
Modular Platooning and Formation Control

Yanlin Zhou * 1 George Pu * 2 Fan Lu * 1 Xiyao Ma 1 Xiaolin Li 1

Abstract
Moving vehicles in formation, or platooning, can
dramatically increase road capacity. While tra-
ditional control methods can manage fleets of
vehicles, they do not address the issues of dy-
namic road conditions and scalability (i.e., so-
phisticated control law redesign and physics mod-
eling). We propose a modular framework that
averts daunting retrains of an image-to-action neu-
ral network, provides flexibility in transferring
to different robots/cars, while also being more
transparent than previous approaches. First, a
convolutional neural network was trained to lo-
calize in an indoor setting with dynamic fore-
ground/background. Then, we design a new deep
reinforcement learning algorithm named Momen-
tum Policy Gradient (MPG) for continuous con-
trol tasks and prove its convergence. MPG is
sucessfully applied to the platooning problem
with obstacle avoidance and intra-group collision
avoidance.

1. Introduction
Platooning, a major application of self-driving cars, has been
extensively studied in the control community but has yet
to draw much attention in the deep reinforcement learning
(DRL) community. Platooning is when cars on a road move
in a tight formation, such as a line, to increase road capac-
ity. Previous traditional control methods apply constrained
convex optimization to control a fleet of cars (Koshal et al.,
2009; Gong et al., 2016; Koshal et al., 2011). Platooning can
be divided into a formation control problem, where an au-
tonomous vehicle trying to follow the movement of a leader

*Equal contribution 1National Science Foundation Center for
Big Learning, Large-scale Intelligent Systems Laboratory, De-
partment of Electrical and Computer Engineering, University of
Florida, Gainesville, Florida, 32611-6250, USA 2Department of-
Computer and Information Science and Engineering, University of
Florida, Gainesville, Florida, 32611-6250, USA. Correspondence
to: Yanlin Zhou <zhou.y@ufl.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

object (Mutz et al., 2017), and obstacle avoidance prob-
lem, where a controller is expected to path around different
obstacles or unreachable areas.

A common traditional control approach is to design an
adaptive or hybrid controller by considering all the cases,
which is time-consuming (Chin & Tsai, 1993; Dixon et al.,
2004; Fibla et al., 2010). However, the non-linearity of
non-holonomic robots adds to the challenges of modeling
robots and multi-agent consensus. For instance, a wheeled
mobile robot (WMR) is a nonholonomic system due to
its constrained moving direction and speed. Controlling
nonholonomic models usually involves differential drive
derivation such as Instantaneous Center of Curvature (ICC)
or physical modeling such as a kinematic bicycle model
(Dudek & Jenkin, 2010; Rajamani, 2011; Ong & Gerdes,
2015; Kong et al., 2015).

Image I

Perception

Controller

Action (vx, vy)

Robot pose (x, y, θ)

Supervised learning

Reinforcement learning

Figure 1. Information flow between modules. Blocks are neural
networks.

Model-free DRL solves these problems, but training an
agent requires complex environmental simulation and
physics modeling of robots (Bruce et al., 2018; Liu & Hui,
2018). In this paper, we circumvent this challenge by split-
ting training with two neural networks: a perception module
that estimates a WMR’s location from images and a con-
troller module that predicts the action needed to complete
a task. While end-to-end training from images to action is
popular (Krajnı́k et al., 2018; Chiang et al., 2018), partition-

Modular Platooning and Formation Control

ing the problem into two steps has a number of advantages.
The need for complex simulation is avoided. There is the
flexibility of retraining the controller while reusing the lo-
calization module, Module input/output is interpretable. A
flowchart of our modular design is shown in Figure 1.

Figure 2. A screenshot from our custom dataset. Three lankmarks
can be seen.

The first phase of this work was to train a residual network
(ResNet) (He et al., 2015) to perform vision-based local-
ization. We focus on indoor localization which includes
many challenges such as a dynamic foreground/background,
motion blur, and changing lighting. Various landmarks were
placed in the environment, which could be used to determine
a WMR’s pose. The dynamic foreground and background
are realized by giving intermittent views of landmarks. A
picture of our training and testing environment is shown
in Figure 2. The model accurately predicts the position of
robots, which enables DRL without need for a detailed 3D
simulation. Instead, the controller module “sees” only the
positions of itself and other WMRs.

To replace traditional controllers, we use a new actor-critic
algorithm called Momentum Policy Gradient (MPG) to train
a policy network. MPG is an improvement TD3 that reduces
under/overestimation of the value function (Fujimoto et al.,
2018). MPG’s convergence is theoretically proven and sta-
bility shown experimentally. The proposed algorithm is
efficient at solving the platooning problem.

Our contributions can be summarized as follows.

1. A modular approach designed to circumvent the need
for extensive simulation of the real world.

2. The Momentum Policy Gradient DRL algorithm
for continuous control tasks that combats value un-
der/overestimation.

3. An application to a the real world problem of platoon-
ing and formation control with obstacle avoidance.

2. Mobility of Wheeled Robots
The problem of forward kinematics for WMRs that has been
extensively studied over the decades. A WMR collects two
inputs: angular and linear velocities. The velocity inputs
are then fed into on-board encoders to generate torque for
each wheel. Due to the different sizes of robots, number
of wheels, and moving mechanisms, robots can be classi-
fied into holonomic (i.e., omni-directional Mecanum wheel
robots) (Ilon, 1975) and nonholonomic agents (i.e., real vehi-
cles with constrained moving direction and speed) (Bryant,
2006). In this paper, we consider the case of nonholonomic
agents.

Ideally, angular and linear velocities are the outputs of a
DRL trained policy network. However, these two action
spaces have very different scales and usually cause size-
asymmetric competition (Weiner, 1990). We discovered
that training a DRL agent with angular and linear velocities
as actions converges slower than the methods presented in
later pages. Since there is no loss in degree of freedom, it is
sufficient to use scalar velocities in x and y axes similar to
the work done in (Ren, 2008).

Let (xi, yi) be the position in Cartesion coordinates, θi the
orientation, and (vi, wi) denote linear and angular velocities
of a WMR agent i. The dynamics of each agent is as follows.

ẋi = vi cos(θi), ẏi = vi sin(θi), θ̇i = wi (1)

The nonholonomic simplified kinematic Equation (2) can
then be derived by linearizing (1) with respect to a fixed
reference point distance d off the center of the wheel axis
(x′i, y

′
i) of the robot, where x′i = xi + di cos θ, y′i = yi +

di sin θ.

Using d = 0.15 meters in (Ren, 2008), it is trivial to transfer
x and y direction velocity signals to the actions used in
nonholonomic system control.[

vi
wi

]
=

[
cos θi sin θi

−(1/d) sin θi −(1/d) cos θi

] [
ax′

i

ay′i

]
(2)

Here ax′
i

and ay′i are the input control signals for robot i.

In addition, other differential drive methods such as Instan-
taneous Center of Curvature (ICC) can be used for non-
holonomic robots. However, compared to (2), ICC requires
more physical details such as distance between the centers of
the two wheels and eventually only works for two-wheeled
robots (Dudek & Jenkin, 2010). Meanwhile, decomposing
velocity dynamics to velocities on the x and y axes can be
reasonably applied to any WMR.

3. Modular Design
By splitting a 3D locomotion task into a localization and
control problem, which are solved by separate neural net-
works, is the crux of this paper. Though image-to-action

Modular Platooning and Formation Control

networks are still commonplace, there has been a recent
shift towards multi-part DRL networks (Banino et al., 2018;
Wayne et al., 2018). Our approach has similarities to (Ha &
Schmidhuber, 2018), except we require that inputs/outputs
from models be human interpretable. This gives greater
flexibility in replacing or adding new modules.

This modular solution offers a number of advantages over an
end-to-end system trained completely using reinforcement
learning.

1. Avoids 3D simulations: Solving real-world problems
using reinforcement learning requires environments
that mimic the real world. However, complex 3D sim-
ulations are expensive to create and run. Despite the
efforts of organizations like OpenAI (Brockman et al.,
2016), researchers looking to explore more special-
ized domains have no choice but to create their own
environments. However, because of our modular ap-
proach, we avoid this problem. Modules can be trained
using simpler simulations, without need for realistic
graphics.

2. Re-training: If and end-to-end system is found defec-
tive or needs upgrades, the entire model must be re-
trained. Depending on the scenario, this retraining can
take weeks of compute time on very powerful GPUs.
This prohibits regular but minor changes to deep neural
networks, a practice which is commonplace in software
engineering.

However, using a modular design means that, if one
module needs retraining, the others do not need to be
discarded. Because modules tends to be small, retrain-
ing is easy and the new model can be sent to edge
devices as a small software update.

3. Transparency: A big problem with deep neural net-
works is their opacity. They are envisioned as black
boxes. With our design, the inputs and outputs between
modules is interpretable by humans. Moreover, each
unit can be independently tested and verified, allowing
flaws to be traced back to a particular module.

This transparency also allows traditional control meth-
ods to be integrated with deep neural networks. Trained
models are a piece of software, and should be interop-
erable with other software.

The emphasis on human readability may lead to unnecessary
encoding and decoding of inputs/outputs. Feature reuse
would likely save on computation time and model size. But
we believe the benefits are significant enough to merit this
choice.

4. Localization
The perception module focuses on the problem of estimat-
ing position directly from images in a noisy environment.
Several landmarks (i.e., books, other robots) were placed
in the environment so as to be visible in the foreground.
Using landmarks as reference for indoor localization tasks
has proven to be successful for learning-based methods (Lee
et al., 2018). As the WMR moves around an environment, a
mounted camera observes only a subset of the landmarks.
Depending on the position and orientation of the robot, the
placement of the landmarks within the frame changes.

Figure 3. Example snail trajectory with predicted pose.

Overall, data was gathered from 3 types of robot trajectories
(regular, random, whirlpool) with multiple collections at dif-
ferent times of day (morning, afternoon, evening). Data col-
lection was performed at Nonlinear Controls and Robotics
Lab. Not only do the lighting conditions change between
examples, but the background varies from human activity
throughout the day. The vision module must learn to ignore
this noise and rely on the landmarks for localization.

The images and ground truth pose of the agent were col-
lected using a HD camera and a motion capture system
respectively. As the WMR moved along a closed path, im-
ages were sampled at rate of 30 Hz, and the ground truth
pose of the camera and agent at a rate of 360 Hz. The
camera used for recording images is placed on a TurtleBot
at a fixed viewing angle. An example from our dataset is
displayed in Figure 2.

A ResNet-52 model (He et al., 2015) with a resized out-
put layer is trained from scratch on the dataset. Residual
networks contain connections between layers of different
depth to improve gradient flow during backpropagation.
This eliminates the vanishing gradient problem encountered
when training very deep convolutional neural networks. The

Modular Platooning and Formation Control

(a) S1 (b) S2

(c) S3 (d) S4

Figure 4. Saliency maps showing the effect of each pixel on the prediction accuracy.

ResNet predicts the robots current the 2D position, orien-
tation, and the distance to nearby landmarks. Distance to
landmarks was not used in later modules, but helps focus
attention onto the landmarks, which is a more reliable indi-
cator of current pose, instead of any background changes
between images.

Our approach is robust enough to accurately predict a robot’s
pose for even very complex trajectories, even ones with mul-
tiple points of self-intersection. Furthermore, ResNet based
localization works well even with a dynamic foreground
(multiple landmarks) and a dynamic background. Different
lighting conditions and changes in background objects be-
tween trials do not affect the accuracy. Error rates for the
robot’s 2D coordinates and 4D quaternion orientation are
given in Table 1. They are all less than 1%. Figure 3 shows
an example predicted and motion captured poses as well as
landmarks; there is almost no difference between the two.

To visualize what our ResNet has learned from raw images,

Table 1. ResNet52 Pose Prediction Error.

X (%) Y (%) Q1 (%) Q2 (%) Q3 (%) Q4 (%)

0.439 0.1191 0.7462 0.3199 0.1673 0.152

we create saliency maps of four sample images as shown
in Figure 4. Since the ResNet directly outputs the (x, y)
coordinates of the WMR rather than a discrete set of proba-
bilities, the saliency maps are thus created by measuring the
accuracy when sliding a 3x3 occluding window on the raw
image. As illustrated in Figure 4, landmarks are highlighted
while other parts of the images are occluded, such as people
walking around, indicating that the ResNet learns to focus
on the landmarks which give the TurtleBot reliable position
information, while ignoring background noise.

Modular Platooning and Formation Control

5. Momentum Policy Gradient
Since nonholonomic controllers have a continuous action
space, we design our algorithm using the framework estab-
lished by DDPG (Lillicrap et al., 2015). There are two neu-
ral networks: a policy network predicts the action a = πφ(s)
given the state s, a Q-network Qθ estimates the expected
cumulative reward for each state-action pair.

Qθ(s, a) ≈ E

[∞∑
t=0

γtrt

∣∣∣∣s0 = s, a0 = a

]
(3)

The Q-network is part of the loss function for the policy
network. For this reason, the policy network is called the
actor and the Q-network is called the critic.

LA = Qθ(s, πφ(s)) (4)

The critic itself is trained using a Bellman equation derived
loss function.

LC = (Qθ(s, a)− [r + γQθ̂(s
′, πφ(s′))])2 (5)

However, this type of loss leads to overestimation of the
true total return (François-Lavet et al., 2018). TD3 fixes this
by using two Q-value estimators Qθ1 , Qθ2 and taking the
lesser of the two (Fujimoto et al., 2018).

y = r + γ min
i=1,2

Qθi(s
′, πφ1(s′)) (6)

Note that this is equivalent to taking the maximum, and then
subtracting by the absolute difference. However, always
choosing the lower value brings underestimation and higher
variance (Fujimoto et al., 2018).

To lower the variance in the estimate, inspired by the mo-
mentum used for optimization in (Zhang et al., 2015), we
propose Momentum Policy Gradient illustrated in Algo-
rithm 1 which averages the current difference with the pre-
vious difference ∆last.

q = max(Qθ̂1(s′, a′), Qθ̂2(s′, a′))−∆adj (7)

∆adj =
1

2
(|Qθ1(s′, a′)−Qθ2(s′, a′)|+ ∆last) (8)

This combats overestimation bias more aggressively than
just taking the minimum of Qθ1 , Qθ2 . Moreover, this coun-
ters any over-tendency TD3 might have towards under-
estimation. Because neural networks are randomly ini-
tialized, by pure chance |Qθ1(s′, a′)−Qθ2(s′, a′)| could
be large. However, it is unlikely that ∆last and
|Qθ1(s′, a′)−Qθ2(s′, a′)| are both large as they are com-
puted using different batches of data. Thus ∆adj has a lower
variance than |Qθ1(s′, a′)−Qθ2(s′, a′)|.

In the case of negative rewards, the minimum takes the
larger Qθi(s

′, a′) in magnitude. This will actually encour-
age overestimation (here the estimates trend toward −∞).
The convergence of MPG update rule is provided in Theo-
rem 1. The proof can be found in the Appendix.

Algorithm 1 Momentum Policy Gradient
1: Initialize critic networks Qθ1 , Qθ2 , and actor network
πφ with random parameters θ1, θ2, φ

2: Initialize target networks Qθ̂1 , Qθ̂2 with θ̂1 = θ1, θ̂2 =
θ2

3: Create empty experience replay E
4: for t = 1 to T do
5: Take action a = πφ(s) +N (0, vexplore)
6: vexplore = min(λ · vexplore, vmin)
7: Get next state s′, reward r from environment
8: Push (s, a, s′, r) into E
9: Sample mini-batch of N transitions from E

10: Set ∆last = 0
11: for i = 1 to I do
12: a′ ← πφ(a) +N (0, vtrain)

13: ∆adj ← 1
2 (∆last +

∣∣∣Qθ̂1(s′, a′)−Qθ̂2(s′, a′)
∣∣∣)

14: ∆last ←
∣∣∣Qθ̂1(s′, a′)−Qθ̂2(s′, a′)

∣∣∣
15: q ← max(Qθ̂1(s′, a′), Qθ̂2(s′, a′))−∆adj

16: y ← r + γq
17: LC ← 1

N

∑
batch

∑
i=1,2(Qθi(s

′, a′)− y)2

18: Minimize Lc

19: if i mod F = 0 then
20: LA ← average of −Qθ1(s, πφ(a))
21: Minimize La

22: θ1 ← τθ1 + (1− τ)θ̂1
23: θ2 ← τθ2 + (1− τ)θ̂2
24: end if
25: end for
26: end for

Theorem 1 (Convergence of MPG update rule). Consider
a finite MDP with 0 ≤ γ < 1 and suppose

1. each state-action pair is sampled an infinite number of
times

2. Q-values are stored in a lookup table

3. Q,Q′ receive an infinite number of updates

4. the learning rates satisfy 0 < αt(st, at) < 1,∑
t αt(st, at) = ∞, but

∑
t α

2
t (st, at) < ∞ with

probability 1

5. Var[r(s, a)] <∞ for all state-action pairs.

Then Momentum Policy Gradient converges to the optimal
value function Q∗.

6. Continuous Control
We conducted a variety of experiments designed to repli-
cate real-world indoor and outdoor robotics tasks. In all

Modular Platooning and Formation Control

experiments, neural networks have two hidden layers of
400 and 300 units respectively. Output and input sizes vary
depending on the environment and purpose of the model.
Constraints on the position Table 2 are enforced by ending
episodes once they are breached. A penalty of −kb is also
added to the reward for that time step. The hyperparameters
of MPG are given in Table 5.

Table 2. Kinematic Constraints of Agents.

xmin xmax ymin ymax vmin vmax

LEADER −1 1 −1 1 −0.7 0.7
FOLLOWER −2 2 −2 2 −0.7 0.7

Suppose there are N agents whose kinematics are governed
by Equations 1 and 2. Let zi = [ṗi p̈i]

T denote the state of
agent i and the desired formation control for agents follow
the constraint (Oh et al., 2015):

F (z) = F (z∗) (9)

From (9), we consider displacement-based formation con-
trol with the updated constraint given as:

F (z) := [...(zj − zi)T...]T = F (z∗) (10)

Each agent measures the position of other agents with re-
spect to a global coordinate system. However, absolute state
measurements with respect to the global coordinate system
is not needed. A general assumption made for formation
control communication is that all agent’s position, trajectory
or dynamics should be partially or fully observable (Zegers
et al., 2019; Han et al., 2019).

6.1. Formation Control

The most basic type of formation control considered is the
leader-follower task: one agent—the follower—must move
to the location of another agent—the leader. The leader
constantly moves without waiting for the follower. We
can extend the single leader-follower problem by adding
additional trained followers to track the sole leader.

We first design and conduct an experiment similar to (He
et al., 2019). There is a pre-defined formationF with respect
to the global frame. All agents maintain a rigid formation
throughout the entire movement process. The orientation
of the formation does not change. A neural network learns
to move the followers in unison with the leader, hence the
name Unison Formation Control.

Given the position of the leader, whose index is 1, each
follower i should try to minimize its distance to an intended
relative location Fi with respect to the leader while avoiding
collisions. As the leader moves, the expected positions Fi

move in unison. The reward is

r = −kcnc −
∑
i≥1

‖pi −Fi‖ (11)

where kc is collision coefficient and nc is the number of
collisions and pi is the position of agent i. A collision
occurs once the distance between two agents drops below
a certain threshold C. Upon any collisions, we reset the
environment and start a new episode.

We explored Unison Formation Control for a square forma-
tion with curved and random leader movements. As seen in
Figure 5, three followers move in unison equally well when
tracking a leader with smooth trajectory starting from lower
left corner (a) and a random leader (b). The average reward
and distances are reported in Table 3.

Table 3. Unison Average Reward and Distances.

PATTERN REWARD DIST TO F2 DIST. TO F3 DIST. TO F4

RANDOM −0.7214 0.0089 0.0116 −0.0134
REGULAR −0.5239 0.0011 0.0123 −0.0026

However, for many applications, Unison Formation Con-
trol is overly restrictive as it dictates the individual motion
of all agents. Consensus Formation Control requires that
agents keep a formation with respect to the local frame;
the formation can rotate with respect to the global frame.
The problem definition allows for switching and expansion
within a given topology, as long as there are no collisions.
The extra flexibility can be beneficial. For example, the
agents may need to move further apart to avoid an obstacle
or tighten their formation to fit through some passageway. In
general, agents i, j should maintain a constant distance Di,j
between each other. Letting di,j = ‖pi − pj‖, the reward
function is given according to the following equation.

r = −kcnc −
∑
i,j

|di,j −Di,j | (12)

In our experiment, we trained two follower agents to main-
tain triangle formation with a leader undergoing random
motion. As shown in Figure 5 (c), we test the performance
of the controller network at multi-agent consensus while the
leader traverses a counter-clockwise circular trajectory. The
leader starts at (0.5, 0.5), follower 1 starts at a random lower
left position, and follower 2 starts at a random upper right
position. Initially, the three agents start far away from each
other but quickly formed a triangle when the leader reaches
around (0.1, 0.5). We observed that the followers swapped
their local positions within the formation when the leader
arrives (−0.5, 0.0). This is because, as the reward function
is only interested in relative distances, the policy network
learns that the agents can maintain the formation with less

Modular Platooning and Formation Control

(a) Rigid Unison with regular leader (b) Rigid Unison with random leader (c) Multi-agent Consensus

Figure 5. Formation control: (a) and (b) use the unison definition while (c) allows the followers to swap positions.

total movement by switching their relative positions in the
group. Results are reported in Table 4.

Table 4. Consensus Average reward and Distances.

REWARD |d1,2 −D1,2| |d1,3 −D1,3| |d2,3 −D2,3|
−27.9942 0.0219 0.0203 0.0275

6.2. Platooning

While platooning of a truck fleet can be considered a special
case of Consensus Formation Control, where the formation
is a straight line, due to the presence of obstacles such as
pedestrians, cars, and even trash on the roadway, agents
must be able to adjust their formation on the fly to evade
potentially dangerous objects. Instead of control law re-
design, fixed or moving obstacle avoidance can naturally be
integrated into the formation control problem by adding an
additional term in the reward function.

Depending on the number of vehicles in a fleet, there are
two options for platooning control. In Distributed Platoon-
ing, each vehicle has its own neural network as a control
module. In Centralized Platooning, one DRL actor controls
all vehicles.

The modular implementation of perception and control func-
tionality makes it possible to equip each vehicle in a large
fleet with customized DRL controllers. For instance, the
perception module can be used for localization among all
cars. Based on the physical characteristics of each vehicle,
neural networks can be trained accordingly to control each
car. On the other hand, using a single DRL controller al-
lows for better overall coordination and saves computation
resources for small fleets. For this reason, only Centralized
Platooning is investigated in this work.

The experiment setup is shown in Figure 6. The leader
linearly travels from (−1,−1) to (1, 1). There are 2 fixed

obstacles on the path of the leader that only stop the follow-
ers, and a moving obstacle travelling linearly from (−1, 1)
to (1,−1). There are two followers: one must main a cer-
tain distance from the leader without hitting any obstacles,
the other must track the first follower without hitting any
obstacles or the first follower.

We adopt the reward from Equation 12, but add additional
terms that punish closeness between the followers and the
obstacles. Agents i, j must maintain a distance Di,j from
each other, with i = 1 being the index of the leader.

r = −kcnc −
∑
i,j

|di,j −Di,j |+ ko
∑
i>1,j

‖pi − oj‖ (13)

Here oi is the position of the obstacles and ko is the relative
importance of avoiding the obstacles.

We use this reward, instead of a one-time penalty for col-
liding with an obstacle, because Equation (13) gives con-
stant feedback. Training on sparse rewards is an unsolved
challenge in DRL (Salimans & Chen, 2018). In particular,
because the obstacle is encountered later on, the follower
learns to strictly copy the leader’s movements without re-
gard for obstacles. Once the obstacles are encountered,
the follower maintains its previously learned behavior. But
because we are only training a single module, it is not so
important that the agent learns with even poorly shaped re-
wards. The realism of the training settings is irrelevant as
long as the agent learns the desired behavior.

The result is shown in Figure 6 (a). Although both followers
roughly form a platoon with leader after 200 episodes of
training, the formation is rather loose which may not be
useful for a real road environment. Note that both followers
display a clear zig-zag movement around (−0.25,−0.3),
when the first follower is closer to first fixed obstacle and
the moving obstacle. We conjecture that this issue arises
due to various terms in the reward function fighting with
each other that causes the oscillation in action output. As a
result, the followers do not move smoothly.

One solution to the zig-zaging is to add an additional term in

Modular Platooning and Formation Control

(a) Platooning (b) Platooning with velocity constraint. (c) Platooning with reward shaping

Figure 6. Platooning with different methods

reward function that discourages large changes in velocity.
The updated reward function is then

r =− ‖at − at−1‖ − kcnc −
∑
i,j

|di,j −Di,j |

+ ko
∑
i>1,j

‖pi − oj‖
(14)

where at is the current action taken and at−1 is the previous
action. As shown in Figure 6 (b), the followers manage
to stay on the path of the leader while still avoiding the
obstacles. However, this requires that the agent see its last
action, which increases the state dimension by 2.

Alternatively, we can adjusted the coefficients kc, ko in
Equation (13) so that the followers are rewarded greater
for keeping the platoon moving along a straight line. The
simple weight change worked surprisingly well, with the
results shown in Figure 6 (c). Through reward shaping, the
controller learns the desired behavior.

7. Conclusion and Future Work
In conclusion, we propose Momentum Policy Gradient—a
new DRL algorithm—to solve formation control and ob-
stacle/collision avoidance problems central to platooning,
which are difficult to solve using traditional control meth-
ods. The experimental results show that MPG performs well
in training agents to tackle a variety of continuous control
tasks. These controllers can be trained in a simple toy envi-
ronment and then plugged into a larger modular framework.
We also achieve image-based localization with a ResNet-52
network trained on a custom dataset. Analysis demonstrates
that the model can reliably predict a WMR’s pose in spite of
a dynamic background, varied lighting, and changing view.

There are still many hurdles that this paper was not able to
resolve. Our DRL controllers are trained without regard for
friction or acceleration. Even using on-board computers and
control algorithms to convert x, y-velocity into the appro-

priate motor signals, the current controllers would struggle
with complications such as slipping, delays in executing
actions, and vehicle performance constraints. One solution
is to improve the virtual environment with better physics
modeling, such as using acceleration as the actions instead
of velocity. However, it is impossible to perfectly mimic
the wide variety of real-world conditions. More work is
needed in developing DRL algorithms which can train mod-
els that generalize to unfamiliar environments. However, we
believe the proposed modular framework can eventually be
expanded to solve these challenges.

There are many other directions that merit future work. The
perception module can be extended to outdoor localization
by integrating multiple sources of sensory information like
LiDAR and GPS. Each sensor could have its own neural net-
work or one neural network that combines different streams
of information. Orthogonal to the goal of sensor fusion is
Distributed Group Platooning which is faster but requires
more computation power compared to Centralized Group
Platooning. Importantly, Distributed Platooning scales bet-
ter to large fleets as it does not require global communication
between vehicles. A platoon can be controlled by multiple
DRL policies, each of which collects position information
of corresponding vehicles takes control actions.

References
Banino, A., Barry, C., Uria, B., Blundell, C., Lillicrap, T.,

Mirowski, P., Pritzel, A., Chadwick, M. J., Degris, T.,
Modayil, J., et al. Vector-based navigation using grid-like
representations in artificial agents. Nature, 557(7705):
429, 2018.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Bruce, J., Sünderhauf, N., Mirowski, P., Hadsell, R., and
Milford, M. Learning deployable navigation policies at

Modular Platooning and Formation Control

kilometer scale from a single traversal. arXiv preprint
arXiv:1807.05211, 2018.

Bryant, R. L. Geometry of manifolds with special holonomy.
150 Years of Mathematics at Washington University in St.
Louis: Sesquicentennial of Mathematics at Washington
University, October 3-5, 2003, Washington University, St.
Louis, Missouri, 395:29, 2006.

Chiang, H. L., Faust, A., Fiser, M., and Francis, A.
Learning navigation behaviors end to end. CoRR,
abs/1809.10124, 2018. URL http://arxiv.org/
abs/1809.10124.

Chin, J.-H. and Tsai, H.-C. A path algorithm for robotic
machining. Robotics and computer-integrated manufac-
turing, 10(3):185–198, 1993.

Dixon, W. E., de Queiroz, M. S., Dawson, D. M., and
Flynn, T. J. Adaptive tracking and regulation of a wheeled
mobile robot with controller/update law modularity. IEEE
Transactions on control systems technology, 12(1):138–
147, 2004.

Dudek, G. and Jenkin, M. Computational principles of
mobile robotics. Cambridge university press, 2010.

Fibla, M. S., Bernardet, U., and Verschure, P. F. Allostatic
control for robot behaviour regulation: An extension to
path planning. In 2010 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pp. 1935–1942.
IEEE, 2010.

François-Lavet, V., Henderson, P., Islam, R., Bellemare,
M. G., Pineau, J., et al. An introduction to deep reinforce-
ment learning. Foundations and Trends R© in Machine
Learning, 11(3-4):219–354, 2018.

Fujimoto, S., van Hoof, H., and Meger, D. Addressing func-
tion approximation error in actor-critic methods. arXiv
preprint arXiv:1802.09477, 2018.

Gong, S., Shen, J., and Du, L. Constrained optimization
and distributed computation based car following control
of a connected and autonomous vehicle platoon. Trans-
portation Research Part B: Methodological, 94:314–334,
2016.

Ha, D. and Schmidhuber, J. World models. arXiv preprint
arXiv:1803.10122, 2018.

Han, Z., Guo, K., Xie, L., and Lin, Z. Integrated relative
localization and leader–follower formation control. IEEE
Transactions on Automatic Control, 64(1):20–34, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. CoRR, abs/1512.03385, 2015.
URL http://arxiv.org/abs/1512.03385.

He, S., Wang, M., Dai, S.-L., and Luo, F. Leader–follower
formation control of usvs with prescribed performance
and collision avoidance. IEEE Transactions on Industrial
Informatics, 15(1):572–581, 2019.

Ilon, B. E. Wheels for a course stable selfpropelling vehicle
movable in any desired direction on the ground or some
other base, April 8 1975. US Patent 3,876,255.

Kong, J., Pfeiffer, M., Schildbach, G., and Borrelli, F. Kine-
matic and dynamic vehicle models for autonomous driv-
ing control design. In 2015 IEEE Intelligent Vehicles
Symposium (IV), pp. 1094–1099. IEEE, 2015.

Koshal, J., Nedić, A., and Shanbhag, U. V. Distributed
multiuser optimization: Algorithms and error analysis.
In Proceedings of the 48h IEEE Conference on Decision
and Control (CDC) held jointly with 2009 28th Chinese
Control Conference, pp. 4372–4377. IEEE, 2009.

Koshal, J., Nedić, A., and Shanbhag, U. V. Multiuser
optimization: Distributed algorithms and error analysis.
SIAM Journal on Optimization, 21(3):1046–1081, 2011.

Krajnı́k, T., Majer, F., Halodová, L., and Vintr, T. Naviga-
tion without localisation: reliable teach and repeat based
on the convergence theorem. In 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pp. 1657–1664. IEEE, 2018.

Lee, N., Ahn, S., and Han, D. Amid: Accurate magnetic
indoor localization using deep learning. Sensors, 18(5):
1598, 2018.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Liu, Q. and Hui, Q. The formation control of mobile au-
tonomous multi-agent systems using deep reinforcement
learning. 13th Annual IEEE International Systems Con-
ference, 2018.

Mutz, F., Cardoso, V., Teixeira, T., Jesus, L. F., Golçalves,
M. A., Guidolini, R., Oliveira, J., Badue, C., and
De Souza, A. F. Following the leader using a tracking sys-
tem based on pre-trained deep neural networks. In Neural
Networks (IJCNN), 2017 International Joint Conference
on, pp. 4332–4339. IEEE, 2017.

Oh, K.-K., Park, M.-C., and Ahn, H.-S. A survey of multi-
agent formation control. Automatica, 53:424–440, 2015.

Ong, H. Y. and Gerdes, J. C. Cooperative collision avoid-
ance via proximal message passing. In 2015 American
Control Conference (ACC), pp. 4124–4130. IEEE, 2015.

http://arxiv.org/abs/1809.10124
http://arxiv.org/abs/1809.10124
http://arxiv.org/abs/1512.03385

Modular Platooning and Formation Control

Rajamani, R. Vehicle dynamics and control. Springer Sci-
ence & Business Media, 2011.

Ren, W. Consensus tracking under directed interaction
topologies: Algorithms and experiments. In 2008 Ameri-
can Control Conference, pp. 742–747. IEEE, 2008.

Salimans, T. and Chen, R. Learning montezuma’s re-
venge from a single demonstration. arXiv preprint
arXiv:1812.03381, 2018.

Singh, S., Jaakkola, T., Littleman, M., and Szepesvári,
C. Convergence results for single-step on-
policyreinforcement-learning algorithms. Machine
Learning, 38:287–308, 2000.

Wayne, G., Hung, C.-C., Amos, D., Mirza, M., Ahuja,
A., Grabska-Barwinska, A., Rae, J., Mirowski, P.,
Leibo, J. Z., Santoro, A., et al. Unsupervised predic-
tive memory in a goal-directed agent. arXiv preprint
arXiv:1803.10760, 2018.

Weiner, J. Asymmetric competition in plant populations.
Trends in ecology & evolution, 5(11):360–364, 1990.

Zegers, F., Chen, H.-Y., Deptula, P., and Dixon, W. E. A
switched systems approach to consensus of a distributed
multi-agent system with intermittent communication. In
Proc. Am. Control Conf., 2019.

Zhang, S., Choromanska, A. E., and LeCun, Y. Deep learn-
ing with elastic averaging sgd. In Advances in Neural
Information Processing Systems, pp. 685–693, 2015.

A. Proof of Theorem 1
The theorem and proof of MPG’s convergence borrows
heavily from those for Clipped Double Q-learning (Fuji-
moto et al., 2018). Before proving the convergence of our
algorithm, we first require a lemma proved in (Singh et al.,
2000).

Lemma 1. Consider a stochastic process (αt,∆t, Ft), t ∈
N where αt,∆t, Ft : X → R such that

∆t+1(x) = [1− αt(x)]∆t(x) + αt(x)Ft(x)

for all x ∈ X, t ∈ N. Let (Pt) be a sequence of increasing
σ-algebras such that αt,∆t, Ft−1 are Pt-measurable. If

1. the set X is finite

2. 0 ≤ αt(xt) ≤ 1,
∑
t αt(xt) = ∞, but

∑
t α

2
t (xt)

with probability 1

3. ‖E[Ft|Pt]‖ ≤ κ ‖∆t‖ + ct where κ ∈ [0, 1) and ct
converges to 0 with probability 1

4. Var[Ft(x)|Pt] ≤ K(1 + ‖∆t‖)2 for some constant K,

Then ∆t converges to 0 with probability 1.

The proof is based on the proof of Theorem 1 found in
(Fujimoto et al., 2018).

Proof. Let X = S × A, ∆t = Qt − Q∗, and Pt =
{Qk, Q′k, sk, ak, rk, αk}tk=1. Conditions 1 and 2 of Lemma
1 are satisfied. By the definition of Momentum Policy Gra-
dient,

∆adj
t =

1

2
(|Qt(st, at)−Q′t(st, at)|+

|Qt−1(st−1, at−1)−Q′t−1(st−1, at−1)|)

yt = rt + γ(mt −∆adj
t)

Qt+1(st, at) = [1− αt(st, at)]Qt(st, at) + αt(st, at)yt

where mt = max{Qt(st, at), Q′t(st, at)}. Then

∆t+1(st, at) = [1− αt(st, at)][Qt(st, at)−Q∗(st, at)]
+ αt(st, at)[yt −Q∗(st, at)]

= [1− αt(st, at)][Qt(st, at)−Q∗(st, at)]
+ αt(st, at)Ft(st, at)

where

Ft(st, st) = yt −Q∗(st, at)

= rt + γ(mt −∆adj
t)−Q∗(st, at)

= rt + γ(mt −∆adj
t)−Q∗(st, at)

+ γQt(st, at)− γQt(st, at)

= FQt (st, at) + γbt

We have split Ft into two parts: a term from standard Q-
learning, and γ times another expression.

FQt (st, at) = rt + γQt(st, at)−Q∗(st, at)

bt = mt −∆adj
t −Qt(st, at)

As it is well known that E
[
FQt |Pt

]
≤ γ ‖∆t‖, condition 3)

of Lemma 1 holds if we can show bt converges to 0 with
probability 1. Let ∆′t = Qt −Q′t. If ∆′t(st, at) → 0 with
probability 1, then

mt → Qt(st, at), ∆adj
t → 0

so bt → 0. Therefore showing ∆′t(st, at)→ 0 proves that
bt converges to 0.

∆′t+1(st, at) = Qt+1(st, at)−Q′t+1(st, at)

= [1− αt(st, at)]Qt(st, at) + αt(st, at)yt−
([1− αt(st, at)]Q′t(st, at) + αt(st, at)yt)

= [1− αt(st, at)]∆′t(st, at)

Modular Platooning and Formation Control

This clearly converges to 0. Hence Qt converges to Q∗ as
∆t(st, at) converges to 0 with probability 1 by Lemma 1.
The convergence of Q′t follows from a similar argument,
with the roles of Q and Q′ reversed.

B. MPG vs. TD3 Comparison
B.1. Leader-Follower

(a) TD3 (b) MPG

Figure 7. Performance of TD3 and MPG followers trained with
identical hyperparameters at 200 episodes.

The leader-follower tracking problem can be viewed as
formation control with only 2 agents. The leader constantly
moves without waiting the follower. The follower agent is
punished based on its distance to the leader and rewarded
for being very close. Let pl be the 2D position of the leader
and pf be the corresponding position for the follower. The
reward function for discrete leader movement is defined as

r = −‖pl − pf‖ (15)

where ‖·‖ is the L2 norm. We experimented with several
trajectory types: circle, square, and random.

For the sake of comparison, we trained several followers
using TD3 and MPG. An example reward is displayed in
Figure 8. The values are smoothed using a 1D box filter of
size 200. For the circle leader task, TD3 which struggles to
close the loop, slowly drifiting away from the leader as time
progresses. The MPG trained agent does not suffer from
this problem.

Figure 8. MPG vs. TD3 rewards during training for the circle
leader-follower task.

We also noticed that some TD3 trained followers do not
move smoothly. This is demonstrated in Figure 7. When
trying to track a circle, these agents first dip down from
(1, 1.2) despite the leader moving counter-clockwise, start-
ing at (2, 1).

B.2. Consensus Formation Control

Figure 9. MPG vs. TD3 rewards during training for multi-agent
consensus.

For the purpose of comparison, TD3 was used to train a
neural network to perform consensus formation control. The
rewards per time step are shown in Figure 9. These were
collected over 5 training runs of 200 episodes each. The
MPG curves are longer than the TD3 curves, because the
MPG networks avoid episode ending collisions for longer.
Hence, MPG trained agents achieve the desired behavior
sooner than the TD3 agents.

C. Hyperparamters

Modular Platooning and Formation Control

Table 5. MPG Hyperparameters

HYPER-PARAMETER SYMBOL VALUE

ACTOR LEARNING RATE α 10−3

CRITIC LEARNING RATE αC 10−2

BATCH SIZE − 16
DISCOUNT FACTOR γ 0.99
NUMBER OF STEPS IN EACH EPISODE − 200
TRAINING NOISE VARIANCE vtrain 0.2
INITIAL EXPLORATION NOISE VARIANCE vexplore 2
MINIMUM EXPLORATION NOISE VARIANCE vmin 0.01
EXPLORATION NOISE VARIANCE DECAY RATE λ 0.99

