ3

n2 log3 n

))

λmin

(
G(0)

)
≥ Ω

((
δ

log n

)1.5
)
.

Remark. Compare the previous theorem with Cor. K.2.1.

Proof. Using Lemma I.1, we have

λmin (G∞) ≥ c̄2r
(
φ′
)
λmin

(
(X∗r)

T
X∗r

)
, ∀r ∈ Z+

where X denotes a d× n matrix, with its i-th column containing xi and X∗r ∈ Rdr×n denotes its
order-r Khatri-Rao product. Note that, by Assumption 1, the columns of X∗r are unit normalized
euclidean vectors. If for any i, j ∈ [n], xTi xj = ρ < 1, then we can see that

(
x∗ri
)T

x∗rj = ρr, where
x∗r denotes the order-r Khatri–Rao product of a vector x. Also,|ρ| can be shown to be at most 1− δ,
using Assumption 2. Thus, for the magnitude of

(
x∗ri
)T

x∗rj , for any i, j ∈ [n], i 6= j, to be less than
1

2n , we must have r ≥ r0 = log 2n
δ . Hence, for any r ≥ r0 the diagonal elements of (X∗r)

T
X∗r are

equal to 1 and magnitude of the non diagonal elements are less than 1
2n . Thus, applying Fact C.10,

we get that

λmin

(
(X∗r)

T
X∗r

)
≥ 1

2
.

Using Equation 18, we see that for r = Θ
(

log 2n
δ

)
,

c̄2r
(
φ′
)

= Θ

((
log 2n

δ

)−1.5
)
.

Thus,

λmin (G∞) ≥ Ω

((
log 2n

δ

)−1.5
)
.

For computing λmin

(
G(0)

)
, we bound the absolute difference in each element of G∞ and G(0) by

1
2nλmin (G∞) using Hoeffding’s inequality (Fact C.3) and 1-Lipschitzness of φ and then apply a
union bound over all the indices. The bound stated in the theorem follows from the fact that

λmin

(
G(0)

)
≥ λmin (G∞)−

∥∥∥∥(G∞ −G(0)
)∥∥∥∥

F

≥ λmin (G∞)− λmin (G∞) /2.
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Using the bound of λmin (G∞) from Theorem L.2 in Theorem L.1, we get the following explicit rate
of convergence for 2 layer feedforward networks.
Theorem L.3 (Thm 3.3 in Du et al. (2019a)). Assume that the assumptions in Du et al. (2019a)
hold true. Then, if we use gradient flow optimization and set the number of hidden nodes m =

Ω

(
n6 log6(n) log m

κ

δ6κ3

)
, with probability at least 1− κ over the initialization we have

‖ut − y‖2 ≤ ε

∀t ≥ Ω
(

log1.5 n
δ1.5 log n

ε

)
, for an arbitrarily small constant ε > 0.
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M EXTENSIONS AND ADDITIONAL DISCUSSION

In this section, we discuss proofs and extensions of our theorems, using adaptations from related
work.

M.1 POLYNOMIAL MINIMUM EIGENVALUE OF G-MATRIX AT TIME t

The upcoming lemma shows that, if we restrict the change in weight matrices, the minimum eigenvalue
of G(t) stays close to the minimum eigenvalue of G(0).

Lemma M.1. If activation function φ is α-lipschitz and β-smooth and
∥∥∥w(t)

r −w
(0)
r

∥∥∥ ≤ λmin

(
G(0)

)
4αβn ,

∀r ∈ [m], then

λmin

(
G(t)

)
≥ 1

2
λmin

(
G(0)

)
Proof. The claim follows a similar proof as the proof of lemma B.4 in Du et al. (2019b) and has been
repeated in Lemma M.11.

The restriction is ensured by the large number of neurons we can choose for our neural network, as
we mention in the next lemma.

Lemma M.2. Let St ⊆ [n] denote a randomly picked batch of size b. Denote ∇(t) as

∇W(t)L
({

(xi, yi)
}
i∈[n]

;a,W(t)
)

. Let the activation function φ used be α-lipschitz and β-smooth.
The GD iterate at time t+ 1 is given by,

W(t+1) = W(t) − η∇(t)

Let η ≤ O

(
λmin

(
G(0)

)
βn4α4

)
. If

m ≥ Ω

n4α4β2 logm

λmin

(
G(0)

)4


then, ∥∥∥y − u(t)
∥∥∥2

≤ ε

for t ≥ Ω

(
log(nε )

ηλmin(G(0))

)
, with probability at-least 1 −m−3.5 w.r.t.

{
w

(0)
k

}m
k=1

and
{
a

(0)
k

}m
k=1

.

Moreover, ∥∥∥w(t)
k −w

(0)
k

∥∥∥ ≤ λmin

(
G(0)

)
4αβn

holds true ∀k ∈ [m] and ∀t ≥ 0.

Proof. The claim follows a similar proof as the proof of lemma A.1 in Du et al. (2019b), where we
keep the output vector a non trainable in GD update.

Remark. The above lemmas are applicable for activation functions in Jr for r ≥ 2. Similar lemmas
can be proved for J1, along the lines of the proof of Theorem 4.1 in Du et al. (2019a).

M.2 TRAINABLE OUTPUT LAYER

Similar to the proof of Theorem 3.3 in Du et al. (2019b), we can show that the GD dynamics depends
on sum of two matrices, i.e.

du(t)

dt
= (G(t) + H(t))(y − u(t)),
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where the definition of G stays the same and H is given by

hij =
1

m

∑
r∈[m]

σ(wT
r xi)σ(wT

r xj),

implying H is p.s.d. For the positive results, e.g. Theorem 4.1, observe that λmin(G + H) ≥
λmin(G), hence a bound on λmin (G) suffices in this case. For the negative results, Theorem 4.3 and
Theorem 4.4 can be restated as follows.
Theorem M.3. Let the activation function φ be a degree-p polynomial such that φ′(x) =

∑p−1
l=0 c`x

`

and let d′ = dim
(
span {x1 . . . xn}

)
= O

(
n

1
p

)
. Then we have

λk

(
G(0) + H(0)

)
= 0, ∀k ≥

⌈
2n/d′

⌉
Theorem M.4. Let the activation function be tanh and let d′ = dim

(
span {x1 . . . xn}

)
=

O
(

log0.75 n
)

. Then we have

λk

(
G(0) + H(0)

)
≤ exp(−Ω(n1/2d′))� 1/poly(n), ∀k ≥

⌈
2n/d′

⌉
with probability at least 1 − 1/n3.5 over the random choice of weight vectors

{
w

(0)
k

}m
k=1

and{
a

(0)
k

}m
k=1

.

Proof. (Proof sketch for Theorem M.3 and Theorem M.4) Following the proof of Theorem 4.3 and
Theorem 4.4 gives us similar lower bounds for H(0) i.e. n(1 − 1

d′ ) lower order eigenvalues are 0,
if φ is a degree-p polynomial and exponentially small in n1/d′ with high probability, if φ is tanh.
Thus, we can use Weyl’s inequality (Fact C.11) to show that n(1 − 2

d′ ) lower order eigenvalues
of G(0) + H(0) are 0, if φ is a degree-p polynomial and exponentially small in n1/d′ with high
probability, if φ is tanh.

Remark. The lemmas in subsection M.1, that were proved for a network with non trainable output
vector a, can also be proved for a network with trainable output vector a. And so, a polynomial lower
bound on minimum eigenvalue of G(0) implies polynomial lower bound on minimum eigenvalue of
G(t), under appropriate number of neurons and GD training.

M.3 MULTI CLASS OUTPUT WITH CROSS ENTROPY LOSS

Let’s say, we have a classification task, where the number of classes is C and we use the following
neural network for prediction.

fq(x;A,W) :=
cφ√
m

m∑
k=1

ak,qφ
(
wT
k x
)
, ∀q ∈ [C]

where x ∈ Rd is the input and W = [w1, . . . ,wm] ∈ Rm×d is the hidden layer weight matrix and
A ∈ Rm×C is the output layer weight matrix. We define u (x) ∈ RC as

u (x) = softmax
(
f(x;A,W)

)
where softmax on a vector v ∈ RC denotes the following operation

softmax(v)i =
evi∑

j∈[C] e
vj
.

Given a set of examples {xi, yi}ni=1, where xi ∈ Rd and yi ∈ [C] ∀i ∈ [n], we use the following
cross entropy loss to train the neural network.

L
(
A,W; {xi, yi}ni=1

)
= −

n∑
i=1

log
(
fyi(x;A,W)

)
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Let’s denote the vector ỹ as an nC dimensional vector, whose elements are defined as follows.

ỹC(i−1)+j =

{
0, if j 6= yi
1, otherwise

Also, let’s define another vector ũ ∈ RnC as follows.

ũC(i−1)+j = softmax
(
f(xi;A,W)

)
j

All the network dependent variables have a superscript t, depending on the time step at which they
are calculated.

Using chain rule and derivative of cross entropy loss w.r.t. output of softmax layer, we can show the
following differential equation for gradient flow.

dũ

dt
= G̃(t) (ỹ − ũ)

where G̃ ∈ RnC×nC is a gram matrix defined by its elements as follows.

g̃pr =
1

m

∑
k∈[m]

ak,qak,q′φ
′
(
wT
k xi

)
φ′
(
wT
k xj

)
,

where i = b pC c+ 1, j = b rC c+ 1, q = p mod C and q′ = r mod C. Thus,

d
∥∥∥ỹ − ũ(t)

∥∥∥2

dt
= −

(
ỹ − ũ(t)

)T
G̃(t)

(
ỹ − ũ(t)

)
≤ −λmin

(
G̃(t)

)∥∥∥ỹ − ũ(t)
∥∥∥2

Again following the argument discussed in section 3, if there hasn’t been much movement in the
weights of the network due to large number of neurons,

(
G̃(t)

)
stays close to

(
G̃(0)

)
and hence, the

rate of convergence depends on the gram matrix
(
G̃(0)

)
. We show that the gram matrix possesses a

unique structure and is related to the gram matrix defined for a single output network.

G̃ contains C disjoint principal n× n blocks, denoted by {Bq}Cq=1, where Bq is defined as follows:

bqij =
1

m

∑
k∈[m]

a2
k,qφ

′
(
wT
k xi

)
φ′
(
wT
k xj

)
.

As can be seen, each Bq is structurally identical to the gram matrix defined for a single output neural
network with input weight matrix W and output weight vector aq (Equation 2).

Let’s denote the set of C(C−1) remaining disjoint non diagonal blocks of G̃ as {Bq,q′}q,q′∈[C],q 6=q′ ,
where each block is defined as follows.

bq,q
′

ij =
1

m

∑
k∈[m]

ak,qak,q′φ
′
(
wT
k xi

)
φ′
(
wT
k xj

)
.

Assuming that we have sufficient number of neurons, G̃(0) can be shown to be close to the matrix
G̃∞ using Hoeffding’s inequality, where G̃∞ has the following diagonal {(B∞)

q}Cq=1 and non

diagonal blocks {(B∞)
q,q′}Cq=1 defined as follows.

(B∞)
q
ij = Ew∼N (0,I),ã∼N (0,1) ã

2φ′
(
wTxi

)
φ′
(
wTxj

)
,

(B∞)
q,q′

ij = Ew∼N (0,I),a,ã∼N (0,1) aãφ
′
(
wTxi

)
φ′
(
wTxj

)
.

Using independence of random gaussian variables a and ã and random gaussian vector w, we
can show that (B∞)

q,q′ are identically zero matrices. Also, the diagonal blocks (B∞)
q are identi-

cally equal to the G∞ matrix defined for single output layer neural networks (Equation 2). Thus,
λmin(G̃∞) = λmin(G̃∞) and hence the bounds for eigenvalues of λmin(G̃(0)) can be derived
from the bounds for eigenvalues of λmin(G(0)), defined for a single output layer neural network
(Equation 2).
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M.4 FINE-GRAINED ANALYSIS FOR SMOOTH ACTIVATION FUNCTIONS

In this section, we show the behavior of the loss function under gradient descent, in the low learning
rate setting considered by Du et al. (2019a), Du et al. (2019b) and Arora et al. (2019c). We consider
the neural network given by Equation 1.

We assume that the activation function φ satisfies the following properties.

• φ ∈ C3,

• φ is β-lipschitz and γ-smooth.

Now, we state some important theorems from Du et al. (2019b), that we will use for the future
analysis. There are some differences in our setting and the setting of Du et al. (2019b). a) Du et al.
(2019b) work with a general L layer neural network. Hence, we state their theorems for L = 1. b)
For simplicity of presentation, we have assumed that ak has been kept fixed during gradient descent,
which can be easily removed as in subsection M.2 and Du et al. (2019a).

Theorem M.5 (Lemma B.4 in Du et al. (2019b)). Assume that ∀i ∈ [n] ,|yi| = O (1) and

m ≥ Ω

max


n4(

λmin

(
G(0)

))4 ,
n

κ
,

n2 log n
κ(

λmin

(
G(0)

))2


 ,

If we set step size as

η = O

λmin

(
G(0)

)
n2


then with probability at least 1− κ over

{
w

(0)
k

}m
k=1

, the following holds ∀t ∈ Z+.

L
(
W(t)

)
≤

1−
ηλmin

(
G(0)

)
2


t

L
(
W(0)

)

Note that Du et al. (2019b) consider λmin (G∞) in their arguments. However, in the overparametrized
regime, with high probability with respect to {wk}mk=1, λmin (G∞) and λmin

(
G(0)

)
differ only by

a constant factor, as given by lemma B.4 in Du et al. (2019b). Thus, we show their theorems using
λmin

(
G(0)

)
.

Theorem M.6 (Lemma B.6 in Du et al. (2019b)). Assuming the setting in Theorem M.5, the following
holds ∀t ∈ Z+ and ∀k ∈ [m].

∥∥∥w(t)
k −w

(0)
k

∥∥∥ ≤ O( n
√
mλmin

(
G(0)

)) .
Theorem M.7. Assuming the setting in Theorem M.5, the following holds ∀t ∈ Z+.∥∥∥G(t) −G(0)

∥∥∥
2
≤ O

(
n2

√
mλmin

(
G(0)

)) .
Proof. We follow the proof of lemma B.5 of Du et al. (2019b). We will bound the change in
each element of the G-matrix and then, take a sum over all the elements to get a bound over the
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perturbation.

∣∣∣g(t)
ij − g

(0)
ij

∣∣∣ =

∣∣∣∣∣∣∣
〈
xi,xj

〉
m


m∑
k=1

φ′
(
w

(t)T
k xi

)
φ′
(
w

(t)T
k xj

)
−

m∑
k=1

φ′
(
w

(0)T
k xi

)
φ′
(
w

(0)T
k xj

)
∣∣∣∣∣∣∣

≤ 1

m

m∑
k=1

∣∣∣∣φ′ (w(t)T
k xi

)
φ′
(
w

(t)T
k xj

)
− φ′

(
w

(0)T
k xi

)
φ′
(
w

(t)T
k xj

)∣∣∣∣
+

1

m

m∑
k=1

∣∣∣∣φ′ (w(0)T
k xi

)
φ′
(
w

(t)T
k xj

)
− φ′

(
w

(0)T
k xi

)
φ′
(
w

(0)T
k xj

)∣∣∣∣
=

1

m

m∑
k=1

∣∣∣∣φ′ (w(t)T
k xi

)
− φ′

(
w

(0)T
k xi

)∣∣∣∣ ∣∣∣∣φ′ (w(t)T
k xj

)∣∣∣∣
+

1

m

m∑
k=1

∣∣∣∣φ′ (w(t)T
k xj

)
− φ′

(
w

(0)T
k xj

)∣∣∣∣ ∣∣∣∣φ′ (w(0)T
k xi

)∣∣∣∣
≤ 2γO(1)

∥∥∥w(0)
k −w

(t)
k

∥∥∥ ≤ O( γn
√
mλmin

(
G(0)

))

where, we use Theorem M.6 and the fact that φ′ is γ-smooth and is bounded by O(1) in the final step.
Thus, we get

∥∥∥G(t) −G(0)
∥∥∥
F
≤

√√√√ ∑
i,j∈[n]

(
g

(t)
ij − g

(0)
ij

)2

≤ O

(
γn2

√
mλmin

(
G(0)

))

as required.

Lemma M.8 (Claim 3.4 in Du et al. (2019a)). In the setting of Theorem M.5,∥∥∥y − u(0)
∥∥∥ ≤ O(√n

κ

)

holds with probability at least 1− κ with respect to
{
w

(0)
k

}m
k=1

.

Now, we state the following theorem, which is a simple adaptation of theorem 4.1 in Arora
et al. (2019c). Let v1, v2, ..., vn denote the eigenvectors of G(0), corresponding to its eigenval-
ues λ1, λ2, ..., λn.

Theorem M.9. With probability at least 1−κ over the random initialization, ∀t ∈ Z+, the following
holds ∥∥∥y − u(t)

∥∥∥ =

√√√√ n∑
i=1

(
1− ηc2φλi

)2t (
vTi
(
y − u(0)

))2

± ε,

provided

m ≥ Ω

 n5

γκλmin

(
G(0)

)4
ε2


and

η ≤ O

λmin

(
G(0)

)
c2φn

2


66



Published as a conference paper at ICLR 2020

Proof. For each i ∈ [n], we get

u
(t+1)
i − u(t)

i =
cφ√
m

m∑
k=1

ak

{
φ
(
w

(t+1)T
k xi

)
− φ

(
w

(t)T
k xi

)}

=
cφ√
m

m∑
k=1

ak

φ
((

w
(t)
k − η

∂

∂wk
L
(
w

(t)
k

))T
xi

)
− φ

(
w

(t)T
k xi

) (64)

=
cφ√
m

m∑
k=1

akφ
′
(
w

(t)T
k xi

)(
−η ∂

∂wk
L
(
w

(t)
k

))T
xi + εi (t) (65)

= −
ηc2φ
m

m∑
k=1

a2
k

n∑
j=1

(
φ′
(
w

(t)T
k xi

)
φ′
(
w

(t)T
k xj

))(
u

(t)
j − yj

) 〈
xi,xj

〉
+ εi (t)

= −ηc2φ
n∑
j=1

G
(t)
ij

(
u

(t)
j − yj

)
+ εi (t) (66)

where we use Taylor expansion of φ in Equation 65. εi (t) denotes the error term due to truncated
Taylor expansion, whose norm can be bounded by∣∣εi (t)

∣∣ ≤ cφ
2
√
m

m∑
k=1

O(1)

((
η

∂

∂wk
L
(
w

(t)
k

))T
xi

)2

(67)

=
cφ

2m3/2
η2O(1)

m∑
k=1

 n∑
j=1

akφ
′
(
w

(t)T
k xi

) 〈
xi,xj

〉 (
y − u(t)

)
j

2

≤ cφ
2m3/2

η2O(1)

m∑
k=1

 n∑
j=1

akφ
′
(
w

(t)T
k xi

)2 〈
xi,xj

〉2∥∥∥y − u(t)
∥∥∥2

(68)

≤ O

(
η2cφn√
m/ logm

)∥∥∥y − u(t)
∥∥∥2

(69)

where we use the fact that
∣∣φ′′(z)∣∣ ≤ O(1)∀z ∈ R in Equation 67, use the Cauchy-Schwartz

inequality in Equation 68 and use the fact that
∣∣φ′(z)∣∣ ≤ O(1)∀z ∈ R,

〈
xi,xj

〉
≤ 1 ∀i, j ∈ [n]

and|ak| ≤
√

logm with high probability in Equation 69. Thus, this gives

u(t+1) − u(t) = −ηc2φG(t)
(
u(t) − y

)
+ ε(t)

where ∥∥ε(t)∥∥ =

√√√√ n∑
i=1

εi(t)
2 ≤ O

(
η2cφn

3/2√
m/ logm

)∥∥∥y − u(t)
∥∥∥2

.

Now, since G(t) is close to G(0), we can write

u(t+1) − u(t) = −ηc2φG(0)
(
u(t) − y

)
+ τ(t) (70)

where τ(t) = −ηc2φ
(
G(t) −G(0)

)(
u(t) − y

)
+ ε(t). The norm of τ(t) can be bounded as follows.∥∥τ(t)

∥∥ ≤ ηc2φ∥∥∥∥(G(t) −G(0)
)(

u(t) − y
)∥∥∥∥+

∥∥ε(t)∥∥
≤ ηc2φ

∥∥∥G(t) −G(0)
∥∥∥∥∥∥u(t) − y

∥∥∥+
∥∥ε(t)∥∥

≤ O

(
ηγ

n2c2φ√
mλmin

(
G(0)

))∥∥∥y − u(t)
∥∥∥+O

(
η2cφn

3/2√
m/ logm

)∥∥∥y − u(t)
∥∥∥2

≤ O

(
ηγn2c2φ√

mλmin

(
G(0)

))∥∥∥y − u(t)
∥∥∥ .
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Thus, applying Equation 70 recursively, we get

u(t) − y =
(
I− ηc2φG(0)

)t
(u(0) − y) +

t−1∑
t′=0

(
I− ηc2φG(0)

)t′
τ(t− 1− t′). (71)

We bound the norm of each term in the above equation. The norm of the first term can be given as
follows. ∥∥∥∥−(I− ηc2φG(0)

)t (
u(0) − y

)∥∥∥∥ =

∥∥∥∥∥∥
 n∑
i=1

(
1− ηc2φλi

)t
viv

T
i

(u(0) − y
)∥∥∥∥∥∥

=

√√√√ n∑
i=1

(
1− ηc2φλi

)2t (
vTi
(
u(0) − y

))2

. (72)

Now, the norm of the second term can be bounded as

‖
t−1∑
t′=0

(
I− ηc2φG(0)

)t′
τ(t− 1− t′)‖2

≤
t−1∑
t′=0

∥∥∥I− ηc2φG(0)
∥∥∥t

2

∥∥τ(t− 1− t′)
∥∥

2

≤
t−1∑
t′=0

(
1− ηc2φλmin

(
G(0)

))t′
O

(
ηγn2c2φ√

mλmin

(
G(0)

))∥∥∥u(t−1−t′) − y
∥∥∥

2
(73)

≤
t−1∑
t′=0

(
1− ηc2φλmin

(
G(0)

))t′
O

(
ηγn2c2φ√

mλmin

(
G(0)

))
1−

ηc2φλmin

(
G(0)

)
4


t−1−t′

O
(√

n/κ
)

≤ t

1−
ηc2φλmin

(
G(0)

)
4


t−1

O

(
γηn5/2c2φ√

mκλmin

(
G(0)

)) .
In Equation 73, we use the following.

∥∥∥u(s) − y
∥∥∥

2
=

1−
ηc2φλmin

(
G(0)

)
4


s∥∥∥u(0) − y

∥∥∥ ≤
1−

ηc2φλmin

(
G(0)

)
4


s

O
(√

n/κ
)

Thus, combining the two terms, we have

∥∥∥u(t) − y
∥∥∥ ≤

√√√√ n∑
i=1

(
1− ηc2φλi

)2t (
vTi
(
y − u(0)

))2

± t

1−
ηc2φλmin

(
G(0)

)
4


t−1

O

(
γηn5/2c2φ√

mκλmin

(
G(0)
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(74)

≤

√√√√ n∑
i=1

(
1− ηc2φλi

)2t (
vTi
(
y − u(0)

))2

±O

(
γn5/2

√
κmλ2

min

(
G(0)

))︸ ︷︷ ︸
♠

(75)

where in Equation 74, we use the fact that

t

1−
ηc2φλmin

(
G(0)

)
4


t−1

≤ 4

ηc2φλmin

(
G(0)

) .
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Thus, for the term denoted by ♠ to be less than ε, we need

m ≥ Ω

 γn5

κλmin

(
G(0)

)4
ε2


M.5 PROOF FOR SGD

The following theorem is an adaptation of Theorem 2 in Allen-Zhu et al. (2019), which asserts fast
convergence of SGD for ReLU. The theorem below applies to activation in Jr for r ≥ 2; the case of
J1 can be handled by another adaptation of Theorem 2 in Allen-Zhu et al. (2019) which we do not
discuss. Du et al. (2019b) analyzed gradient descent for this setting and mentioned the analysis of
SGD as a future work.
Theorem M.10. Let St ⊆ [n] denote a randomly picked batch of size b. Let ∇(t) denote
n
b∇W(t)L

({
(xi, yi)

}
i∈St

;a,W(t)
)

. Let the activation function φ be α-Lipschitz and β-smooth.
The SGD iterate at time t+ 1 is given by,

W(t+1) = W(t) − η∇(t)

Let η ≤ O
(
λmin

(
G(0)

)
b2

βn6α4

)
. If

m ≥ Ω

 n6α4β2 logm

b2λmin

(
G(0)

)4


then, ∥∥∥y − u(t)
∥∥∥2

≤ ε

for t ≥ Ω

(
n6α4

b2λmin(G(0))
2 β log

(
n
ε

))
, with probability at least 1− e−Ω(n2) −m−3.5 w.r.t. random

choice of St for t ≥ 0.

Proof. Note that
ESt∇(t) = ∇W(t)L

({
(xi, yi)

}
i∈[n]

;a,W(t)
)

Using taylor expansion for each coordinate i, we have

u
(t+1)
i − u(t)

i

=ui

(
W(t) − η∇(t)

)
− ui(W(t))

=−
∫ η

s=0

〈
∇(t), u′i

(
W(t) − s∇(t)

)〉
ds

=−
∫ η

s=0

〈
∇(t), u′i(W

(t))
〉
ds+

∫ η

s=0

〈
∇(t), u′i(W

(t))− u′i
(
W(t) − s∇(t)

)〉
ds

,Ii1(t) + Ii2(t) (76)

Writing the decrease of loss at time t, we have∥∥∥y − u(t+1)
∥∥∥2

2
=
∥∥∥y − u(t) − (u(t+1) − u(t))

∥∥∥2

2

=
∥∥∥y − u(t)

∥∥∥2

2
− 2(y − u(t))>(u(t+1) − u(t)) +

∥∥∥u(t+1) − u(t)
∥∥∥2

2

=
∥∥∥y − u(t)

∥∥∥2

2
− 2(y − u(t))>I1 − 2(y − u(t))>I2 +

∥∥∥u(t+1) − u(t)
∥∥∥2

2
(77)

(78)
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where I1 ∈ Rn and its ith coordinate is given by Ii1. Similarly, we define I2.

Ii1 is given as,

Ii1 = −η
〈
∇(t), u′i(W

(t))
〉

= −ηn
b

∑
j∈St

(
u

(t)
j − yj

)〈
u′j(W

(t)), u′i(W
(t))
〉

(79)

, −ηn
b

∑
j∈St

(
u

(t)
j − yj

)
g

(t)
ij (80)

where we use the definition of ∇(t) in Equation 79.

That implies,

‖I1‖ = η
n

b

∥∥∥∥G(t)D(t)
(
u(t) − y

)∥∥∥∥
≤ ηn

b

∥∥∥G(t)
∥∥∥

2

∥∥∥y − u(t)
∥∥∥

≤ ηn
b
nα2

∥∥∥y − u(t)
∥∥∥ (81)

where D(t) ∈ Rn×n denotes a diagonal matrix that has 1 in ith diagonal element, iff i ∈ St and 0
otherwise and‖G‖2 ≤‖G‖F ≤ nL2, since φ is α-lipschitz.

Note that,

ESt(y − u(t))>I1 = ESt
∑
i∈[n]

∑
j∈St

η
n

b

(
u

(t)
i − yi

)
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(t)
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(
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(t)
j − yj

)
= η

(
y − u(t)

)>
G(t)

(
y − u(t)

)
≥ ηλmin

(
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)∥∥∥y − u(t)
∥∥∥2

(82)

Also, we can bound I2 in the following manner.∣∣∣Ii2(t)
∣∣∣ ≤ η∥∥∥∇(t)
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F
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m
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2
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r
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where we use β-smoothness of the activation function φ in the first step,
∑
r a

2
r ≤ 5m with high

probability and maxr∈[m]

∥∥∥∇(t)
r

∥∥∥2

2
≤
∥∥∥∇(t)

r

∥∥∥2

F
in 3rd step.

That implies, ∣∣∣Ii2(t)
∣∣∣ ≤ βη2n3α

2

b2
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2
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Also,∣∣∣∣ui(W(t))− ui
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r
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2

≤ α2η2

(
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b

∥∥∥y − u(t)
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(85)

Hence, using Equation 77, Equation 81, Equation 84 and Equation 85, we get∥∥∥y − u(t+1)
∥∥∥2

2
=
∥∥∥y − u(t)

∥∥∥2

2
− 2(y − u(t))>I1 − 2(y − u(t))>I2 +
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(86)

=
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= O

(1 + 2η
n2α2
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)∥∥∥y − u(t)
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 (88)

Taking log both the sides, we get

log
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∥∥∥2

2
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≤ O
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b

)
+ log
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∥∥∥2
)

By azuma-hoeffding inequality, we have
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with probability at-least 1− e−Ω(n2).

Also,

ESt
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+ 2βη2n4.5α

2

b2
+
α4

b2
η2n4

)∥∥∥y − u(t)
∥∥∥2

(90)

≤

(
1− 1

2
ηλmin

(
G(0)

)
+ 2βη2n4.5α

2

b2
+
α4

b2
η2n4

)∥∥∥y − u(t)
∥∥∥2

≤
(

1− 1

4
ηλmin

(
G(0)

))∥∥∥y − u(t)
∥∥∥2

(91)
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where we use Equation 82, Equation 84 and Equation 85 in Equation 90.

Taking log both the sides, we get

log

(
ESt

∥∥∥y − u(t+1)
∥∥∥2

2

)
≤ log

(∥∥∥y − u(t)
∥∥∥2
)
− 1

4
ηλmin

(
G(0)

)
Using Jensen’s inequality, we get

ESt log

(∥∥∥y − u(t+1)
∥∥∥2

2

)
≤ log

(∥∥∥y − u(t)
∥∥∥2
)
− 1

4
ηλmin

(
G(0)

)
(92)

Thus, for t ≥ 0, using Equation 89 and Equation 92, we get

log

(∥∥∥y − u(t)
∥∥∥2

2

)
≤
√
tO

(
η
n2α2

b

)
n+ log

(∥∥∥y − u(0)
∥∥∥2

2

)
− Ω

(
1

4
ηλmin

(
G(0)

))
t

≤ log

(∥∥∥y − u(0)
∥∥∥2

2

)
−

√ηλmin

(
G(0)

)
Ω
(√

t
)
−O

(√
η

λmin

(
G(0)

) n3α2

b

)2

+O

(√
η

λmin

(
G(0)

) n3α2

b

)2

≤ log

(∥∥∥y − u(0)
∥∥∥2

2

)
−

√ηλmin

(
G(0)

)
Ω
(√

t
)
−O

(√
η

λmin

(
G(0)

) n3α2

b

)2

+ 1

≤ log

(∥∥∥y − u(0)
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2

)
− I

t ≥ n6α4

b2λmin

(
G(0)

)2
Ω

(
ηλmin

(
G(0)

))
t+ 1

≤ log

(∥∥∥y − u(0)
∥∥∥2

2

)
− I

t ≥ n6α4

b2λmin

(
G(0)

)2
 b2λmin

(
G(0)

)2

βn6α4
t+ 1

(93)

Hence, if t ≥ Ω

(
n6α4

b2λmin(G(0))
2 β log

(
n
ε

))
, we have

log

(∥∥∥y − u(t)
∥∥∥2

2

)
≤ log

(
O (n)

)
− Ω

(
log

(
n

ε

))
≤ log (ε)

implying
∥∥∥y − u(t)

∥∥∥2

2
≤ ε. Also, let T0 = n6α4

b2λmin(G(0))
2 . Then, applying Equation 93 in chunks of

steps T0, we get
∞∑
t=0

∥∥∥y − u(t)
∥∥∥ ≤ 2T0O

(√
n
)

+ 2T0

O
(√
n
)

2
+
O
(√
n
)

4
+ ... = O

(√
nT0

)
(94)

which implies

∞∑
t=0

∥∥∥w(t+1)
r −w(t)

r

∥∥∥ =

∞∑
t=0

η
∥∥∥∇(t)

r

∥∥∥ =

∞∑
t=0

η

∥∥∥∥∥∥
∑
i∈St

arφ
′
(
wT
r xi

)
xi
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≤ αn1.5η

√
logm

b
√
m

∞∑
t=0

∥∥∥y − u(t)
∥∥∥ (95)

=
αn2η

√
logm

b
√
m

T0 (96)
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where in Equation 95 we use the fact that maximum magnitude of ar is
√

logm with high probability.

Also, for
∥∥∥G(t) −G(0)

∥∥∥ to be less than 1
2λmin

(
G(0)

)
, we need to have (Lemma M.11)

∥∥∥w(t)
r −w(0)

r

∥∥∥ ≤ λmin

(
G(0)

)
4αβn

Thus, for both the conditions to hold true, we must have

m ≥ Ω

 n6α4β2 logm

b2λmin

(
G(0)

)4
 (97)

Lemma M.11. If activation function φ is α-lipschitz and β-smooth and
∥∥∥w(t)

r −w
(0)
r

∥∥∥ ≤
λmin

(
G(0)

)
4αβn , ∀r ∈ [m], then
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2
λmin
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G(0)
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Proof.
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Hence, ∥∥∥G(t) −G(0)
∥∥∥
F
≤ max
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2Lβn
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r −w(0)
r
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N SOME BASIC FACTS ABOUT HERMITE POLYNOMIALS

For ρ ∈ [−1, 1] we say that the Gaussian random variable (v0, v1) is ρ-correlated if

(v0, v1) ∼ N

(
0,

(
1 ρ
ρ 1

))
.

Fact N.1 (Proposition 11.31 in O’Donnell (2014)).

E(v0,v1) ρ-correlatedHen (v0)Hem (v1) =

{
ρn if n = m,

0 otherwise.

where recall that Hen denotes the degree-n probabilists’ Hermite polynomial given by (10).

The following fact follows immediately from the previous one.
Fact N.2. For an activation function, define function R : R→ R by

R(ρ) := E(v0,v1)∼ ρ-correlated φ(v0)φ(v1).

Then,

R(ρ) =
∞∑
a=0

c̄2a (φ) ρa,

where c̄a (φ) is the a-th coefficient in the probabilists’ Hermite expansion of φ. The function satisfies
the following two properties.

•
∣∣R(ρ)

∣∣ ≤ R(|ρ|),

• R(ρ) is increasing in (0, 1).

In the following we let Σ :=

(
ρ00 ρ01

ρ01 ρ11

)
.

Lemma N.3.

E(v0,v1)∼N (0,Σ)Hen

(
v0√
ρ00

)
Hem

(
v1√
ρ11

)
=


(

ρ01√
ρ11ρ11

)n
if n = m,

0 otherwise.

Proof. The proof follows from the proof of Fact N.1, by using the r.v. (ṽ1, ṽ2), defined by

ṽ0 =
v0√
ρ00

ṽ1 =
v1√
ρ11

so that vector (ṽ1, ṽ2) ∼ N
(
0,Σ′

)
where Σ′ :=

 1
(

ρ01√
ρ00ρ11

)(
ρ01√
ρ00ρ11

)
1

.

Lemma N.4.

Ev∼N (0,Σ) φ

(
v0√
ρ00

)
φ

(
v1√
ρ11

)
=

∞∑
a=0

c̄2a(φ)

(
ρ01√
ρ00ρ11

)a
.

Proof.

Ev∼N (0,Σ)φ

(
v0√
ρ00

)
φ

(
v1√
ρ11

)

= Ev∼N (0,Σ)

∞∑
a=0

∞∑
a′=0

c̄a(φ)c̄a′(φ)Hea

(
v0√
ρ00

)
Hea′

(
v1√
ρ11

)

=

∞∑
a=0

c̄2a(φ)

(
ρ01√
ρ00ρ11

)a
= R

(
ρ01√
ρ00ρ11

)
where we use Lemma N.3 and Fact N.2 in the final step.
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